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We present the design of a flexible quantum-chemical method development framework, which supports
employing any type of basis function. This design has been implemented in the light-weight program
package molsturm, yielding a basis-function-independent self-consistent field scheme. Versatile
interfaces, making use of open standards like python, mediate the integration of molsturm
with existing third-party packages. In this way, both rapid extension of the present set of meth-
ods for electronic structure calculations as well as adding new basis function types can be readily
achieved. This makes molsturm well-suitable for testing novel approaches for discretising the
electronic wave function and allows comparing them to existing methods using the same software
stack. This is illustrated by two examples, an implementation of coupled-cluster doubles as well
as a gradient-free geometry optimisation, where in both cases, arbitrary basis functions could be
used. molsturm is open-sourced and can be obtained from http://molsturm.org. Published by AIP
Publishing. https://doi.org/10.1063/1.5044765

I. INTRODUCTION

The central goal of electronic-structure theory is to find
approximate solutions to the electronic wave equation numer-
ically. This requires a discretisation of the electronic wave
function. Typically, it is approximated as a linear combi-
nation of Slater determinants: anti-symmetrised products of
single-particle functions. The latter are in turn constructed by
expanding them in a basis set of a priori determined single-
electron functions. Usually, such basis sets are not complete
and introduce basis set errors. Proper choice of the basis func-
tion type and size of basis set is thus decisive for an accurate
description of the system under investigation. It is also clear
from the onset that different basis function types can be more
or less suited for a specific problem, suggesting us to conduct
investigations across existing basis function types.

Gaussian-based methods are overwhelmingly predomi-
nant in computational electronic structure theory, which stems
from pragmatic reasons dating back to the founding years.1,2

It was well-known that bound state electronic wave func-
tions decay exponentially both at short and large distances
from the nuclei,3 but multi-centre electron-repulsion integrals
(ERI) of products of exponential-type orbitals (ETO) were
impractically difficult to calculate. For Gaussian-type orbitals
(GTO), on the other hand, ERI could be calculated efficiently
due to the Gaussian product theorem. However, the compu-
tational challenges facing quantum chemists have changed
since the 1970’s, and it may now be worth trading extra
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computation per integral for having fewer more accurate basis
functions.

In many practical applications, the shortcomings of GTOs
are not important, or one is able to compensate by employing
specialised contracted basis sets.4,5 However, even contracted
GTOs (cGTO) fail to describe both the nuclear cusp and the
exponential decay of the electron density.6 In addition, no mat-
ter the number of GTO basis functions used, the derivatives are
always wrong at the nucleus, which causes singularities and
computational failure, for example, in quantum Monte Carlo
calculations.7–9 Furthermore the description of some proper-
ties such as the nuclear-magnetic resonance (NMR) shield-
ing tensors or a description of Rydberg-like or auto-ionising
states10–13 directly involves the nuclear cusp or the asymptotic
tail, making physically accurate basis functions desirable.14,15

The name of our implementation, “molsturm,” is a port-
manteau of molecular Sturmians: the project was born as a
means to solve the problem of using state-of-the-art quantum
chemistry methods together with generalised- and molecular
Sturmian basis functions. The many promising results for gen-
eralised Sturmians were stranded due to the fact that only
electronic structure problems that were small enough to be
solved by direct configuration interaction methods could be
treated, preventing wider use. The existing mature quantum
chemistry software has been developed over hundreds of man-
years, and the methods are not easily reimplemented from
scratch.

In theory, it should be a simple matter to include new
basis function types in existing quantum chemistry software
by swapping the integral calculator. In practice, it turned out
to be exceedingly difficult due to the very large and com-
plicated code bases of all the investigated quantum chem-
istry software. Assumptions about the basis function type
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scattered around the source code only make this even task more
difficult.

Our solution, which is presented in this paper, is to imple-
ment a light-weight layer that makes it easy to experiment with
many different basis function types and quantum-chemical
methods. It is designed for researchers to both build simple
stand-alone programs for prototyping and teaching purposes,
and make plug-in modules to be hosted in standard quan-
tum chemistry software. To the best of our knowledge, such a
framework with the ability to explore quantum-chemical meth-
ods across multiple basis function types has been missing up
to today.

A. Alternative basis function types

Many research groups have worked on alternative basis
function types. This section will provide a brief overview with
particular focus on exponential-type orbitals (ETO). For fur-
ther details regarding the basis function mentioned, the reader
is referred to the cited works.

Efforts on making various types of ETOs computation-
ally feasible were pioneered by Harris et al.16–19 A particular
form of complete ETO basis is Coulomb Sturmians20–24 (CS).
Their functional form is identical to the familiar hydrogen-like
orbitals, just with all occurrences of the factors Z/r replaced
by the Sturmian exponent k—a parameter, which is the same
for all functions of the basis,
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a normalisation constant. CS functions proved to be especially
easy to work with since their momentum-space representation
by hyperspherical harmonics allows efficient calculation of
multi-centre integrals, opening the way for efficient molecular
calculations.25–28 The Coulomb Sturmian construction gen-
eralises well and generalised Sturmian basis sets preserving
many useful Sturmian properties can be constructed. These
allow us, for example, to build N-particle basis functions
that include important geometric properties of the physical
system under consideration at the level of the basis.29–37 Sim-
ilarly, d-dimensional hyperspherical harmonic basis sets can
model collective motions of particles, for example, for treat-
ing strongly interacting few-body systems or reactive scatter-
ing.38–42 A particular type of one-particle Sturmians combines
a bound-state region and plane-wave asymptotics to model
photoionisation in scattering.43–46 Other directions of research
toward alternative discretisation methods include quantum
chemistry on numerical real-space grids,47,48 finite element
methods,49–54 and wavelets.55–60

The molsturm package is to support such research
directions by providing a common platform for development,
testing, and analysis of quantum-chemical methods irrespec-
tive of the basis function type employed for the discretisation.
The goal is for the implementation work of introducing a new
basis function type to be reduced to adding an extra integral

back end in molsturm, which will then both provide simple
stand-alone calculations and a common interface to hook into
existing quantum chemistry packages.

