Pitfalls for performance: Latencies to keep in mind

Michael F. Herbst (mfh)

MRMCD 2018

8th September 2018

Background
000000000

Contents

- My daily bread
- 2 Latencies
 - Typical numbers on typical hardware
- 3 Contraction-based methods
 - The idea
 - Examples
 - Lazy matrices

Contents

Background
 My daily bread

2 Latencies

• Typical numbers on typical hardware

- Contraction-based methods
 - The idea
 - Examples
 - Lazy matrices

Background •••••••• My daily bread Latencies 0000 Contraction-based methods

Questions 00

My field: Electronic structure theory

- Branch of theoretical chemistry
- Modelling of electrons in molecules
- Tightly related to quantum physics
- \Rightarrow Study linear operators $\hat{\mathcal{A}}$ on functions Ψ ...
 - ... and their approximations

Background 00000000 My daily bread Latencies 0000 Contraction-based methods

Questions 00

Operators and functions

• An "operator"

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

• A "function"
$$\underline{p} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

 \bullet Important for understanding the physics: Find $(\alpha_i, \underline{\boldsymbol{e}}_i)$ with

$$\mathbf{A}\underline{\boldsymbol{e}}_i = \alpha_i \underline{\boldsymbol{e}}_i$$

 \Rightarrow Diagonalisation

Background ○00●00000	Latencies 0000	Contraction-based methods	Questions 00
My daily bread			

Matrix products

Background ○00●00000	Latencies 0000	Contraction-based methods	Questions 00
My daily bread			

Matrix products

Background ○00●00000	Latencies 0000	Contraction-based methods	Questions 00
My daily bread			

Matrix products

Background 00000000 My daily bread Latencies 0000 Contraction-based methods

Questions 00

Diagonalisation methods

- Dense methods
- ${\ensuremath{\, \bullet }}$ Work on the memory of ${\ensuremath{\mathbf A}}$

- Iterative methods
- Subspace-based methods
- Only diagonalise inside subspace

- \Rightarrow A can be large
- \Rightarrow **A** can have structure

Background 000000000 My daily bread

Latencies 0000

Contraction-based methods 00000000000

Questions 00

The problem sizes of quantum chemistry

- def2-SV(P) water FCI
- Dimensionality: 43758
- Matrix elements: $2 \cdot 10^9$
- A small basis, highly accurate method

- numerical quantum-chemistry (e.g. FE)
- Dimensionality: $1 \cdot 10^6$
- Large basis

 \Rightarrow Storage implies hard drive

Background 000000000 My daily bread Latencies 0000 Contraction-based methods

Questions 00

Demo: Some timings (1)

• Aim: Smallest eigenvalues of discretised Laplace operator

$$\mathbf{L} = \begin{pmatrix} -2 & 1 & & \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \end{pmatrix}$$

- Clear matrix structure
- \Rightarrow Putting it all in memory not advantageous
 - What happens if we still do it?

Background 00000000 My daily bread Latencies 0000 Contraction-based methods

Questions 00

Demo: Some timings (2)

Background ○000000●	Latencies 0000	Contraction-based method
My daily bread		

Questions 00

- Clearly observable speedup when avoiding memory
- Typically: Only occurs at larger problem sizes
- $\Rightarrow\,$ In this case matrix structure was obvious
 - Compare

Background

Contents

1 Background

• My daily bread

2 Latencies

• Typical numbers on typical hardware

Contraction-based methods

• The idea

- Examples
- Lazy matrices

Background	Latencies	Contraction-based methods	Questions	
00000000	000	0000000000	00	
Typical numbers on typical hardware				

Latency numbers

Storage layer	Latency $/\mathrm{ns}$	FLOPs
L1 cache	0.5	13
L2 cache	7	180
Main memory	100	2600
SSD read	$1.5\cdot 10^4$	$4\cdot 10^5$
HDD read	$1 \cdot 10^7$	$3 \cdot 10^8$

Data from

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html FLOPs for a Sandy Bridge 3.2GHz CPU with perfect pipelining

Background	Latencies	Contraction-based methods	Questions
00000000	○0●0		00
Typical numbers on typical hardwa	are		

Hardware trends

Data from https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast

Background 00000000	Latencies ○00●	Contraction-based methods	Questions 00	
Typical numbers on typical hardware				
Conclusion				

