Pitfalls for performance:
 Latencies to keep in mind

Michael F. Herbst (mfh)

MRMCD 2018
8th September 2018

Contents

(1) Background

- My daily bread
(2) Latencies
- Typical numbers on typical hardware
(3) Contraction-based methods
- The idea
- Examples
- Lazy matrices

Contents

(1) Background

- My daily bread
(2) Latencies
- Typical numbers on typical hardware
(3) Contraction-based methods
- The idea
- Examples
- Lazy matrices

My field: Electronic structure theory

- Branch of theoretical chemistry
- Modelling of electrons in molecules
- Tightly related to quantum physics
\Rightarrow Study linear operators $\hat{\mathcal{A}}$ on functions $\Psi \ldots$
- ... and their approximations

Operators and functions

- An "operator"

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

- A "function"

$$
\underline{\boldsymbol{p}}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

- Important for understanding the physics: Find $\left(\alpha_{i}, \underline{\boldsymbol{e}}_{i}\right)$ with

$$
\mathbf{A} \underline{\boldsymbol{e}}_{i}=\alpha_{i} \underline{\boldsymbol{e}}_{i}
$$

\Rightarrow Diagonalisation

Matrix products

$$
\begin{gathered}
\mathbf{M} \\
\sum_{j} M_{i j} v_{j}=(\mathbf{M} \underline{\boldsymbol{v}})_{i}
\end{gathered}
$$

Matrix products

$$
\begin{gathered}
\mathbf{M} \quad \underline{\boldsymbol{v}}=\mathbf{M} \underline{\boldsymbol{v}} \\
\sum_{j} M_{i j} v_{j}=(\mathbf{M} \underline{\boldsymbol{v}})_{i} \\
\mathcal{O}\left(n^{2}\right)
\end{gathered}
$$

$\begin{array}{ccc}\mathbf{A} & \mathbf{B} & = \\ \sum_{j} A_{i j} B_{j k} & =(\mathbf{A B})_{i k}\end{array}$

Matrix products

$$
\begin{aligned}
& (\underset{\square}{\square}(\sqrt{\|})=(\square) \\
& \mathbf{M} \quad \underline{v}=\mathbf{M} \underline{v} \\
& \sum_{j} M_{i j} v_{j}=(\mathbf{M} \underline{\boldsymbol{v}})_{i} \\
& \mathcal{O}\left(n^{2}\right) \\
& \begin{array}{c}
\mathbf{A} \quad= \\
\sum_{j} A_{i j} B_{j k}=(\mathbf{A B})_{i k} \\
\mathcal{O}\left(n^{3}\right)
\end{array}
\end{aligned}
$$

Diagonalisation methods

- Dense methods
- Work on the memory of \mathbf{A}
- Iterative methods
- Subspace-based methods
- Only diagonalise inside subspace
\Rightarrow A can be large
\Rightarrow A can have structure

The problem sizes of quantum chemistry

- def2-SV(P) water FCl
- Dimensionality: 43758
- Matrix elements: $2 \cdot 10^{9}$
- A small basis, highly accurate method
- numerical quantum-chemistry (e.g. FE)
- Dimensionality: $1 \cdot 10^{6}$
- Large basis
\Rightarrow Storage implies hard drive

Demo: Some timings (1)

- Aim: Smallest eigenvalues of discretised Laplace operator

$$
\mathbf{L}=\left(\begin{array}{ccccc}
-2 & 1 & & & \\
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1
\end{array}\right)
$$

- Clear matrix structure
\Rightarrow Putting it all in memory not advantageous
- What happens if we still do it?

Demo: Some timings (2)

- Clearly observable speedup when avoiding memory
- Typically: Only occurs at larger problem sizes
\Rightarrow In this case matrix structure was obvious
- Compare

Contents

(1) Background
 - My daily bread

(2) Latencies

- Typical numbers on typical hardware
(3) Contraction-based methods
- The idea
- Examples
- Lazy matrices

Latency numbers

Storage layer	Latency $/ \mathrm{ns}$	FLOPs
L1 cache	0.5	13
L2 cache	7	180
Main memory	100	2600
SSD read	$1.5 \cdot 10^{4}$	$4 \cdot 10^{5}$
HDD read	$1 \cdot 10^{7}$	$3 \cdot 10^{8}$

[^0]Typical numbers on typical hardware

Hardware trends

Data from https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast

Conclusion

- Trend is generally towards computation
- Avoiding hard disk is a clear case
- But: Trends suggest to avoid main memory as well
\Rightarrow Try to design algorithms, which avoid memory
- Essentially taking disk-avoidance one step further
\Rightarrow Code tends to become more complicated

