Advanced bash scripting

(block course)

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT 1386

o 0000 @B
Michael F. Herbst

michael.herbst@iwr.uni-heidelberg.de

http://blog.mfhs.eu

Interdisziplindres Zentrum fiir wissenschaftliches Rechnen
Ruprecht-Karls-Universitat Heidelberg

24t — 28% Aygust 2015

michael.herbst@iwr.uni-heidelberg.de
http://blog.mfhs.eu

Contents

[Contents i
[Cist_of Tables| iv
[Course description| v
[Cearning targets and objectives| v
[Prerequisites| vi
(Compatibility of the eXeICiSes| . . « « « v v v v v v v e e e e e vi
(Errors and feedbackl vi
|Licensing and redistribution]| vi
[1 Introduction to Unix-like operating systems| 1
[1.1 The Unix philosophy| 1
[1.1.1 Impact for scripting| 2

[2 The Unixutilitifed 2
[1.2.1 Accessing files or directories|. 3

1.2.2 odifying files or directories| 3

11.2.3 Getting or filtering file content| 3

[24 Othed 5

2.5 Exercises o 6

[1.3 _The Unix file and permission system| 7
1.3.1 at are files?l o 7

[1.3.2 Unix paths| 8

[1.3.3 Unix permissions| 8

2_A first look at the bash shelll 10
2.1 Historicoverviewl 10
RIT1 Whatisashelll 10

2.1.2 The Bourne-again shelll 10

2.2 Handy features of the bash| 11
2.2.1 ab completion| o000 11

12.2.2 Accessing the command history|. 11

[2.2.3 Running multiple commands on a single line[. 13

2.3 Redirecting command input/output| 13
2.4 The exit status of a command|. 0000 16
[2.4.1 Logic based on exit codes: The operators &&, |, !| 17

P55 Tips on getting help| 19

CONTENTS

[3__Simple shell scripts|

[3-1 What makes a shell script a shell script? . « . . . « v o v v v o ..
13.1.1 Executing scripts| L.
13.1.2 Scripts and stdwn|

I;ilz {‘!lls:ll y“!lliltzls:}l

8.3 Escaping strings| Lo
3.4 Word splitting and quoting|

[4

Control structures and Input/Output|

4.1 Printing output with echo|
4.2 The test program| Lo

4.4 Loops: while| L

4.5 Loops: for|
(51 Common “types’ of for loops| v oo ..

4.6 Conditionals: casel

471 The read command|
4.7.2 Scripts have shared stdin, stdout and stderr|
4773 The while read line paradigm|
A8 TInfluencing word splitting: The variable 1F9|
4.9 Conventions when scripting|
4.9.1 Script structure|.o oo
4.9.2 Input and output|. oL
4.9.3 Parsing arguments|

B

Arithmetic expressions and advanced parameter expansions|

[5.1 Arithmetic expansion|.

5.2 on-integer arithmeticf oo 0oL
[6.37 A second ook at parameter expansion]

(6 Subshells and functions|

[6.1 Explicit and implicit subshells|.

6.1.1 rouping commands|o e e
6.1.2 Making use of subshells|
6.1.3 Implicit subshells|,
6.2 bash functionsl
[6.2.1 Overwriting commands|
[6.3 Cleanup routines|
6.4 Making script code more reusablel. L.

[7__Regular expressions|

[7T Regular expression syntax| o v v v v it

[7.1.1 Matching regular expressions in plain bash|
[7.1.2 Regular expression operators|
[7.1.3 A shorthand syntax for bracket expansions|

ii

21
21
21
22
22
24
25
27
28

32
32
32
34
37
41
42
45
47
47
48
a0
53
95
56
o6
96

57
o7
62
64

67
67
67
69
71
74
82
83
85

CONTENTS iii

[7.2 Using regexes with grep| 93
[7.37 Using regexes with sed|. 95
[73.T Alternative matching syntax] 98