- Trend is generally towards computation
- Avoiding hard disk is a clear case
- But: Trends suggest to avoid main memory as well
- \Rightarrow Try to design algorithms, which avoid memory
 - Essentially taking disk-avoidance one step further
- \Rightarrow Code tends to become more complicated

Background

Latencies 0000 Contraction-based methods

Questions 00

Contents

- Examples
- Lazy matrices

Background 000000000 The idea

Latencie 0000 Contraction-based methods

Questions 00

Contraction-based methods

- Subspace-based algorithms only need matrix-vector product
- Only need an expression for

$$\underline{y} = \mathbf{A}\underline{x}$$

- \Rightarrow A not needed explicitly
 - Advantages:
 - Less storage
 - Easier parallelisation
 - ${\ensuremath{\, \bullet }}$ More freedom to exploit structure of ${\ensuremath{\, A }}$
 - $\bullet~$ Structure of ${\bf A}$ is hidden
 - Historically: Avoid hard drive

Latencies 0000 Contraction-based methods

Questions 00

Low-rank factorisation (1)

$$\mathbf{A} = \begin{pmatrix} l_{11} & l_{12} & \cdots & \cdots & l_{1n} \\ l_{21} & l_{22} & \cdots & \cdots & l_{2n} \end{pmatrix} \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \\ \vdots & \vdots \\ \vdots \\ r_{n1} & r_{n2} \end{pmatrix} = \mathbf{LsR}$$

- $\bullet~{\bf A}$ is n^2 elements
- L and R are 2n elements
- ${\ensuremath{\, \bullet \,}}$ There is no need to build ${\ensuremath{\mathbf A} \,}$ fully
- \Rightarrow Reduction in memory

Latencies 0000 Contraction-based methods

Questions 00

Low-rank factorisation (2)

$$\mathbf{A} = \begin{pmatrix} l_{11} & l_{12} & \cdots & \cdots & l_{1n} \\ l_{21} & l_{22} & \cdots & \cdots & l_{2n} \end{pmatrix} \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \\ \vdots & \vdots \\ \vdots \\ r_{n1} & r_{n2} \end{pmatrix} = \mathbf{LsR}$$

- \bullet Building ${\bf A}$ is ${\cal O}(n^2)$
- Computing $\mathbf{A}\underline{x}$ scales as $\mathcal{O}(n^2)$
- Building ${f R}$ is ${\cal O}(2n)$
- Computing $\mathbf{R}\underline{x}$ is $\mathcal{O}(2n)$
- \Rightarrow Reduction in computational time

Latencies 0000 Contraction-based methods

Questions 00

Low-rank factorisation (3)

$$\mathbf{A} = \begin{pmatrix} l_{11} & l_{12} & \cdots & \cdots & l_{1n} \\ l_{21} & l_{22} & \cdots & \cdots & l_{2n} \end{pmatrix} \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \\ \vdots & \vdots \\ \vdots \\ r_{n1} & r_{n2} \end{pmatrix} = \mathbf{LsR}$$

- Low-rank approximation
- $\Rightarrow\,\, {\bf L},\, {\bf s},\, {\bf R}$ might not be "physical"
- \Rightarrow Hard to understand

Latencie: 0000 Questions 00

A word about low-rank in physics

- Low-rank \approx redundancies / symmetries
- Explicit exploitation
 - Uses physical or numerical insight
 - For optimal performance: Maximal control of expressions required
 - Do not want to interfere with linear algebra
- Low-rank approximation:
 - Implicit exploitation
 - Leads to factorisations of matrices / tensors
 - Systematically improvable
 - Explicit symmetry sometimes hard to find or tackle

Latencies 0000 Contraction-based methods

Questions 00

More realistic cases: Tensor contractions (1)

Matrix:

$$\underline{y} = f(\underline{x} = \mathbf{M}\underline{x})$$

- \bullet Tensor: Generalisation $\mathbf{N}=f(\mathbf{M})$
- For example

$$N_{ij} = \sum_{ab} I_{abij} M_{ab}$$

• Could depend on multiple matrices, e.g.