Contents

(1) Background

- My daily bread
(2) Latencies
- Typical numbers on typical hardware
(3) Contraction-based methods
- The idea
- Examples
- Lazy matrices

Contraction-based methods

- Subspace-based algorithms only need matrix-vector product
- Only need an expression for

$$
\underline{\boldsymbol{y}}=\mathbf{A} \underline{\boldsymbol{x}}
$$

\Rightarrow A not needed explicitly

- Advantages:
- Less storage
- Easier parallelisation
- More freedom to exploit structure of \mathbf{A}
- Structure of \mathbf{A} is hidden
- Historically: Avoid hard drive

Low-rank factorisation (1)

$$
\mathbf{A}=\left(\begin{array}{lllll}
l_{11} & l_{12} & \cdots & \cdots & l_{1 n} \\
l_{21} & l_{22} & \cdots & \cdots & l_{2 n}
\end{array}\right)\left(\begin{array}{cc}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right)\left(\begin{array}{cc}
r_{11} & r_{12} \\
r_{21} & r_{22} \\
\vdots & \vdots \\
\vdots & \vdots \\
r_{n 1} & r_{n 2}
\end{array}\right)=\mathbf{L s R}
$$

- \mathbf{A} is n^{2} elements
- \mathbf{L} and \mathbf{R} are $2 n$ elements
- There is no need to build A fully
\Rightarrow Reduction in memory

Low-rank factorisation (2)

$$
\mathbf{A}=\left(\begin{array}{lllll}
l_{11} & l_{12} & \cdots & \cdots & l_{1 n} \\
l_{21} & l_{22} & \cdots & \cdots & l_{2 n}
\end{array}\right)\left(\begin{array}{cc}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right)\left(\begin{array}{cc}
r_{11} & r_{12} \\
r_{21} & r_{22} \\
\vdots & \vdots \\
\vdots & \vdots \\
r_{n 1} & r_{n 2}
\end{array}\right)=\mathbf{L s R}
$$

- Building \mathbf{A} is $\mathcal{O}\left(n^{2}\right)$
- Computing Ax scales as $\mathcal{O}\left(n^{2}\right)$
- Building \mathbf{R} is $\mathcal{O}(2 n)$
- Computing $\mathbf{R} \underline{\boldsymbol{x}}$ is $\mathcal{O}(2 n)$
\Rightarrow Reduction in computational time

Low-rank factorisation (3)

$$
\mathbf{A}=\left(\begin{array}{lllll}
l_{11} & l_{12} & \cdots & \cdots & l_{1 n} \\
l_{21} & l_{22} & \cdots & \cdots & l_{2 n}
\end{array}\right)\left(\begin{array}{cc}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right)\left(\begin{array}{cc}
r_{11} & r_{12} \\
r_{21} & r_{22} \\
\vdots & \vdots \\
\vdots & \vdots \\
r_{n 1} & r_{n 2}
\end{array}\right)=\mathbf{L s R}
$$

- Low-rank approximation
$\Rightarrow \mathbf{L}, \mathbf{s}, \mathbf{R}$ might not be "physical"
\Rightarrow Hard to understand

A word about low-rank in physics

- Low-rank \approx redundancies / symmetries
- Explicit exploitation
- Uses physical or numerical insight
- For optimal performance: Maximal control of expressions required
- Do not want to interfere with linear algebra
- Low-rank approximation:
- Implicit exploitation
- Leads to factorisations of matrices / tensors
- Systematically improvable
- Explicit symmetry sometimes hard to find or tackle

More realistic cases: Tensor contractions (1)

- Matrix:

$$
\underline{\boldsymbol{y}}=f(\underline{\boldsymbol{x}}=\mathbf{M} \underline{\boldsymbol{x}}
$$

- Tensor: Generalisation $\mathbf{N}=f(\mathbf{M})$
- For example

$$
N_{i j}=\sum_{a b} I_{a b i j} M_{a b}
$$

- Could depend on multiple matrices, e.g.

$$
N_{i j}=\sum_{a b l} I_{a b i j} C_{a l} C_{b l}
$$

- Apply this to a vector x_{j}, then

$$
y_{i}=\sum_{a b j l} I_{a b i j} C_{a l} C_{b l} x_{j}
$$

More realistic cases: Tensor contractions (2)

- Compare

$$
\begin{aligned}
& \text { (1) } N_{i j}=\sum_{a b l} I_{a b i j} C_{a l} C_{b l} \\
& \text { (2) } y_{i}=\sum_{j} N_{i j} x_{j}
\end{aligned}
$$

with directly

$$
y_{i}=\sum_{a b j l} I_{a b i j} C_{a l} C_{b l} x_{j}
$$

- Reordering terms
- Exploiting symmetries in $x_{j}, I_{a b i j}$
- Exploit index selection rules
- \mathbf{N} like a matrix with state \mathbf{C}