[8 A concise introduction to awk programming) 99
8.1 Structure of an awk program| 99
8.2 Running awk programs|. o000 100
8.3 awk programs have an implicit loop|.o 101
8.4 _awk statements and Iine breaksl 103
[B.5 Stringsinmawk|. 0L 104
B.6_Variables and arithmefic inawkl 104
8.6.1 Some special variables| 107

18.6.2 Variables in the awk code vs. variables in the shell script|. 108

18.6.3 Setting awk variables from the shell|. 110

BT awk conditiond 110
8.8 Important awk action commands| 114
[B.81 Conditions inside action blocks: ifl 116

8.9 Further examples| o oo 116
8.10 awk features not coveredl, 118

[9 A word about performance| 119
9.1 Collection of bad style examples] 120
9.1.1 Uselessuseof catl 120

9.1.2 Uselessuseof 1s 120

[9.1.3 Ignoring theexit code] 120

|9.1.4 Underestimating the powers of grep| 121

9.1.5 When grepisnot enough ...[. 121

[0-T56 testing for the exit code] v o oot 121

[A Obtaining the files| 122
[B Other bash features worth mentioning| 123
IB.1 bash customisation|o 123
IB.1.1 The .bashrc and related configuration files| 123

IB.1.2 Tab completion for script arguments| 123

IB.2 Making scripts locale-aware|o 123
IB.3 bash command-line parsing in detail| 123
B.3.1 Overview of the parsing process|. 123

B.4 Notable bash features not covered

C Supplementary information 125
C.1 _Themtx fileformatl. 125
Bibliography 126

List of Tables

2.1 List of noteworthy shells.| 11
2.2 Summary of the output redirectors| 15
[2.3 Summary of the types of pipes| 15
P4 Summary of available commands to get help|. 19
3.1 Important predefined variables.| 23
4.1 A few special escape sequences for echo -¢| 33
4.2 Overview of the most important test operatorsf. 34
4.3 The most important options of find|. 52

iv

Course description

The bash shell is the default shell in almost all major Unix and LinuX distri-
butions, which makes learning about the bash scripting language pretty much
unavoidable if one is working on a Unix-like operating system. On the other
hand this also means that writing bash scripts is conceptually very simple —
essentially like typing commands. When it comes to more involved tasks and
more powerful scripts, however, some knowledge of the underlying operating
system is certainly required. After all bash scripting is all about properly com-
bining the available programs in a clever way.

This idea structures the whole course: In the first part we will revisit some
basic concepts of a Unix-like operating system and review the set of Unix core-
utils one needs for everyday scripting. Afterwards we will talk about the bash
shell and its core language features, including

e control statements (if, for, while, ...)

e file or user input/output

e bash functions

e features simplifying code reuse and script structure

The final part will be concerned with the extraction of information (e.g. from
files) using so-called regular expressions and programs like awk, sed or grep.

Learning targets and objectives

After the course you will be able to
e apply and utilise the Unix philosophy in the context of scripting
e identify the structure of a bash script
e enumerate the core concepts of the bash scripting language
e structure a script in a way such that code is reusable in other scripts

e extract information from a file using regular expressions and the standard
Unix tools

e name advantages and disadvantages of tools like awk, sed or grep, cut
.., and give examples for situations in which one is more suitable than
the others.

Prerequisites

This course assumes some familiarity with a Unix-like operating system like
GNU/Linux and the bash shell. I.e. you should be able to

e navigate through your files from the terminal.
e create or delete files or folders from the terminal.
e run programs from the terminal (like some “one-liners”).

e edit files using a common graphical (or command-line) text editor like
gedit, leafpad, vim, nano, ...

Whilst it is not assumed that you have any knowledge of programming or any
experience in bash scripting, it is, however, highly recommended that at least
either is the case.

Compatibility of the exercises

All exercises and script samples have been tested on Debian 7 “Jessie” with the
GNU bash 4.3 and GNU awk 4.1.1. Everything should work on other Unix-
like operating systems as well, but I cannot guarantee it. Especially in Mac
OS X the syntax of the commands differs in some cases, which is why some
examples/exercises might not work properly.

