
Background Latencies Contraction-based methods Questions

Pitfalls for performance:
Latencies to keep in mind

Michael F. Herbst (mfh)

MRMCD 2018

8th September 2018

1 / 28

Background Latencies Contraction-based methods Questions

Contents

1 Background

My daily bread

2 Latencies

Typical numbers on typical hardware

3 Contraction-based methods

The idea

Examples

Lazy matrices

1 / 28

Background Latencies Contraction-based methods Questions

Contents

1 Background

My daily bread

2 Latencies

Typical numbers on typical hardware

3 Contraction-based methods

The idea

Examples

Lazy matrices

2 / 28

Background Latencies Contraction-based methods Questions

My daily bread

My field: Electronic structure theory

Branch of theoretical chemistry

Modelling of electrons in molecules

Tightly related to quantum physics

⇒ Study linear operators Â on functions Ψ . . .

. . . and their approximations

3 / 28

Background Latencies Contraction-based methods Questions

My daily bread

Operators and functions

An “operator”

A =




1 2 3
4 5 6
7 8 9




A “function”

p =




1
2
3




Important for understanding the physics: Find (αi, ei) with

Aei = αiei

⇒ Diagonalisation
4 / 28

Background Latencies Contraction-based methods Questions

My daily bread

Matrix products











 =







M v = Mv











 =







A B = C
∑

j

Mijvj = (Mv)i

∑

j

AijBjk = (AB)ik

O(n2) O(n3)

5 / 28

Background Latencies Contraction-based methods Questions

My daily bread

Matrix products











 =







M v = Mv











 =







A B = C
∑

j

Mijvj = (Mv)i

∑

j

AijBjk = (AB)ik

O(n2)

O(n3)

5 / 28

Background Latencies Contraction-based methods Questions

My daily bread

Matrix products











 =







M v = Mv











 =







A B = C
∑

j

Mijvj = (Mv)i

∑

j

AijBjk = (AB)ik

O(n2) O(n3)

5 / 28

Background Latencies Contraction-based methods Questions

My daily bread

Diagonalisation methods

Dense methods

Work on the memory of A

Iterative methods

Subspace-based methods

Only diagonalise inside subspace

⇒ A can be large

⇒ A can have structure

6 / 28

Background Latencies Contraction-based methods Questions

My daily bread

The problem sizes of quantum chemistry

def2-SV(P) water FCI

Dimensionality: 43758

Matrix elements: 2 · 109

A small basis, highly accurate method

numerical quantum-chemistry (e.g. FE)

Dimensionality: 1 · 106

Large basis

⇒ Storage implies hard drive
7 / 28

Background Latencies Contraction-based methods Questions

My daily bread

Demo: Some timings (1)

Aim: Smallest eigenvalues of discretised Laplace operator

L =




−2 1
1 −2 1

.
1 −2 1




Clear matrix structure

⇒ Putting it all in memory not advantageous

What happens if we still do it?

8 / 28

Background Latencies Contraction-based methods Questions

My daily bread

Demo: Some timings (2)

0 2000 4000 6000 8000 10000
problem size

0

500

1000

1500

2000

m
em

or
y

(M
iB

)

full memory
contraction memory

0

2

4

6

8

10

tim
e

(s
)

full time
contraction time

9 / 28

Background Latencies Contraction-based methods Questions

My daily bread

Clearly observable speedup when avoiding memory

Typically: Only occurs at larger problem sizes

⇒ In this case matrix structure was obvious

Compare
0 1000 3000 5000 7000

0

1000

2000

3000

4000

5000

6000

7000

0 1000 3000 5000 7000

10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

10 / 28

Background Latencies Contraction-based methods Questions

Contents

1 Background

My daily bread

2 Latencies

Typical numbers on typical hardware

3 Contraction-based methods

The idea

Examples

Lazy matrices

11 / 28

Background Latencies Contraction-based methods Questions

Typical numbers on typical hardware

Latency numbers

Storage layer Latency /ns FLOPs

L1 cache 0.5 13
L2 cache 7 180
Main memory 100 2600
SSD read 1.5 · 104 4 · 105

HDD read 1 · 107 3 · 108

Data from
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

FLOPs for a Sandy Bridge 3.2GHz CPU with perfect pipelining

12 / 28

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Background Latencies Contraction-based methods Questions

Typical numbers on typical hardware

Hardware trends

1980 1985 1990 1995 2000 2005 2010

100

101

102

103

104

Sc
al
e-
up

re
la
tiv

e
to

19
80

Processor vs.
Memory

performance gap

CPU clock speed
Memory bus speed

Data from https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast

13 / 28

https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast

Background Latencies Contraction-based methods Questions

Typical numbers on typical hardware

Conclusion

Trend is generally towards computation

Avoiding hard disk is a clear case

But: Trends suggest to avoid main memory as well

⇒ Try to design algorithms, which avoid memory

Essentially taking disk-avoidance one step further

⇒ Code tends to become more complicated

14 / 28

Background Latencies Contraction-based methods Questions

Contents

1 Background

My daily bread

2 Latencies

Typical numbers on typical hardware

3 Contraction-based methods

The idea

Examples

Lazy matrices

15 / 28

Background Latencies Contraction-based methods Questions

The idea

Contraction-based methods
Subspace-based algorithms only need matrix-vector product

Only need an expression for

y = Ax

⇒ A not needed explicitly

Advantages:
Less storage

Easier parallelisation

More freedom to exploit structure of A
Structure of A is hidden

Historically: Avoid hard drive
16 / 28

Background Latencies Contraction-based methods Questions

Examples

Low-rank factorisation (1)

A =
(
l11 l12 · · · · · · l1n

l21 l22 · · · · · · l2n

)(
s11 s12
s21 s22

)




r11 r12
r21 r22
...