$$N_{ij} = \sum_{abl} I_{abij} C_{al} C_{bl}$$

• Apply this to a vector x_j , then

$$y_i = \sum_{abjl} I_{abij} C_{al} C_{bl} x_j$$

Latencies 0000 Contraction-based methods

Questions 00

More realistic cases: Tensor contractions (2)

Compare

$$I_{abij} C_{al} C_{bl}$$

$$y_i = \sum_j N_{ij} x_j$$

with directly

$$y_i = \sum_{abjl} I_{abij} C_{al} C_{bl} x_j$$

- Reordering terms
- Exploiting symmetries in x_j , I_{abij}
- Exploit index selection rules
- $\bullet~{\bf N}$ like a matrix with state ${\bf C}$

Latencies 0000 Contraction-based methods

Questions 00

Combining ideas

- What if we have to combine ideas
- Things can become messy
- Different terms might have different requirements
- Expressions may become very technical
- Physically motivated modelling and interpretation difficult
- Use lazy evaluation
 - Motivated from term reordering
 - Allows to collect expression for computition
 - Optimisation not necessarily hard-coded

Lazy matrices	
000000000	
Background	

Latencies 0000 Contraction-based methods

Questions 00

Lazy matrices

- Stored matrix: All elements reside in memory
- Lazy matrix:
 - Generalisation of matrices
 - Contraction expressions dressed as matrix
 - State
 - All evaluation is lazy
 - Contraction should be fast
 - For convenience: Offer matrix-like interface
 - \Rightarrow But: Obtaining elements expensive

Latencies 0000 Contraction-based methods

Questions 00

Lazy matrix evaluation

• Actual expression in source code

 $\begin{aligned} \mathbf{D} &= \mathbf{A} + \mathbf{B}, \\ \mathbf{E} &= \mathbf{D}\mathbf{C}, \\ &\underline{y} &= \mathbf{E}\underline{x}, \end{aligned}$

Latencies 0000 Contraction-based methods

Questions 00

Lazy matrix evaluation

• Actual expression in source code

D = A + B, E = DC, $\underline{y} = E\underline{x},$

$$\boxed{\mathbf{D}} = \boxed{\mathbf{A}} + \boxed{\mathbf{B}} = \boxed{\mathbf{A}}^{+}_{\mathbf{A}}$$

Latencies 0000 Contraction-based methods

Questions

Lazy matrix evaluation

• Actual expression in source code

$$D = A + B,$$

$$E = DC,$$

$$\underline{y} = E\underline{x},$$

$$\mathbf{E}$$
 = \mathbf{D} · \mathbf{C}

Latencies 0000 Contraction-based methods

Questions

Lazy matrix evaluation

• Actual expression in source code

$$D = A + B,$$

$$E = DC,$$

$$\underline{y} = E\underline{x},$$

$$\mathbf{E} = \mathbf{A}^{+} \mathbf{B} \cdot \mathbf{C} = \mathbf{A}^{+} \mathbf{C}$$

Latencies 0000 Contraction-based methods

Questions 00

Lazy matrix evaluation

• Actual expression in source code

$$D = A + B,$$

$$E = DC,$$

$$\underline{y} = \underline{E}\underline{x},$$

$$\underline{\underline{y}} = \mathbf{E} \underline{\underline{x}} = \mathbf{F} \mathbf{E} \mathbf{x} = \mathbf{F} \mathbf{x} \mathbf{x} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$$

Lazy matrices for contraction-based methods

- Multiple lazy matrix terms:
 - Each implements its own contraction
 - Full optimisation of contraction expressions
- Evaluation can optimise tree first
- Each term can have a physical interpretation
- Lazy matrix: Building blocks for more complicated expressions
- Transparent to end user / upper layers
 - Algorithms independent of matrix structure

Background
000000000

Takeaway

- Memory is not generally faster than computation
- Lazy evaluation allows to exploit
 - Term reordering
 - Factorisation
 - Index selection rules
 - Streamline operations
 - Architecture-dependent optimisations
- Transparent to algorithms exploiting lazy matrices

Background	Latencies	Contraction-based methods	Questions
00000000	0000		0

Questions?

Paper: https://michael-herbst.com/molsturm-design.html Thesis: https://michael-herbst.com/phd-thesis.html

Email: mfh@herbstmail.de

Blog: https://michael-herbst.com/blog

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.