Errors and feedback

If you spot an error or have any suggestions for the further improvement of
the material, please do not hesitate to contact me under michael.herbst@iwr.
uni-heidelberg.de.

Licensing and redistribution

Course Notes

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License. To view a copy of this license, visit http://creativecommons.

org/licenses/by-sa/4.0/\
SAOLN

An electronic version of this document is available from http://blog.mfhs.eu/
teaching/advanced-bash-scripting-2015/. If you use any part of my work,
please include a reference to this URL along with my name and email address.

Script examples

All example scripts in the repository are published under the CCO 1.0 Universal
Licence. See the file LICENCE in the root of the repository for more details.

vi

michael.herbst@iwr.uni-heidelberg.de
michael.herbst@iwr.uni-heidelberg.de
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://blog.mfhs.eu/teaching/advanced-bash-scripting-2015/
http://blog.mfhs.eu/teaching/advanced-bash-scripting-2015/

Chapter 1

Introduction to Unix-like
operating systems

Before we dive into scripting itself, we will take a brief look at the family of
operating systems on which the use of scripting is extremely prominent: The
Unix-like operating systems.

1.1 The Unix philosophy

UNIX itself is quite an old operating system (OS) dating back to the 1970s. It
was developed by Dennis Ritchieﬂ Ken Thompson and others at the Bell Labs
research centre and was distributed by AT&T — initially in open source form.
It included important new concepts, now known as the Uniz philosophy, which
made the OS very flexible and powerful. As a result it became widely used in
both business and academia. Nowadays, where AT&T UNIX is pretty much
dead, the Unix philosophy still plays a key role in operating system design. One
can identify a whole family of OSes — the so-called Unix-like OS es or X-like
OSes, which derive from the traditional AT&T UNIX. Two of the most impor-
tant modern OSes, Mac OS X and GNU/Linux, are included in this family. In
other words: Unix’ importance in academia and business has not changed very
much over the years.

Many formulations of the Unix philosophy exist. The most well-known is
the one given by Doug Mcllroy, the inventor of the Unix pipe and head at Bell
Labs in the 1970s[1]

Write programs that do one thing and do it well.
For the Unix-like OSes this means that in theory
e The OS is a collection of

— small helper programs or “utilities“, that only do a simple thing
(think about 1s, mkdir ...)

1Also the creator of the “C” programming language

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS2
— programs (”shell scripts®) that combine the utilities to achieve a big-
ger task
e The OS is extremely modular:

— All programs have a well-defined interface

— It is easy to swap one program for a modified /enhanced version with-
out breaking the rest of the OS

e The OS is standardised:
— The functionality of the programs is (almost) identical for all OSes

of the Unix-family.

1.1.1 Impact for scripting

On such a platform scripting becomes very helpful since

e all important functionality is available in the OS-provided utilities. So
very little actual code has to be written to glue the utilities together.

e the utilities are not too specific for a particular job and can therefore be
used flexibly throughout the script.

e documentation of their interfaces (commandline arguments) is available.

= If one changes from one Unix-like OS to another or from one version of
the OS to the next, no change in the functionality of the derived script is
to be expected.

= Scripts become reusable and portable.

1.2 The Unix utilities

Now let us briefly review some of the most important utility programs on a
modern Unix-like OS. This list is not at all complete and in fact we will add
more and more utilities to our toolbox during the course. See page for a
full list of commands introduced in this course.