...
...

...
rn1 rn2




= LsR

A is n2 elements

L and R are 2n elements

There is no need to build A fully

⇒ Reduction in memory
17 / 28

Background Latencies Contraction-based methods Questions

Examples

Low-rank factorisation (2)

A =
(
l11 l12 · · · · · · l1n

l21 l22 · · · · · · l2n

)(
s11 s12
s21 s22

)




r11 r12
r21 r22
...

...
...

...
rn1 rn2




= LsR

Building A is O(n2)
Computing Ax scales as O(n2)

Building R is O(2n)
Computing Rx is O(2n)

⇒ Reduction in computational time 18 / 28

Background Latencies Contraction-based methods Questions

Examples

Low-rank factorisation (3)

A =
(
l11 l12 · · · · · · l1n

l21 l22 · · · · · · l2n

)(
s11 s12
s21 s22

)




r11 r12
r21 r22
...

...
...

...
rn1 rn2




= LsR

Low-rank approximation

⇒ L, s, R might not be “physical”

⇒ Hard to understand

19 / 28

Background Latencies Contraction-based methods Questions

Examples

A word about low-rank in physics

Low-rank ≈ redundancies / symmetries
Explicit exploitation

Uses physical or numerical insight

For optimal performance: Maximal control of expressions
required

Do not want to interfere with linear algebra

Low-rank approximation:
Implicit exploitation

Leads to factorisations of matrices / tensors

Systematically improvable

Explicit symmetry sometimes hard to find or tackle

20 / 28

Background Latencies Contraction-based methods Questions

Examples

More realistic cases: Tensor contractions (1)
Matrix:

y = f(x = Mx

Tensor: Generalisation N = f(M)
For example

Nij =
∑

ab

IabijMab

Could depend on multiple matrices, e.g.
Nij =

∑

abl

IabijCalCbl

Apply this to a vector xj , then

yi =
∑

abjl

IabijCalCblxj

21 / 28

Background Latencies Contraction-based methods Questions

Examples

More realistic cases: Tensor contractions (2)

Compare

1 Nij =
∑

abl

IabijCalCbl

2 yi =
∑

j

Nijxj

with directly
yi =

∑

abjl

IabijCalCblxj

Reordering terms

Exploiting symmetries in xj , Iabij

Exploit index selection rules

N like a matrix with state C
22 / 28

Background Latencies Contraction-based methods Questions

Lazy matrices

Combining ideas

What if we have to combine ideas

Things can become messy

Different terms might have different requirements

Expressions may become very technical

Physically motivated modelling and interpretation difficult

Use lazy evaluation
Motivated from term reordering

Allows to collect expression for computition

Optimisation not necessarily hard-coded

23 / 28

Background Latencies Contraction-based methods Questions

Lazy matrices

Lazy matrices

Stored matrix: All elements reside in memory
Lazy matrix:

Generalisation of matrices
Contraction expressions dressed as matrix

State

All evaluation is lazy

Contraction should be fast

For convenience: Offer matrix-like interface

⇒ But: Obtaining elements expensive

24 / 28

Background Latencies Contraction-based methods Questions

Lazy matrices

Lazy matrix evaluation

Actual expression in source code

D = A + B,
E = DC,
y = Ex,

25 / 28

Background Latencies Contraction-based methods Questions

Lazy matrices

Lazy matrix evaluation

Actual expression in source code

D = A + B,
E = DC,
y = Ex,

Performed operation

D = A + B = +
A B

25 / 28

Background Latencies Contraction-based methods Questions

Lazy matrices

Lazy matrix evaluation

Actual expression in source code

D = A + B,
E = DC,
y = Ex,

Performed operation

E = D · C

25 / 28

Background Latencies Contraction-based methods Questions

Lazy matrices

Lazy matrix evaluation

Actual expression in source code

D = A + B,
E = DC,
y = Ex,

Performed operation

E = +
A B · C =

·
+

A B
C

25 / 28

Background Latencies Contraction-based methods Questions

Lazy matrices

Lazy matrix evaluation

Actual expression in source code

D = A + B,
E = DC,
y = Ex,

Performed operation

y = E x =
·

+
A B

C x = (A + B) C x

25 / 28

Background Latencies Contraction-based methods Questions

Lazy matrices

Lazy matrices for contraction-based methods

Multiple lazy matrix terms:
Each implements its own contraction

Full optimisation of contraction expressions

Evaluation can optimise tree first

Each term can have a physical interpretation

Lazy matrix: Building blocks for more complicated expressions
Transparent to end user / upper layers

Algorithms independent of matrix structure

26 / 28

Background Latencies Contraction-based methods Questions

Takeaway

Memory is not generally faster than computation
Lazy evaluation allows to exploit

Term reordering

Factorisation

Index selection rules

Streamline operations

Architecture-dependent optimisations

Transparent to algorithms exploiting lazy matrices

27 / 28

Background Latencies Contraction-based methods Questions

Questions?

Paper: https://michael-herbst.com/molsturm-design.html

Thesis: https://michael-herbst.com/phd-thesis.html

Email: mfh@herbstmail.de

Blog: https://michael-herbst.com/blog

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International Licence.

28 / 28

https://michael-herbst.com/molsturm-design.html
https://michael-herbst.com/phd-thesis.html
mfh@herbstmail.de
https://michael-herbst.com/blog

	Background
	My daily bread

	Latencies
	Typical numbers on typical hardware

	Contraction-based methods
	The idea
	Examples
	Lazy matrices

	Questions
	