B. Toward basis-type agnostic quantum chemistry

In order to reach a basis-type agnostic design, there
are three fundamental components to consider: (i) an inte-
gral interface accommodating a wide range of very dif-
ferent basis set types and discretisation, but providing a
uniform way of accessing them, (ii) simple discretisation-
agnostic implementations of the self-consistent field (SCF)
algorithms, and (iii) a flexible interface to employ the result-
ing SCF orbital basis further in existing third-party code.
Once the SCF orbitals have been obtained, the remain-
der of a calculation, e.g., a Post-Hartree-Fock (Post-HF)
method, can usually be formulated entirely in the SCF orbital
basis, without reference to the underlying basis functions.
Thus, a basis-function independent SCF scheme automati-
cally leads to basis-function independent Post-HF methods as
well.

This structure has another advantageous side effect in the
context of developing new basis function types, as it allows us
to perform comparisons between old and new methods using
exactly the same software stack. In other words, one can thus
be sure that, apart from the discretisation, all aspects of the cal-
culation, e.g., SCF algorithms or guess methods, are optimised
at the same level leading to a fair apples-to-apples comparison
between old and new methods.

C. Paper outline

The remainder of the paper is structured as follows: Sec. II
reviews existing projects with similar goals to molsturm.
Section III provides a theoretical background for the program
design choices, which are described in Sec. IV. Section V
provides example problems calculated using molsturm’s
python interface, illustrating how to implement new methods
on top of molsturm in a few lines of python. Section VI
outlines the current state of molsturm and what we hope to
achieve in the future.

II. RELATED QUANTUM-CHEMICAL SOFTWARE
PACKAGES

This section reviews existing quantum chemistry software
that shares some of the goals of molsturm.

The quantum Monte Carlo packages CASINO61 and
QMCPACK62 are among the few systems that support many
different basis function types. Both programs support dis-
cretizations in terms of GTOs, Slater-type orbitals (STOs),
plane-waves, and numerical orbitals like splines. Similarly, the
packages CP2K,63 ASE,64 and GPAW65,66 can be employed
to perform and post-process computations using more than
one type of basis function. GPAW and CP2K further sup-
port calculations with hybrid basis sets that mix Gaussian-
type orbitals with plane waves. However, to the best of our
knowledge, the design of these packages is very specific to
the particular combinations of the basis function type and
method.
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Combining a FORTRAN or C/C++ implementation of the
time-critical core with python as a high-level interface lan-
guage works exceedingly well, and this solution has become
increasingly popular. Sun et al.67 describe the reasons as
follows in their paper about pyscf:

• There is no need to learn a particular domain-specific
input format.

• All language elements from python are immediately
available to, e.g., automatise repetitive calculations
with loops.

• The code is easily extensible beyond what is available
inside pyscf, for example, to facilitate plotting or
other kinds of analysis.

• Computations can be done interactively, which is
helpful for testing or debugging.

We add here that python as a high-productivity language
often achieves even complicated tasks with few lines of code
while remaining easy to read and understand, demonstrated,
for example, by the coupled cluster implementation shown
in Sec. V. In the context of quantum chemistry, this has the
pleasant side effect that a python script used for perform-
ing calculations and subsequent analysis is typically brief, but
still documents the exact procedure followed. All this comes at
essentially no downside if python is combined with a care-
fully optimised low-levelC or FORTRAN code in the numerical
hot spots. Sun et al.,67 for example, claim that pyscf is as
fast as any other existing quantum chemistry packages written
solely in C or FORTRAN.

Even meta-projects like ASE64 or cclib68 which aim
at extending existing packages by a common python front
end have emerged. Other packages like HORTON,69 pyscf,67

pyQuante,70 and GPAW65,66 are written almost exclusively
in python and only employ low-level C or C++ code for the
computationally demanding routines to various extents.

Starting from the opposite direction, Psi471 has gradu-
ally introduced a more and more powerful python interface
on top of their existing C++ core over the years. Recently their
efforts have led to thePsi4NumPy project,72 which combines
the python interface of Psi4 with the tensor operation syn-
tax of numpy arrays.73 The aims of Psi4NumPy are very
much in line with molsturm, namely, to provide a frame-
work, which yields flexible and easy-to-read codes. It is thus
highly suitable for reference implementations, rapid prototyp-
ing, or teaching.72 Unlikemolsturm, however,Psi4NumPy
does not exhibit a basis-type agnostic design and only supports
discretisations based on cGTO basis sets.

Another common feature of pyscf and Psi4 is their
modular design. They use well-established open standards like
HDF574 or numpy arrays73 for data exchange, such that link-
ing their codes to external projects becomes easy. Psi4, for
example, managed to integrate more than 15 external packages
into their framework. This includes three completely differ-
ent back ends for the computation of the required integrals.
In the case of pyscf, it only took us about a day to link
our molsturm to the full configuration interaction (FCI)
algorithms of pyscf via an interface based on numpy. Nev-
ertheless the numerical requirements of Gaussian-type orbitals
are currently hard-coded inside the optimised C or C++ parts

of both these projects, such that extending them by other types
of basis functions could still be difficult.

III. THEORY

This section briefly discusses the theoretical background
and properties of self-consistent field problems in the context
of the basis-type independent design aspired for molsturm.
A more detailed analysis is provided in Ref. 75.

A. Self-consistent field schemes

Both Hartree-Fock (HF) as well as Kohn-Sham density-
functional theory (DFT) can be viewed as a minimisation
procedure of an energy functional with respect to the occu-
pied HF or DFT orbitals.76–78 After employing a particular
basis set for discretisation, this minimisation problem becomes
parameterized in the orbital coefficients C and the associated
Euler-Lagrange equations may be written as

F(C)C = SCE,

C†SC = I,
(3)

where C is the matrix of occupied orbital coefficients, S is the
overlap matrix, I is the identity matrix, and E is the diagonal
matrix of orbital energies. The Kohn-Sham or Fock matrix
F(C) itself depends on the solution coefficients C, making (3)
a non-linear eigenproblem. In the following, our focus will
be on the HF problem since molsturm currently does not
implement any DFT exchange-correlation functional. Due to
the structural similarity of both HF and DFT, our approach
nevertheless applies to DFT as well.