This section is just to remind you about these commands. If more detailed
information is required you should consult the manpage (by typing man command)
or try the tips in section [2.5 on page 19

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS3

1.2.1 Accessing files or directories

cd

1s

pwd

Change the current working directory of the shell

List the content of the current working directory. Important op-
tions:

-1 long form: More details
-a all: Also include hidden files
-h human-readable: Output sizes in more readable way

-t time: Sort output by time

Print the current working directory of the shell

1.2.2 Modifying files or directories

touch

mkdir

rm

rmdir

chown

Change the modification time if the file exists, else create an empty
file, options:

-t Change modification time to the one provided

Create a directory
Delete files. Important options:

-r recursive: Delete all files and directories in a directory
-i Ask before each file deleted

-I Ask only in certain circumstances and only once (mass-delete)

Delete empty folders

Change ownership for a file (see section [1.3 on page 7))

1.2.3 Getting or filtering file content

cat

tac

tee

cut

grep

Concatenate one or many files together
Concatenate files and print lines in reverse order
Write input to a file and to output as well
Extract columns from input, options

-d delimiter: Character to use for the split

-f fields: Which fields(columns) to output
Filter input/ by a pattern

-i ignore case
-v invert: only non-matching lines are given
-o only-matching: print only matching content

-C context: print n lines of context as well

-

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS4

-q only the return code is determined

sort sort input according to some parameters, Options:

-n numeric sort

-u unique sort: each identical line is only print once

uniq Take a sorted input and discard double lines

-c¢ count the number of occurrences

Example 1.1. In this example we will assume that the current working direc-
tory is the top level of the git repository ﬂ If we run

cat resources/matrices/3.mtx

we get the content of the file resources/matrices/3.mtx (Check with a text
editor) If we do the same thing with tac, we get the file again, but reversed line
by line.

Now, many of you probably know the < character can be used to get the
input for a command from a file. I.e. the command

< resources/matrices/3.mtx cut -f 1

takes its input from the file we just looked at and passes it onto cut. Naively
we expect cut to print only the first column of this file. This does, however,
not occur, because cut per default only considers the tabulator character when
splitting the data into columns. We can change this behaviour by passing the
arguments -d "_,". This tells cut that the space character should be used as
the field separator instead. So running

< resources/matrices/3.mtx cut -f 1 -d " "

gives the first column as desired.

Example 1.2. In this example we want to find all lines of the Project Guten-
bergﬂ books pg74 and pg76 that contain the word “hunger”. One could run
those two commands one after another

< resources/gutenberg/pg74.txt grep hunger
< resources/gutenberg/pg76.txt grep hunger

or we can use the pipe “|” to connect the cat and grep commands together

like

cat resources/gutenberg/pg74.txt \
resources/gutenberg/pg76.txt | grep hunger

Reminder: The pipe connects the output of the first with the input of the second
command

2The top level is the directory in which this pdf is contained
Shttps://wuw.gutenberg.org/

https://www.gutenberg.org/

N

-

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS5

Example 1.3. There exists a counterpart to “<”, which writes to a file, the
“>”. In principle it just takes the output from the last command and writes it
to the file specified afterwards. In other words the effect of the two commands

< infile cat > outfile
cp infile outfile

is absolutely equivalent.

Note that there are many cases where the precise place where one puts the <
and > is not important. For example the commands

< infile > outfile cat
cat <infile > outfile

all work equally well. The space after the “arrows” is also optional.

Example 1.4. Since uniq can only operate on sorted data, it is very common
to see e.g.

< resources/testfile sort | uniq
This can of cause be replaced by the shorter (and quicker)
< resources/testfile sort -u

One really might wonder at first sight why the sort command has the -u flag,
since somewhat violates the Unix philosophy. Most Unix-like OS have this flag
nevertheless, since sorting algorithms become more efficient if we already know
that we only want to keep a single occurrence of each line.

Note, that in many cases a construct like < file command can actually be
replaced by command file. Most commands are built to do the “right thing”
in such a case and will still read the file. For example for sort this is equivalent
to the above:

sort -u resources/testfile

In some cases the latter command tends to perform somewhat better. Never-
theless I personally prefer the version < resources/testfile sort -u since
this has a very suggestive syntax: The data flows from the producers (< file)
on the RHS to the consumers on the LHS and on the way passes through all
commands.