Combining ideas

- What if we have to combine ideas
- Things can become messy
- Different terms might have different requirements
- Expressions may become very technical
- Physically motivated modelling and interpretation difficult
- Use lazy evaluation
- Motivated from term reordering
- Allows to collect expression for computition
- Optimisation not necessarily hard-coded

Lazy matrices

- Stored matrix: All elements reside in memory
- Lazy matrix:
- Generalisation of matrices
- Contraction expressions dressed as matrix
- State
- All evaluation is lazy
- Contraction should be fast
- For convenience: Offer matrix-like interface
\Rightarrow But: Obtaining elements expensive

Lazy matrix evaluation

- Actual expression in source code

$$
\begin{aligned}
\mathbf{D} & =\mathbf{A}+\mathbf{B} \\
\mathbf{E} & =\mathbf{D} \mathbf{C} \\
\underline{\boldsymbol{y}} & =\mathbf{E} \underline{\boldsymbol{x}}
\end{aligned}
$$

Lazy matrix evaluation

- Actual expression in source code

$$
\begin{aligned}
\mathbf{D} & =\mathbf{A}+\mathbf{B} \\
\mathbf{E} & =\mathbf{D} \mathbf{C} \\
\underline{\boldsymbol{y}} & =\mathbf{E} \underline{\boldsymbol{x}}
\end{aligned}
$$

- Performed operation

$$
\mathbf{D}=\mathbf{A}+\boxed{\mathbf{B}}=\begin{array}{|}
\mathbf{A}^{+} \mathbf{B}_{\mathbf{B}} \\
\hline
\end{array}
$$

Lazy matrix evaluation

- Actual expression in source code

$$
\begin{aligned}
\mathbf{D} & =\mathbf{A}+\mathbf{B} \\
\mathbf{E} & =\mathbf{D C} \\
\underline{\boldsymbol{y}} & =\mathbf{E} \underline{\boldsymbol{x}}
\end{aligned}
$$

- Performed operation

Lazy matrix evaluation

- Actual expression in source code

$$
\begin{aligned}
\mathbf{D} & =\mathbf{A}+\mathbf{B} \\
\mathbf{E} & =\mathbf{D C} \\
\underline{\boldsymbol{y}} & =\mathbf{E} \underline{\boldsymbol{x}}
\end{aligned}
$$

- Performed operation

$$
\mathbf{E}=\begin{array}{|}
\mathbf{A}^{\prime}{ }^{+} & \mathbf{B} \\
\hline
\end{array}=\begin{array}{|c}
\left.+^{\prime}\right\rangle_{\mathbf{C}} \\
\mathbf{A}^{\prime} \mathbf{B}^{2}
\end{array}
$$

Lazy matrix evaluation

- Actual expression in source code

$$
\begin{aligned}
\mathbf{D} & =\mathbf{A}+\mathbf{B}, \\
\mathbf{E} & =\mathbf{D} \mathbf{C} \\
\underline{y} & =\mathbf{E} \underline{x},
\end{aligned}
$$

- Performed operation

$$
\underline{\underline{y}}=\underline{\mathbf{E}} \underline{\underline{x}} \underset{\underline{\mathbf{A}^{\prime}} \underset{\mathbf{B}}{+\dot{\mathbf{x}}} \underline{\underline{x}}=(\mathbf{A}+\mathbf{B}) \mathbf{C} \underline{x}}{ }
$$

Lazy matrices for contraction-based methods

- Multiple lazy matrix terms:
- Each implements its own contraction
- Full optimisation of contraction expressions
- Evaluation can optimise tree first
- Each term can have a physical interpretation
- Lazy matrix: Building blocks for more complicated expressions
- Transparent to end user / upper layers
- Algorithms independent of matrix structure

Takeaway

- Memory is not generally faster than computation
- Lazy evaluation allows to exploit
- Term reordering
- Factorisation
- Index selection rules
- Streamline operations
- Architecture-dependent optimisations
- Transparent to algorithms exploiting lazy matrices

Questions?

Paper: https://michael-herbst.com/molsturm-design.html
Thesis: https://michael-herbst.com/phd-thesis.html

Email: mfh@herbstmail.de
Blog: https://michael-herbst.com/blog

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.

[^0]: Data from
 https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html FLOPs for a Sandy Bridge 3.2 GHz CPU with perfect pipelining