Because (3) is non-linear, the HF problem must be solved
iteratively. Starting from an initial guess C(0), the SCF proce-
dure aims to construct a sequence of trial matrices C(1), C(2),
. . ., C(n) converging toward the minimiser of the HF energy
functional. Broadly speaking this can be achieved in two ways,
either by directly minimising the HF energy functional79–82 or
alternatively by satisfying (3),83–86 thus obtaining a stationary
point on the SCF manifold. On top of that one may alternatively
formulate the HF problem, such that instead of the coefficient
matrix, the density matrix

D(n) = C(n)
(
C(n)

)†
(4)

is iterated. To distinguish SCF algorithms according to these
parameterizations, we will refer to the latter kind of SCF
algorithms as density-matrix-based SCF schemes, whereas we
will use the term coefficient-based SCF for the former set of
algorithms.75

To illustrate, Fig. 1 shows simplified schemes for three
SCF algorithms: Roothaan’s repeated diagonalisation,83 the
optimal damping algorithm (ODA),77 and the geometric direct
minimisation (GDM) scheme.82 While Roothaan’s algorithm
and the GDM are coefficient-based, the ODA is density-
matrix-based. Roothaan’s algorithm is the simplest representa-
tive for solving (3) by repetitively treating the standard eigen-
problem that arises from fixing F

(
C(n)

)
. In contrast to this, the

GDM directly minimises the energy functional geometrically.
The ODA is a middle ground: It combines a line-search min-
imisation of the energy with respect to the density matrix with
repeated diagonalisation of arising Fock matrices.
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FIG. 1. Schematic overview of a few exemplary self-consistent field algorithms. In each case, the Fock-update step is highlighted in pale red and the steps
updating the coefficients or the density matrix are shaded in pale blue. For further details regarding the algorithms, see the indicated references. From left to
right: (a) Roothaan repeated diagonalisation.83 (b) Optimal damping algorithm.77 (c) Geometric direct minimisation.82

The aforementioned algorithms can—on an abstract
level—be written as a two-step process, where a Fock-update
step and a coefficient-update or density-matrix-update step
are iterated. In the former step, a new Fock matrix F(n) is
constructed from the current set of SCF coefficients C(n) or
the current density matrix D(n) (red boxes in Fig. 1). In the
second step, a new set of coefficients C(n+1) or a new den-
sity matrix D(n+1) is found by means of the Fock matrix F(n)

(blue boxes in Fig. 1). Typically other results obtained in pre-
vious iterations are taken into account in this step as well to
accelerate convergence. Consider, for example, Pulay’s com-
mutator direct inversion of the iterative subspace (DIIS)86

scheme forming a linear combination of previous Fock
matrices.

Note, that apart from the initial discretisation of the HF
or DFT problem, no reference to the basis function type
was required in our discussion about SCF procedures. In
other words, provided that (i) an SCF algorithm can be
brought into two-step form and that (ii) within these steps
the details of the basis function can be hidden, the algo-
rithm can be implemented without making explicit refer-
ence to the underlying basis. We are unaware of an SCF
algorithm which cannot be written in two-step form and
will henceforth concentrate primarily on the second point

in our discussion towards a basis-type-independent SCF
scheme.

B. Matrix structure and contraction-based methods

Because different basis types can have very different
selection rules and other discretisation properties, the struc-
ture of the Fock matrix—as well as the numerical approaches
required to efficiently solve the SCF problem—may vary. This
in turn affects the requirements we need for the interface to the
update steps, which is a challenge for hiding the basis func-
tion details from the SCF. This subsection briefly discusses
contraction-based methods as a solution to this issue.

Figure 2 shows from left to right the Fock matrices arising
if (a) finite elements, piece-wise polynomials on a real-space
grid,88,89 (b) contracted Gaussians, or (c) Coulomb Sturmians
have been employed as the basis. While the Coulomb Sturmian
and Gaussian matrices are both small, dense, and diagonal
dominant, the finite-element-discretised matrix is sparse, but
also much larger. In fact, for a description of the beryllium
atom density at a relevant accuracy even larger basis sets with
105–106 finite elements are needed.53

As a result, for both cGTO as well as CS-based dis-
cretisations, direct diagonalisation algorithms, i.e., where the

FIG. 2. Structure of the Fock matrix at the beginning of a Hartree-Fock SCF calculation of beryllium, discretised using finite elements, contracted Gaussians,
and Coulomb Sturmians. The elements are colored by the log10-scale shown on the right. The (3, 2, 2) CS basis set of calculation (c) contains all CS functions
(1) whose quantum numbers n, l, m satisfy n ≤ 3, l ≤ 2, and m ≤ 2 and with the exponent parameter chosen as k = 2.0. More details about construction schemes
for CS basis sets can be found in Ref. 75. From left to right: (a) Q2 finite elements, adaptively refined 3D grid. (b) Contracted Gaussians, pc-2 basis set.87 (c)
Coulomb Sturmians, (3,2,2) basis with k = 2.0.
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full Fock matrix is diagonalised completely, are applicable.
For finite-element-based approaches, on the other hand, iter-
ative subspace-based algorithms like Arnoldi’s method90 or
Davidson’s method91 are more common, due to the size of the
matrix. Recently these have been combined with the so-called
matrix-free methods,92 which avoid building the finite-element
problem matrix in memory at all. Instead only an expression
for the computation of the matrix-vector product is passed to an
iterative solver. Since such expressions may in general involve
arbitrary tensor contractions, like a contraction over the ERI
tensor to compute the Coulomb or the exchange part of the
Fock matrix, we will refer to these approaches by the term
contraction-based methods.75

The main driving force for such approaches is usu-
ally to reduce the amount of storage required and instead
employ well-optimised high-throughput matrix-vector con-
traction expressions. For cases where this avoids slow
storage such as hard drives, runtime may be reduced
significantly even though matrix data will effectively be
computed over and over. Examples for contraction-based
methods in electronic structure theory are efficient implemen-
tations of Post-HF methods, like the algebraic diagrammatic
construction (ADC) scheme93–95 as well as modern coupled-
cluster algorithms.96 One should mention that in this con-
text, the contraction expressions are usually called working
equations.

Note, however, that contraction-based methods may even
be favourable for cases where the size of the system matrix
allows us to get around using the hard drive and place it in main
memory instead.75 This can be understood by considering
modern hardware trends. State-of-the-art central processing
units can perform on the order of 1000 floating point opera-
tions during the time needed to load data from main memory,97

a number which is likely going to increase in the future.98

This implies that more and more algorithms may become
bound by memory latency and bandwidth rather than com-
putation. Especially for cases where matrix elements are fast
to compute from smaller stored intermediates or even from
tractable analytic expressions, contraction-based methods are
highly suitable. Additionally a contraction-based approach
often allows us to reorder terms in the matrix-vector product or
make use of discretisation-specific properties providing addi-
tional sources of reducing runtime cost. Such advantageous
side-effects apply not only to finite-element-based HF, but to
Coulomb-Sturmian-based Hartree-Fock27,75,92 as well, mak-
ing contraction-based methods worth considering in a context
where multiple basis functions ought to be employed.

