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My daily bread

My field: Electronic structure theory

Branch of theoretical chemistry

Modelling of electrons in molecules

Tightly related to quantum physics

⇒ Study linear operators Â on functions Ψ . . .

. . . and their approximations
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My daily bread

Operators and functions

An “operator”

A =




1 2 3
4 5 6
7 8 9




A “function”

p =




1
2
3




Important for understanding the physics: Find (αi, ei) with

Aei = αiei

⇒ Diagonalisation
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My daily bread

Matrix products











 =







M v = Mv











 =







A B = C
∑

j

Mijvj = (Mv)i

∑

j

AijBjk = (AB)ik

O(n2) O(n3)
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My daily bread

Diagonalisation methods

Dense methods

Work on the memory of A

Iterative methods

Subspace-based methods

Only diagonalise inside subspace

⇒ A can be large

⇒ A can have structure
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My daily bread

The problem sizes of quantum chemistry

def2-SV(P) water FCI

Dimensionality: 43758

Matrix elements: 2 · 109

A small basis, highly accurate method

numerical quantum-chemistry (e.g. FE)

Dimensionality: 1 · 106

Large basis

⇒ Storage implies hard drive
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My daily bread

Demo: Some timings (1)

Aim: Smallest eigenvalues of discretised Laplace operator

L =




−2 1
1 −2 1

. . . . . . . . .
1 −2 1




Clear matrix structure

⇒ Putting it all in memory not advantageous

What happens if we still do it?
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My daily bread

Demo: Some timings (2)
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My daily bread

Clearly observable speedup when avoiding memory

Typically: Only occurs at larger problem sizes

⇒ In this case matrix structure was obvious

Compare
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Typical numbers on typical hardware

Latency numbers

Storage layer Latency /ns FLOPs

L1 cache 0.5 13
L2 cache 7 180
Main memory 100 2600
SSD read 1.5 · 104 4 · 105

HDD read 1 · 107 3 · 108

Data from
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

FLOPs for a Sandy Bridge 3.2GHz CPU with perfect pipelining
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Typical numbers on typical hardware

Hardware trends
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Typical numbers on typical hardware

Conclusion

Trend is generally towards computation

Avoiding hard disk is a clear case

But: Trends suggest to avoid main memory as well

⇒ Try to design algorithms, which avoid memory

Essentially taking disk-avoidance one step further

⇒ Code tends to become more complicated
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The idea

Contraction-based methods
Subspace-based algorithms only need matrix-vector product

Only need an expression for

y = Ax

⇒ A not needed explicitly

Advantages:
Less storage

Easier parallelisation

More freedom to exploit structure of A
Structure of A is hidden

Historically: Avoid hard drive
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Examples

Low-rank factorisation (1)

A =
(
l11 l12 · · · · · · l1n

l21 l22 · · · · · · l2n

)(
s11 s12
s21 s22

)




r11 r12
r21 r22
...

...
...

...
rn1 rn2




= LsR

A is n2 elements

L and R are 2n elements

There is no need to build A fully

⇒ Reduction in memory
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Examples

Low-rank factorisation (2)

A =
(
l11 l12 · · · · · · l1n

l21 l22 · · · · · · l2n

)(
s11 s12
s21 s22

)




r11 r12
r21 r22
...

...
...

...
rn1 rn2




= LsR

Building A is O(n2)
Computing Ax scales as O(n2)

Building R is O(2n)
Computing Rx is O(2n)

⇒ Reduction in computational time 18 / 28
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Examples

Low-rank factorisation (3)

A =
(
l11 l12 · · · · · · l1n

l21 l22 · · · · · · l2n

)(
s11 s12
s21 s22

)




r11 r12
r21 r22
...

...
...

...
rn1 rn2




= LsR

Low-rank approximation

⇒ L, s, R might not be “physical”

⇒ Hard to understand
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Examples

A word about low-rank in physics

Low-rank ≈ redundancies / symmetries
Explicit exploitation

Uses physical or numerical insight

For optimal performance: Maximal control of expressions
required

Do not want to interfere with linear algebra

Low-rank approximation:
Implicit exploitation

Leads to factorisations of matrices / tensors

Systematically improvable

Explicit symmetry sometimes hard to find or tackle
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Examples

More realistic cases: Tensor contractions (1)
Matrix:

y = f(x = Mx

Tensor: Generalisation N = f(M)
For example

Nij =
∑

ab

IabijMab

Could depend on multiple matrices, e.g.
Nij =

∑

abl

IabijCalCbl

Apply this to a vector xj , then

yi =
∑

abjl

IabijCalCblxj
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Examples

More realistic cases: Tensor contractions (2)

Compare

1 Nij =
∑

abl

IabijCalCbl

2 yi =
∑

j

Nijxj

with directly
yi =

∑

abjl

IabijCalCblxj

Reordering terms

Exploiting symmetries in xj , Iabij

Exploit index selection rules

N like a matrix with state C
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Lazy matrices

Combining ideas

What if we have to combine ideas

Things can become messy

Different terms might have different requirements

Expressions may become very technical

Physically motivated modelling and interpretation difficult

Use lazy evaluation
Motivated from term reordering

Allows to collect expression for computition

Optimisation not necessarily hard-coded
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Lazy matrices

Lazy matrices

Stored matrix: All elements reside in memory
Lazy matrix:

Generalisation of matrices
Contraction expressions dressed as matrix

State

All evaluation is lazy

Contraction should be fast

For convenience: Offer matrix-like interface

⇒ But: Obtaining elements expensive
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Lazy matrices

Lazy matrix evaluation

Actual expression in source code

D = A + B,
E = DC,
y = Ex,
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E = DC,
y = Ex,

Performed operation

D = A + B = +
A B
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Lazy matrix evaluation

Actual expression in source code

D = A + B,
E = DC,
y = Ex,

Performed operation

E = D · C
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Lazy matrices

Lazy matrix evaluation

Actual expression in source code

D = A + B,
E = DC,
y = Ex,

Performed operation

E = +
A B · C =

·
+

A B
C
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Lazy matrices

Lazy matrix evaluation

Actual expression in source code

D = A + B,
E = DC,
y = Ex,

Performed operation

y = E x =
·

+
A B

C x = (A + B) C x
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Lazy matrices

Lazy matrices for contraction-based methods

Multiple lazy matrix terms:
Each implements its own contraction

Full optimisation of contraction expressions

Evaluation can optimise tree first

Each term can have a physical interpretation

Lazy matrix: Building blocks for more complicated expressions
Transparent to end user / upper layers

Algorithms independent of matrix structure
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Takeaway

Memory is not generally faster than computation
Lazy evaluation allows to exploit

Term reordering

Factorisation

Index selection rules

Streamline operations

Architecture-dependent optimisations

Transparent to algorithms exploiting lazy matrices
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Questions?

Paper: https://michael-herbst.com/molsturm-design.html

Thesis: https://michael-herbst.com/phd-thesis.html

Email: mfh@herbstmail.de

Blog: https://michael-herbst.com/blog

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International Licence.
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