1.2.4 Other
less View input or a file in a convenient way
we Count characters, lines or words on input
-1 count number of lines
-w count number of words
echo Print something to output
man Open manual page for a command

whatis Print a short summary describing a command

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS6

Example 1.5. If we want to find out how the commands tail and head work
we could use the manpage

man tail
man head

The same works with man itself, try e.g.
man man

Problems arise with so-called shell builtins. We will talk about this in the next

chapter (see section [2.5 on page 19)).

1.2.5 Exercises
Exercise 1.6. Exploring the man program:

e Run the commands man -Lde tail and man -LC tail. What does the
-L flag do to man?

e Find out about the different sections about the Unix manual (read line 21
till 41 of man man).

e Which section number is the most important for us?
e Find out how one can enforce an article to be from an appropriate section.

Exercise 1.7. A first look at Project Gutenberg books in resources/gutenberg

e Find out how many lines of the book pg74.txt actually contain “hunger”.
Do this in two possible ways, both times using grep at least once.

— Once use at least one pipe

— Once use no pipe at all.
e Find out what the grep options -A -B -n -H -w do

e optional pg74.txt contains two lines that directly follow another in which
the first line contains the word “hunger” and the second line contains the
word “soon”. Find out the line numbers of these two lines.

Exercise 1.8. Looking at some matrices:

e Read the manpages of head and tail. Rebuild the effect of the tail
command using head. l.e. give a commandline that achieves the same

effect as < resources/testfile tail, but that does not contain tail at
all.

e Find out (using the manpage) how one could print all lines but the first
of a file. You can either use the commands from your answer to 1. or
use tail, both is possible. Try your suggested command sequence on
resources/matrices/3.mtx to see that it works.

e You might have noticed that the mtx files contain a few lines in the begin-
ning that start with the special comment character “%”. Suggest another
way to suppress comment lines in the file 3.mtx.

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMST

1.3

Provide a sequence of commands using cut and sort which prints how
many distinct values there are in the third column. I.e. if this column
contains 3 fours, 2 threes and 1 zero, the answer should be 3. Note that
the columns are not separated by tabs, so you will need to play with the
flag -d of cut. Again use your idea from the previous answer to ignore
the comment line. Once you get an answer look at the file yourself and
compare the values.

Provide a sequence of commands that prints the smallest value in the third
column of 3.mtx. Again make your commands ignore the first comment
line.

Do the same thing with resources/matrices/bcsstm01.mtx. Be very
careful and check the result properly. Here you will need the right options
for sort for this to give the correct answer.

Run the same sequence of commands as in the previous part on resources
/matrices/lund_b.mtx. The result should surprise you. What goes
wrong here?

Another tool that can be used to print certain columns in files is awk. The
syntax is awk '{print $n}' to print the nth column. Use it instead of
cut for the file lund_b.mtx. How does it perform?

The Unix file and permission system

To conclude this chapter we want to spend some time discussing the way Unix-
like operating systems organise files.

1.3.1 What are files?

Convenience feature for programmers or users of the computer
File: Virtual chunk of data.
File path: Virtual location where user expects the file.

File System: Provides lookup feature to translate file path to hard drive
location

Lookup mechanism incorporates extra information about the file:

— Owner (Person who created the file)

Group (Group of people file is attributed to)
— Permissions for file access

— Time when time was created/accessed /modified

All this information can be obtained using the 1s -1 command

w N e

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS8

e Some files are “special”, e.g.

— soft links: Files that point to a different file path
= OS performs look-up at the other file path
— hard links: Duplicated entries in the lookup mechanism

= Two paths point to the same hard drive location

1.3.2 Unix paths

Paths are a structured syntax that allow the user to tell the operating system
which file he or she is referring to. In Unix these paths are characterised as
follows:

Entities on the path are separated by “/”
The last entity may be a file or directory, all the others are directoriesﬂ

Absolute path: Path starting at the root directory, i.e. who has “/” as the
first character

Relative path: Gives a location relative to the current directory. May
contain “..” to denote the parent directory relative or “.” to denote the
identical directory to the entity on the left. E.g. the paths

foo/bar/baz
foo/./bar/../bar/./baz

are all relative paths to exactly the same location.