Additionally, a contraction-based approach can be read-
ily combined with the two-step SCF described in Subsec-
tion III A. Focusing on a coefficient-based SCF for a second,
a contraction-based ansatz would implement the Fock matrix
F(C) as a matrix expression with the current coefficients C
as some mutable state.75 The Fock-update step then amounts
to transparently replacing the current C in the Fock matrix
expression, which is a trivial process. Furthermore, both ways
to think about the HF problem, namely, to think of it as a
non-linear eigenproblem as well as an optimisation problem,
can be tackled by iteratively solving appropriate linear prob-
lems or eigenproblems. This can be achieved using a wide

range of iterative subspace-based algorithms such as the gener-
alised minimal residual method (GMRES), conjugate-gradient
(CG), Arnoldi’s method, or Davidson’s method.90,91,99–101 For
a density-matrix-based SCF scheme, a contraction-based for-
mulation is possible as well. Since the density matrix and
the Fock matrix have similar memory requirements and the
density matrix inevitably needs to be stored in a density-
matrix-based SCF, the main prospect of contraction-based
methods, to avoid the memory bottleneck of storing the Fock
matrix, is directly subverted. Our discussion will not consider
density-matrix-based SCF schemes further for this reason.

In principle, the Fock update step may be implemented by
a conventional re-computation of the full Fock matrix like in a
cGTO setting. Similarly, the matrix-vector-product expression
may be realised by multiplying the resulting stored matrix with
an appropriate vector. Thus the contraction-based SCF scheme
is a generalisation of the traditional method that provides
additional flexibility to deal with Fock matrices of various
structures. To conclude, a single contraction-based interface
between the SCF algorithm and Fock matrix is sufficient to pro-
vide a contraction-based SCF irrespective of the basis function
type and resulting matrix structures.

One should notice, however, that iterative eigensolvers
are not appropriate for all systems. For some cGTO dis-
cretisations with small and dense Fock matrices stored in
memory, direct solver methods perform better than iterative
ones and are thus preferable. Optimal performance requires an
abstraction layer that—depending on the basis function type
and matrix structure—transparently switches (i) between con-
traction expressions and dense matrices for representing the
Fock matrix and (ii) between iterative or direct solver algo-
rithms. As will be discussed in Sec. IV B, the lazyten lazy
matrix library is used for this purpose to achieve a basis-type-
independent SCF code. The details of the solver algorithm
switching and the basis-dependent routines for computation
are hidden in the abstraction layer of the linear algebra and the
contraction expression.

IV. PROGRAM DESIGN
A. Design goals

As mentioned above, molsturm aims to remove the
difficulty in implementing new types of basis functions and
discretisations and to simplify experimenting with new com-
putational methods in quantum chemistry. Assessment of new
methods and comparison between old and new should be pos-
sible within the same framework to ensure treatment on an
equal footing. A high-level interface aiding automation of
repetitive calculations is desirable, too. Once the trial phase
is completed, it should be easy to incorporate the new meth-
ods into existing quantum chemistry software and thus make
them widely available. This motivates the overall design goals
of molsturm.

1. Enable rapid development

In the early stages of developing a new quantum-chemical
method, it is often not clear how it will perform in practice
or which approaches are required to yield efficient and sta-
ble algorithms. To simplify implementation, the code should
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be high level and close to the physical formulae, and at
the same time be flexible enough to enable experimentation
with different numerical methods. Sec. IV D discusses further
details.

2. Plug-and-play implementation of new
discretisations

It is a significant barrier, to incorporate new basis func-
tion types and discretisation schemes to quantum chemistry,
that assumptions about basis function types are scattered
around in the—often very large—programs. We have designed
molsturm to isolate this to the actual electronic integral back
ends, and otherwise only where absolutely necessary. The SCF
stage and post-HF methods should only know about integrals
on an abstract level. Since symmetry, sparsity, selection rules,
and recursion rules are basis function dependent, the integral
library should be in charge of performing the operations where
this information is used. This is primarily in the tensor con-
tractions, for example, the ERI-contractions with molecular
coefficients. Sec. IV C discusses how this is done, expanding
on the strategies introduced in Sec. III.

3. Easy interfacing with existing code

A challenge for new quantum-chemical methods is that
they are hard to compare to well-established ones: One is
either restricted to toy problems, or faced with the enormous
task of implementing advanced methods, refined over hun-
dreds of man-years in the state-of-the-art quantum chemistry
packages—clearly a rather daunting task. For this reason, it is
explicitly not our goal to create yet another general purpose
quantum chemistry package and the large ecosystem of func-
tionality needed in such a project, but on the contrary to supply
small flexible modules that can both be used on their own for
experimentation and teaching, and can be easily incorporated
into existing quantum chemistry software by simple interfaces.
For details, see Sec. IV D as well as the examples in Sec. V.

4. Modular structure with low code complexity

The aspired flexibility requires that individual modules
are as independent from each other as possible. We therefore
choose a design in molsturm, where the five main modules
are arranged in layers; see Fig. 3. Dependencies between the
modules are only downwards, never sideways or upwards. This
aids both reuse of molsturm’s modules in external projects
as well as restructuring or replacement of the code if this was

required in the future. This is further aided by molsturm’s
test suite, which employs a range of testing strategies
including unit tests, functionality tests, and property-based
tests.

Most molsturm modules are written in C++, but the
top layer of the program is a python module defining the
user interface of the framework. Below this, gint, the gen-
eral integral library, provides a single link to the multiplex
between the supported integral calculation back ends and
gscf implements the contraction-based SCF schemes, fol-
lowing the general two-step update structure mentioned in
Sec. III A. Both modules use the library lazyten, which
defines a generalised linear algebra interface allowing to trans-
parently use dense, sparse, and contraction-based Fock matri-
ces in gint and gscf; see Sec. IV B. Finally krims is
molsturm’s common utility library, named after the Ger-
man word “Krimskrams” for “odds and ends.” The individual
components are discussed further in Secs. IV B–IV D.

