List of publications

Journal articles

  1. Michael F. Herbst, James E. Avery, Guido Kanschat and Andreas Dreuw. molsturm: Modular electronic structure theory framework. Oberwolfach Reports, 1, 631 (2018). DOI 10.4171/OWR/2018/13 [bib] [slides] Blog article.
  2. Michael F. Herbst, Andreas Dreuw and James E. Avery. Towards quantum-chemical method development for arbitrary basis functions. Journal of Chemical Physics, 149, 84106 (2018). Received Editor's Pick. DOI 10.1063/1.5044765 [code] Blog article.
  3. Maximilian Scheurer, Michael F. Herbst, Peter Reinholdt, Jógvan Magnus Olsen, Andreas Dreuw and Jacob Kongsted. Polarizable Embedding Combined with the Algebraic Diagrammatic Construction: Tackling Excited States in Biomolecular Systems. Journal of Chemical Theory and Computation, 14, 4870 (2018). DOI 10.1021/acs.jctc.8b00576 Blog article.
  4. Michael F. Herbst, James E. Avery and Andreas Dreuw. Quantum chemistry with Coulomb Sturmians: Construction and convergence of Coulomb Sturmian basis sets at Hartree-Fock level. Physical Review A, 99, 012512 (2019). DOI 10.1103/PhysRevA.99.012512 Blog article.
  5. Michael F. Herbst, Maximilian Scheurer, Thomas Fransson, Dirk R. Rehn and Andreas Dreuw. adcc: A versatile toolkit for rapid development of algebraic-diagrammatic construction methods. WIREs Computational Molecular Science, 10, e1462 (2020). DOI 10.1002/wcms.1462 [code] Blog article.
  6. Jan Gerit Brandenburg, Kieron Burke, Bartolomeo Civalleri and others. Challenges for large scale simulation: general discussion. Faraday Discussions, 224, 309 (2020). DOI 10.1039/D0FD90024A
  7. Michael F. Herbst, Antoine Levitt and Eric Cancès. A posteriori error estimation for the non-self-consistent Kohn-Sham equations. Faraday Discussions, 224, 227 (2020). DOI 10.1039/D0FD00048E [code] Blog article.
  8. Michael F. Herbst and Thomas Fransson. Quantifying the error of the core-valence separation approximation. Journal of Chemical Physics, 153, 054114 (2020). Part of JCP Emerging Investigators, received Editor's Pick. DOI 10.1063/5.0013538 [code] Blog article.
  9. Michael F. Herbst and Antoine Levitt. Black-box inhomogeneous preconditioning for self-consistent field iterations in density-functional theory. Journal of Physics: Condensed Matter, 33, 085503 (2021). DOI 10.1088/1361-648X/abcbdb [code] Blog article.
  10. Dirk R. Rehn, Zilvinas Rinkevicius, Michael F. Herbst and others. Gator: a Python-driven program for spectroscopy simulations using correlated wave functions. WIREs Computational Molecular Science, 11, e1528 (2021). DOI 10.1002/wcms.1528 [code] Blog article.
  11. Michael F. Herbst, Antoine Levitt and Eric Cancès. DFTK: A Julian approach for simulating electrons in solids. JuliaCon Proceedings, 3, 69 (2021). DOI 10.21105/jcon.00069 [slides] [code] Blog article.
  12. Evgeny Epifanovsky, Andrew T. B. Gilbert, Xintian Feng and others. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. Journal of Chemical Physics, 155, 084801 (2021). DOI 10.1063/5.0055522 Blog article.
  13. Daniel G. A. Smith, Anabelle T. Lolinco, Zachary L. Glick and others. Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine (QCEngine): Automation and Interoperability among Computational Chemistry Programs. Journal of Chemical Physics, 155, 204801 (2021). DOI 10.1063/5.0059356 [code] Blog article.
  14. Michael F. Herbst and Antoine Levitt. A robust and efficient line search for self-consistent field iterations. (submitted). arXiv:2109.14018 [code] Blog article.
  15. Michael F. Herbst, Stefan Wessel, Matteo Rizzi and Benjamin Stamm. Surrogate models for quantum spin systems based on reduced order modeling. (submitted). arXiv:2110.15665 Blog article.

Software

  1. Michael F. Herbst, J. Avery. molsturm: A basis-function agnostic electronic-structure theory code. (2018). : Proof-of-concept quantum-chemistry program for the ideas on basis-function-agnostic quantum chemistry developed during my PhD.
  2. Michael F. Herbst. ctx: Key-value `c++` datastructures for organised hierarchical storage. (2019). DOI 10.5281/zenodo.1481714 [bib] : Component of the commercially distributed Q-Chem quantum-chemistry program.
  3. Michael F. Herbst, Maximilian Scheurer. adcc: Seamlessly connect your program to ADC. (2019). DOI 10.5281/zenodo.3519764 : Open-source code for computational spectroscopy based on the algebraic-diagrammatic construction (ADC) approach.
  4. Michael F. Herbst, Antoine Levitt. DFTK: The Density-functional toolkit. (2020). DOI 10.5281/zenodo.3541724 [bib] : Open-source plane-wave DFT code connecting mathematical development and industry-scale applications.
  5. Michael F. Herbst. ASE-compatible calculator for DFTK. (2020). DOI 10.5281/zenodo.3881755 : Interface library connecting DFTK with the atomistic simulation environment (ASE).

Lecture notes

  1. Advanced bash scripting 2015. (2015). DOI 10.5281/zenodo.1038526 Teaching page.
  2. Introduction to awk programming 2016. (2016). DOI 10.5281/zenodo.1038522 Teaching page.
  3. Advanced bash scripting 2017. (2017). DOI 10.5281/zenodo.1045332 Teaching page.
  4. Getting to know Julia in one day. (2019). DOI 10.5281/zenodo.3588584 [slides] Teaching page.
  5. Introduction to plane-wave DFT and DFTK. (2020). DOI 10.5281/zenodo.3588584 [slides] Teaching page.
  6. JuliaCon DFTK workshop: A mathematical look at electronic structure theory. (2021). DOI 10.5281/zenodo.5140897 [slides] [video] Teaching page.

Recorded talks or lectures

  1. Pitfalls for performance: Latencies to keep in mind. (2018). [slides] Blog article.
  2. DFTK: A Julian approach for simulating electrons in solids. (2020). [slides] Blog article.
  3. Errors in electronic-structure theory: Status and directions for future research. (2021). [slides] Blog article.
  4. JuliaCon DFTK workshop: A mathematical look at electronic structure theory. (2021). [slides] Teaching page.

Theses

  1. Instanton calculations of tunnelling in water clusters. Master thesis, Cambridge University (2013). DOI 10.5281/zenodo.1250058 Blog article.
  2. Development of a modular quantum-chemistry framework for the investigation of novel basis functions. PhD thesis, University of Heidelberg (2018). DOI 10.11588/heidok.00024519 [bib] [code] Blog article.

Talks and Posters

See List of talks and posters.