1.3.3 Unix permissions

Consider the following output of the command 1s -1

drwxr -xr-xy4ymfh ,agdreuw,,4096 ,Aug,15,19: 07 resources
-rw-r--r--ylymfhyagdreuw,,,4115,Aug,15,20:18file

-r—--

—————— ulymfhagdreuw,,4096,Aug,15,00:00 ,secret

The output means from left to right:

e Permissions (10 chars)

— 1 char (here d or -): Indicates the file type

— 3 chars: Access rights for the owner

— 3 chars: Access rights for the group

— 3 chars: Access rights for the world (anyone else on the machine)

— r means read, w means write, x means execute

e Number of hard links to this hard drive location

e Owner

e Group

4Which are actually just some special kind of files

w o e

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS9

e Size (in bytes)
e Last modification time

e File name

A file is (readable/writeable/executable) for a specific user if at least one of the

following is true

e He is the owner and the (r/w/x)-bit set (i.e. 1s shows the respective letter

in the listing)

e He is in the group the file belongs to and the group has the (r/w/x)-bit

set

e The (r/w/x)-bit is set for the world

The permissions can be changed using the command chmod and the owner and

group information can be changed using chown.

Example 1.9. After a run of chmod +x secret the 1s -1 would show

drwxr -xr-xy4ymfhagdreuw,,4096,Aug 15,19

:07,resources
-rw-r--r--y1ymfhyagdreuw,,,4115,Aug,15,20:
-r-x--x--xylymfh,agdreuw,,,4096,Aug,15,00:

18 ,file
00 secret

Further running chmod g-r gave the result

drwxr -xr-xy4ymfhagdreuw,,4096,Aug 15,19

:07,resources
-rw----r--,1ymfh,agdreuw,,,4115,Aug,15,20:
-r-x--x--xylymfh,agdreuw,,,4096,Aug_,15,00:

18, ,file
00 secret

Chapter 2

A first look at the bash shell

In this chapter we will take a first look at the bash shell itself. We will discuss
some very handy features to save oneself from typing too much and we will have
a closer look at elementary features of the shell like pipes and redirects.

2.1 Historic overview

2.1.1 What is a shell?
Back in the days:

e Terminal: Place where commands can be keyed in in order to do work on
a computer

e Shell: Interface the OS provides to the user on a terminal

In this definition a graphical user interface is a shell as well!

Nowadays:
e Hardly any work done inside terminals any more

e Programs to start a virtual terminal: “Terminal emulator’

e Shell: Default program started by the terminal emulator

2.1.2 The Bourne-again shell

e bash is short for Bourne-again shell
e derived and improved version of the Bourne shell sh

e Pretty much the default shell on all Unix-like OS

e Other important shells see table 2.1 on the next page

10

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 11

sh

csh
ash
ksh

Bourne shell 1977 first Unix shell

C shell 1978 syntax more like C

Almquist shell 1980s lightweight shell

Korn shell 1983 sh improved by user requests at Bell Labs

bash Bourne-again shell 1987 the default shell

zsh

7Z shell 1990 massive and feature-rich, compatible to bash

Table 2.1: List of noteworthy shells. For more information see https://en.
wikipedia.org/wiki/Comparison_of_command_shells

2.2

Handy features of the bash

2.2.1 Tab completion

Can save you from a lot of typing

Needs to be loaded by running
/etc/bash_completion

Press [£] once to complete a command

Press [[E=5] to get list of possible completions

Works on files and options

2.2.2 Accessing the command history

Consider a sequence of commands

1s
cd
1s
1s
cd
1s
1s

resources/
resources/
-al
matrices
matrices
-al

-al

It would be nice to do as little typing as possible
Fortunately the bash remembers what was most recently typed

Navigation through history using and
The last line can also be executed by [7]

Another way of accessing the history is given by the so-called history expansion,

e.g.