B. Library for contraction-based algorithms

We saw in Sec. III B that contraction-based methods pro-
vide a versatile ansatz for self-consistent field algorithms,
leading to a basis-function independent formulation of the
problem. We noted that when the Fock matrix is small and
should be stored in memory, an abstraction layer to switch
between dense and iterative solver schemes is needed for max-
imal efficiency. On top of that an issue with contraction-based
methods is that the expressions for computing the matrix-
vector products can become complicated, such that these are
less intuitive to handle compared to a plain matrix or tensor
operations.

Inside molsturm, the library lazyten solves these
challenges by representing matrices by a data structure called
a lazy matrix.75 These employ lazy evaluation, a rigor-
ous method from programming language theory that allows
postponing computation until the moment it is needed.102

In contrast to a stored matrix, which we define as a dense
table, which has all its elements residing in a continuous chunk
of memory, this restriction does no longer hold for a lazy
matrix. It may, for example, follow a particular sparse stor-
age scheme like a compressed-row format,103 but it may not
even be associated with any kind of storage at all. In the most
general sense, it can be thought of as an arbitrary contrac-
tion expression for computing the matrix elements, which is

FIG. 3. Structure of the molsturm
framework: Shown are the five mod-
ules of the package, along with third-
party integral back ends and post-HF
methods to indicate the mediator role
of molsturm. The grayed-out parts
are not yet implemented, but could be
supported by the design.
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dressed to look like an ordinary matrix from the outside. One
may still obtain individual matrix elements and add, subtract,
or multiply lazy matrix objects, but not all operations are as
efficient as for stored matrices. Most importantly, accessing
individual elements of lazy matrices can be costly since the
elements may be computed, e.g., from a particular tensor con-
traction. However, contraction operations of such objects must
be fast.

Lazy matrix operations are subject to lazy evaluation,
explaining the name of these data structures. Lazy evaluation
is a prominent concept of functional programming languages,
excellently introduced in Ref. 104. In our context, this means
that operations between lazy matrices are not directly per-
formed, but delayed until a contraction of the resulting expres-
sion with a vector or a stored matrix unavoidably requires
evaluation. To illustrate this, consider the instructions

D = A + B,

E = DC,

y = Ex,

(5)

where A, B, and C are lazy matrices and x is a vector stored in
memory. The first two lines do not give rise to any computation.
They only build an expression tree in the returned lazy matrix
E, as illustrated in Fig. 4. The final instruction is a matrix-
vector product with the stored vector x, and the actual result
should be returned in the vector y. This triggers the complete
expression tree to be worked upon in appropriate order, such
that the expression

y = (A + B)Cx (6)

is evaluated at once at this very instance. At this point, the full
expression could be simplified, and the most efficient evalua-
tion order could be chosen. This is, however, not implemented
yet.

Due to lazy evaluation, we can thus build complicated
expressions from familiar matrix operations. This allows us to
view the lazy matrix framework as a domain-specific language
for contraction-based algorithms, which makes working with
contraction expressions feel like working with actual matrices.
Note, however, that the lazy matrices generalise real matrices
as they also allow non-linear transformations of a vector to be
represented.

Inside lazyten, various kinds of lazy matrices, as well
as lazy and stored objects, can be combined transparently.75

Similarly, lazyten provides high-level interfaces for solv-
ing linear or eigenproblems75 where the involved matrices may
be stored or lazy. The call passes through a branching layer,
which inspects the matrix structure and accordingly selects one

FIG. 4. Examples for lazy matrix expression trees. The upper panel represents
the instruction D = A + B and the lower one the multiplication of the result D
with C.

of the available third-party linear algebra back ends for solv-
ing the problem. As a result, algorithms programmed using
lazyten may be called with both lazy and stored matri-
ces, and the solvers will be automatically chosen to match the
change in the matrix structure. The user, however, remains in
full control: By providing appropriate parameters, all choices
made automatically by lazyten can be overwritten, as can
the parameters passed to the underlying solvers.

Overall, lazyten provides intuitive high-level syntax
for contraction-based methods in the form of lazy matrices.
The library allows the algorithm code to be written only once,
but to stay flexible. For example, one may adapt to modern
hardware trends or to the deviating numerical requirements
imposed by a different basis function type simply by changing
the implementation of the lazy matrices passed to the algorithm
code. A more in-depth discussion of lazyten can be found in
Ref. 75.

C. Self-consistent field methods and integral interface

The lazy matrices of lazyten are constructed to be
used as a high-level language for implementing basis-type-
independent contraction-based SCF algorithms.75 For exam-
ple, the linear algebra interfaces of lazyten can be employed
in the coefficient-update step making implicit use of the auto-
matic switching between dense and iterative diagonalisation
methods. The Fock update may be implemented building on
top of a similar function from lazyten, namely, by altering
the coefficient matrix the Fock expression currently refers to.

All the SCF algorithms in gscf are implemented in
this way: as solvers for a non-linear eigenproblem defined
by an input lazy matrix, which represents the SCF problem
under study. Since the algorithms only see the final contraction
expression and its update function,gscf is self-contained and
may be applied to any non-linear eigenproblem with a struc-
ture similar to the HF minimisation problem. This is desirable
because quite a few electronic structure theory methods can
be thought of as modifications of the HF problem. Examples
include the Kohn-Sham matrix arising in the usual density-
functional theory (DFT) treatments or additional terms in the
problem matrix, arising from modeling an external field, or
correction terms due to embedding.

The lazy Fock matrix object describing the problem to be
solved is prepared by the upper molsturm layer based on the
electronic structure method chosen by the user. For example,
HF would be the sum of four lazy matrices, which represent the
kinetic, nuclear attraction, Coulomb, and exchange matrix.96

Similarly one would add an exchange-correlation term for
DFT or other terms such as an embedding operator. The latter
methods are not yet available in molsturm, however.

The individual terms of the Fock matrix are obtained from
gint, which acts as a broker, presenting a common interface
for all basis function types and third-party integral back end
libraries to the rest of the molsturm ecosystem. On calcula-
tion start, molsturm will take the discretisation parameters
supplied by the user and hand them over to gint, which—
based on these parameters—sets up the selected integral back
end library and returns a collection of lazy matrix integral
objects. For each basis type and back end, the interface of the
returned objects will thus look alike since they are all lazy
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matrices. On call to their respective contraction expressions,
however, the required computations will be invoked in the
previously selected integral back end. gint itself does not
implement any routine for computing integral values at all, it
just transparently redirects the requests. Notice that the pre-
cise kind of parameters needed by gint to setup the back
end may well vary from discretisation to discretisation. For
example, a Coulomb Sturmian basis requires the Sturmian
exponent k and the selection of (n, l, m)-triples of the basis
functions,75 whereas a contracted Gaussian basis requires
the list of angular momentum, exponents, and contraction
coefficients.2,4,5

At the moment cGTO and CS integrals are the only ones
supported in gint. For each of these, at least two different
implementations are available, however. Adding more back
end libraries or basis function types is rather easy since one
only needs to implement a collection of lazy matrices, where
the contraction expressions initiates the appropriate integral
computations in the back end. This collection then needs to be
registered as a valid basis type to gint to make it available
to the upper layers. For example, preliminary support for the
contracted Gaussian library libcint105 was added with just
two days of work. Notice, that gint is designed to allow all
of this to be achieved without changing a single line of code
inside gint itself since the call to the registration function
can happen dynamically at runtime. So one can implement a
new integral back end in a separate shared library and add it
in a plug-in fashion without recompiling molsturm.

To summarise, by means of the lazy matrices of
lazyten, the responsibility for the HF problem has been split
between three different well-abstracted modules:gint, which
provides the interface to the integrals and selects the discreti-
sation,molsturm, which builds the lazy matrix expression of
the problem to be solved, and gscf which uses this expres-
sion to solve the SCF problem in a basis-type-independent
manner.

D. Python interface module

The topmost layer of molsturm is the “molsturm”
python module, providing the user interface of the package.
This layer assists with setting up a calculation, drives the SCF
procedure in gscf, and returns the converged results to the
user. We chose the scripting language python to implement
the majority of this interface layer and especially the interface
itself.

Our reasoning is related to the arguments of the pyscf
authors67 discussed in Sec. II, namely, we wanted to avoid
inventing yet another “input format” and “output format”
for quantum-chemical calculations. Instead, calculations in
molsturm can be initiated cleanly and flexibly directly from
a host python script, which can additionally be used for sub-
sequent analysis. This not only implies that all of python and
its libraries are available for the calculation setup and analysis,
but also that no explicit parsing of program output is required
for analyzing the results. This lowers the barriers for people
who are new to the field since they do not need to learn both
how to write input files that define calculations, as well as
the syntax of a scripting language for parsing results. More
subtly, the output formats of quantum-chemistry programs

change from time to time, breaking parser scripts or—even
worse—producing wrong results without any notice. This is
a common problem in the current practice of computational
chemistry.

In contrast to this, the SCF results in molsturm are
returned to the host python environment through an inter-
face built on numpy arrays. These have become the de facto
standard for storing and manipulating matrices or tensors in
python. All python packages that are commonly used for
plotting or data analysis, such as matplotlib,106 scipy,73,107 or
pandas,108 usenumpy arrays in their interfaces. Consequently,
a complete computational procedure may be orchestrated from
a single python script, which contains all parameters influ-
encing the setup, calculation, analysis, and all decisions taken
for presenting the data in plots or tables. Such a script serves
as automatic documentation for the full procedure and allows
others to reproduce the presented plots or tables without effort:
All it takes is to re-run the script.

All parameters for gint, the SCF algorithms of gscf,
and the linear solvers from lazyten are made avail-
able through the python interface. By changing these, the
user may directly influence, e.g., the algorithms chosen by
lazyten for diagonalisation, or howgscf switches between
SCF solvers. This is particularly handy during method devel-
opment, where one may run molsturm from an interac-
tive IPython109 shell and use these parameters to control the
progress of a calculation. In that way, one can check assertions
about intermediate results or visualise such graphically with
matplotlib.106 This greatly reduces the feedback loop for small
calculations, e.g., during debugging.

Interactive analysis of larger calculations is facilitated by
archiving functionality in molsturm. The SCF results may
be stored either in YAML110 or HDF574 format. In this way,
large calculations can be performed in advance over night or on
a high-performance computing (HPC) system, then archived
and transferred to the workstation. Here, the archive may be
loaded in an interactive shell, restoring the full state of the
calculation as if it had been performed locally. Next to the
SCF results, molsturm’s archived state contains the precise
set of input parameters which were used to obtain the stored
results. These are not the parameters provided by the user to
start the calculation, but the post-processed parameters which
were actually used by the lower layers, including, e.g., default
values. This helps make the archive self-documenting, and
simplifies setting up a refined calculation building on top of
the already obtained results.

Our numpy-based interface has already proven to be help-
ful for linking molsturm to other third-party quantum chem-
istry codes: It allowed us to link molsturm to the python
interfaces of pyscf,67 as well as adcman94 in only a few
days. As a result, FCI as well as calculations for comput-
ing excited states by the algebraic diagrammatic construction
(ADC) scheme111,112 may be started on top of molsturm’s
SCF using the respective aforementioned packages. By way
of interface generators like Simplified Wrapper and Interface
Generator (SWIG),113 numpy arrays can be automatically
converted to plain C arrays, such that third-party packages
consisting only of low-level C++, C, or FORTRAN code can
be linked to molsturm in the future.
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We see that the interface of molsturm not only facili-
tates rapid development of new algorithms, but also relieves
one from the need to re-invent the wheel, i.e., to imple-
ment standard quantum-chemical methods over and over for
each new basis function type. Instead, existing functional-
ity in external packages can be quickly leveraged for one’s
own purposes. The aspects described in this section will be
demonstrated with practical examples in Sec. V.

V. EXAMPLES

In this section, we present two examples that demon-
strate how the python interface of molsturm can be com-
bined with existing features of python in order to analyze
the results or to extend the capabilities of molsturm. We
concentrate our discussion on molecular computations with
contracted Gaussian basis sets. It should be stressed again,
however, that due to the basis-function independent nature of
molsturm, the procedures outlined in the scripts could be
easily performed with other types of basis functions as well.

In fact, the design of molsturm assures that the discreti-
sation details can be selected at a high level, without affecting
the code that performs the actual computation and analysis.
Section V B gives an example for which the choice of the
basis type is made in the main function of the script. This
ensures that a script performing a particular modeling task can
be easily used as a template for a systematic study of the effect
of changing basis function type or integral implementation:
All it takes is to iterate over the appropriate list of discretisa-
tion parameters and call the calculation for each instance. This
greatly simplifies testing a novel basis function type, which

has just become available in gint, as well as comparing it to
existing methods subject to the test case provided by a script.

A. Coupled-cluster doubles (CCD)

This example shows how one can extend molsturmwith
novel methods using its high-level python interface together
with standard functionality from python/numpy.73,107

Even though molsturm right now neither offers any
coupled-cluster method nor an interface to any third-party
coupled-cluster code, we managed to implement a simple
working coupled-cluster doubles (CCD)114,115 algorithm in
only about 100 lines of code and about two days of work,
including the time needed for research about the method and
the computational procedures. The most relevant part of the
implementation, namely, computing the CCD residual for
the current guess of the T2 amplitudes tab

ij , is shown toward
the right of Fig. 5, side-by-side with the expression of the
CCD residual.114 The full CCD code is available as an exam-
ple in the fileexamples/state interface/coupled
cluster doubles.py of the molsturm repository.116

We follow the standard procedure of employing a quasi-
Newton minimisation of the CCD residual with respect to
the T2 amplitudes using the orbital energy differences as an
approximate Jacobian.96,114 The guess for the T2 amplitudes
is taken from second order Møller-Plesset perturbation theory
(MP2).

The expression of the CCD residual rab
ij requires the eval-

uation of a sequence of tensor contractions involving the Fock
matrix in the molecular orbital basis, f pq, the antisymmetrised
electron-repulsion integrals, 〈pq||rs〉, as well as the current
guess for the T2 amplitudes, tab

ij . As usual, we employ the

FIG. 5. Equation for the coupled-cluster doubles (CCD) residual114 on the left and excerpt of a CCD implementation using molsturm and numpy on the right.
Equivalent quantities are highlighted in the same colour. The first two lines of code show the computation of the antisymmetrised electron repulsion integrals
from the state.eri object obtainable from molsturm, which is carried out once at the beginning of the algorithm. The remaining lines compute the residual
for a particular T2 amplitude stored in the tensor object t2.
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convention that indices i, j, k, l, . . . refer to occupied orbitals,
indices a, b, c, d, . . . to virtual (i.e., unoccupied) orbitals, and
indices p, q, r, s, . . . to either kind of orbitals.

The python implementation (right-hand side of Fig. 5)
computes those contractions. For this, it employs the data
structures molsturm provides in the state object, which
is returned by the SCF procedure. Our code uses chemists’
indexing convention in the electron-repulsion integrals object
state.eri. The CCD equations, however, are written using
the antisymmetrised electron-repulsion integrals 〈pq||rs〉.
Therefore the first two lines of the code of Fig. 5 are exe-
cuted once to perform the antisymmetrisation. The subsequent
lines are executed once per CCD iteration and compute the
residual tensor res by contracting the relevant blocks of the
Fock matrix state.fock, the eri object, and the T2 ampli-
tudes contained in t2. This is implemented using the einsum
method from numpy, which performs tensor contractions
expressed in Einstein summation convention. Note how the
interplay of numpy with the data structures molsturm
results in a strikingly close resemblance of implementation
and actual equation.

The state object provides access to more quantities
from the SCF procedure than just the Fock matrix and the

FIG. 6. Density plot of the final optimised H2O Hartree-Fock geometry with
a O–H bond length of 0.950 46 Å and a H–O–H bond angle of 106.35◦. A
geometry optimisation in ORCA118 employing the same basis set agrees with
this result within the convergence tolerance of 10−5.

repulsion integrals. Individual terms of the Fock matrix or
quantities like the overlap matrix in terms of the underlying
discretisation basis functions may be obtained as well. We
provide this data as numpy arrays extended with extra

FIG. 7. Example for performing a
gradient-free optimisation using Pow-
ell’s method119,120 and molsturm.
python import statements at the top
of the script and the explicit call to main
are skipped.
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functionality to simplify implementation of Post-HF quantum-
chemical methods, such that the user can employ the SCF
results freely and flexibly within thepython ecosystem. Cou-
pled with the basis-function independence of molsturm’s
SCF, this allows for rapid development and systematic investi-
gation of Post-HF methods based on arbitrary basis functions.

At the moment, we make no efforts to exploit symme-
try or parallelise the computation of the tensor contractions
shown in the script of Fig. 5. For this reason, such imple-
mentations are not suitable for real-world applications. Never-
theless, the script presented in Fig. 5 may be used for CCD
calculations of small molecules with small basis sets. For
example, an O2 6-31G117 calculation on a recent laptop took
about an hour to converge up to a residual l∞-norm of 10−4.
For investigating new methods on top of the molsturm
framework, or to provide a flexible playground for teaching
Post-HF methods to students, such scripts are therefore still
well-suited.

B. Gradient-free geometry optimisation

In order to make a novel basis function type properly
accessible to the full range of quantum-chemical methods, a
daunting amount of integral routines and computational pro-
cedures need to be implemented. For assessing the usefulness
of a new discretisation method, it is, however, important to be
able to quickly investigate its performance with respect to as
many problems as possible. Undoubtedly, a very important
application of computational chemistry is structure predic-
tion, i.e., geometry optimisation. Performing such calculations
requires the appropriate integral derivatives for the chosen
basis function type. Since implementing these in the inte-
gral library can be as difficult as implementing the integrals
required for the SCF scheme itself, one would much rather skip
this step at first, and concentrate only on what is required for
the SCF.

This example extends molsturm with a gradient-free
geometry-optimisation procedure, implemented with building
blocks readily available from python. This sidesteps the need
for nuclear derivatives on the side of the integral library and
facilitates simple structure optimisations, even without nuclear
gradients—neither analytical nor numerical.

Figure 6 shows the script, which performs a geome-
try optimisation of water based on Powell’s gradient-free
optimisation algorithm119,120 as implemented in the scipy
library.73,107 The optimal structure is found in a two-step pro-
cedure. First, a cheap STO-3G2 basis set is used to obtain a
reasonable guess. Then, the final geometry is found by min-
imising to a lower convergence threshold in the more costly
def2-SV(P)121 basis.

The time required to code the script was only about 30 min,
showing the great power of a flexible design. Nevertheless,
convergence to the equilibrium geometry shown in Fig. 7 was
achieved in a couple of minutes. In line with what was dis-
cussed above, a novel basis function type, for which one just
implemented the SCF integrals in gint, can be directly used
for geometry optimisations. Only the discretisation parameters
need to be changed, in lines 36 and 41 of the outermost main
function.

VI. CURRENT STATE AND FUTURE OF MOLSTURM

After about two years of development,molsturm allows
us to solve the Hartree-Fock (HF) equations basis-function
independently, following a contraction-based self-consistent
field (SCF) ansatz. All aspects of the calculation, including
the diagonalisation algorithm and the basis function type of the
discretisation, may be fully controlled via a python module.
This module integrates well into the existing python ecosys-
tem, simplifying repetitive calculations as well as analysis of
obtained results.

At present, molsturm’s integral library gint supports
calculations employing either Coulomb Sturmians or con-
tracted Gaussian basis functions, both in multiple implementa-
tions. For contracted Gaussians, the third-partylibint122,123

or libcint105 libraries can be used, and Coulomb Sturmians
are available via our own sturmint124 library. In the future,
we plan to add support for further basis function types in gint
and molsturm, in particular, molecular and generalised
Sturmians.25–28

Via gscf, multiple SCF schemes are available, namely,
Roothaan’s repeated diagonalisation,83 Pulay’s commutator
direct inversion of the iterative subspace (DIIS),86 and the trun-
cated optimal damping algorithm (tODA),75 an approximation
of the optimal damping algorithm,77 which is more suitable
for the contraction-based interface of gscf. During the SCF
procedure, molsturm automatically switches between the
available schemes, trying to balance the convergence rate and
expense of the individual algorithms.

Once an SCF computation has finished, the results can
be archived in either in YAML110 plain text or in HDF574

binary files. Such an archive not only contains the full final
state of the calculation but also the precise parameters which
were used in the SCF procedure, making the archive file
self-documenting.

For treating electron correlation, molsturm only imple-
ments second order Møller-Plesset perturbation theory (MP2).
Further methods, however, can be easily called via inter-
faces to third-party libraries. Full configuration interaction
(FCI) is available via pyscf, and a range of excited states-
methods based on the algebraic diagrammatic construction
(ADC) scheme via adcman,94 namely, ADC(1), ADC(2),
ADC(2)-x,111 and ADC(3).112

The extension of molsturm to other methods or
packages is easily accomplished by molsturm’s python
interface; see Sec. V. Along these lines, closer integration
with projects such as pyscf,67 Psi4,71 or Psi4NumPy72

could be promising since these already provide high-level
python interfaces to many state-of-the-art Post-HF meth-
ods. In this way, configuration-interaction, coupled-cluster,
multi-configurational self-consistent field, or density matrix
renormalisation group approaches could be used directly from
molsturm’s SCF. With manageable development time, these
methods would thus become available for all basis func-
tion types implemented in gint. Similarly, the extension
of molsturm’s SCF toward Kohn-Sham density-functional
theory is possible employing third-party libraries such as
libxc125 or xcfun126 for computing the required exchange-
correlation integrals.
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As discussed in Sec. IV B, a contraction expression inside
molsturm’s SCF is evaluated whenever the Fock matrix
is applied to a trial vector. This proceeds by working on
the expression tree, which represents the Fock matrix. In
lazyten, the corresponding computations are right now nei-
ther parallelised, nor are symmetries or repetitive terms in the
expression tree exploited. This currently limits the applicabil-
ity of molsturm’s contraction-based SCF to small basis set
sizes. Both automatic parallelisation of linear algebra expres-
sions and finding optimal evaluation schemes for expression
trees is ongoing research,127–134 however. By integrating such
efforts into lazyten, a direct improvement of molsturm’s
SCF could be achieved without changing any other code.

VII. DISCUSSION AND CONCLUSION

Implementation of quantum-chemical methods using
novel types of basis functions often requires unusual numerical
techniques as well. Implementing these into existing quantum
chemistry packages can be a large task, as these are highly
optimised for the methods they already accommodate and are
typically not flexible enough to meet other requirements.

The molsturm framework presented here tries to fill this
gap by providing a light-weight package designed with a range
of different basis functions in mind. The key ingredient to reach
the necessary flexibility is a contraction-based self-consistent
field (SCF) scheme, which we employ for solving the Hartree-
Fock problem. In a contraction-based ansatz, the numerical
algorithms are formulated without requiring any explicit refer-
ence to the Fock matrix memory. Instead, the SCF iterations are
driven by contractions of the Fock matrix with other vectors.
The details how this matrix-vector product is computed can be
varied flexibly, matching the numerical properties of the dis-
cretisation at hand. In this way, we have reached a design where
the code for the SCF algorithm is separated from the code
performing the linear algebra computation. Thus, changes to
the SCF scheme can be made without affecting other parts of
molsturm and the SCF code itself becomes basis-function
independent.

On top of that, the interfaces of our SCF are easy-to-
use and readily extensible. This allows quick incorporation
of functionality of third-party packages and extensions of
molsturm in ways we as the authors would have never
thought of. Right now, molsturm may be used to per-
form calculations based on contracted Gaussians2—using the
integral libraries libint122,123 or libcint105—and based
on Coulomb Sturmians20,21—using sturmint.124 Selected
Post-HF methods from pyscf67 as well as excited states
methods from adcman94 are available on top. Extending the
set of basis function types available inside molsturm can be
achieved in a plug-and-play fashion, namely, by implement-
ing a single well-defined interface class in our integral library
gint. Thereafter such basis functions are available for the
full molsturm ecosystem including the Post-HF methods
provided by the third-party libraries mentioned above.

The abilities of molsturm have been demonstrated by
two practical examples with particular emphasis on the way
our python interface integrates with existing python pack-
ages. We showed how to aid repetitive calculations, implement

novel quantum-chemical methods, or rapidly amend func-
tionality in a preliminary way, where a proper implementa-
tion would be much more involved. We hinted how system-
atic comparisons with established basis functions as well as
subsequent graphical analysis is convenient to perform by the
means of our readily scriptable interface. We hope that in this
manner, molsturm will be a useful package to rapidly try
novel basis function types and get a feeling for their range of
applicability.
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