1 run the most recent command again

'3 the last argument of the previous command line
1 the first argument of the previous command line
l:n the n-th word of the previous command line
I:n-m words n till m of the previous command line

https://en.wikipedia.org/wiki/Comparison_of_command_shells
https://en.wikipedia.org/wiki/Comparison_of_command_shells

AW N e

-

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 12

So if we assume the working directory is the top level directory of the git repos-
itory, we could just type

1s 1 [&5] [Enter]

cd !$ [Enter
Is -al [Enter
Is m [S5] [Evter]
cd !$ [Enter

[[1 [[Ee]
=

to achieve the same thing as above.

Another thing worth mentioning here is reverse-i-search. In order to trans-
form the shell in this mode type [trl]| + [@ .

e Now start typing

e The shell will automatically display the most recent command matching
command line

e type [Enter] to execute

e type more chars to continue searching

e use , , [[Home] , [@ , ... to edit the current match, then [Enter]

to run the edited version

e type [Cid] + to go to the next match further back in the history

e type [Cid] + to abort

Note that both tab completion as well as the bashs history features do only
work in an interactive environment and not when writing scripts.

Exercise 2.1. What is the smallest number of keystrokes you need to achieve
the execution of the following command sequences.

cd resources

ls images | grep blue #no file blue exists
ls|grep blue

mkdir grep_red grep_blue

Assume as usually that the current working is the top level of the repository.
Assume further that the command history is filled exactly with these entries
(from oldest to newest):

ls images | grep red
1s tables
ls resources

Note: Count special symbols like “.” or “|” or combined strokes like +
as one keystroke. Also count all [[Enter| s or [=] s required.

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 13

2.2.3 Running multiple commands on a single line

The bash offers quite a few ways to separate subsequent commands from one
another. The simplest one, which everyone has used already multiple times just
for this course, is the newline character (as produced by the key). The
character ; is entirely synonymous to . So typing

cd -5 Is [Emter]

or
cd - [Enter]
Is [Enter]

is equivalent.

In contrast the character & tells the bash to send the program on its left to
background and immediately proceed with the execution of the next command.
This is extremely helpful for running long jobs without blocking the shell, e.g.

cp BigFile /media/usbstick/ & 1ls resources

would start copying the big file BigFile to the usbstick and immediately display
the content of resources, not waiting for the copying to be finished. During
the execution of the background job cp BigFile /media/usbstick/, output
from both jobs will be displayed on the terminal.

If more than one command is specified on a single commandline, the com-
pound is also called a “command list”, so cd -; 1s and cp BigFile /media/
usbstick/ & ls resources are examples of command lists.

2.3 Redirecting command input/output

Each command which is run on the terminal per default opens 3 connections to
the shell environment:

e stdin or file descriptor (fd) 0: The command reads all input from here
e stdout or fd 1: All normal output is printed here
e stderr or fd 2: All output concerning errors is printed here

Especially the distinction what is printed to stdout and what is printed to stderr
is not clear and programs can sometimes give rise to rather unexpected be-
haviour. Usually one can expect error messages on stderr, everything else on
stdout. There are a few good reasons to distinguish stdout and stderr:

1. In many cases one is only interested in part of the output of a program

= One pipes the program into grep

= Only a small portion of the output produced reaches the eye of the
user

e But: We still want to see all the errors

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 14

2. Scripts often capture the output of a program for later use.

= Programmer only expects normal output in the capture, no error

messages

= Can capture stdout but not stderr

3. Usually one can safely discard the output on stdout whereas stderr is

usually important.

= Output implicitly split into two categories for logging.

By default stdin is connected to the keyboard and both stdout and stderr are
connected to the terminal. Running a comm in the shell hence gives a “redirection

diagram” like

0

1

keyboard ———

comm

> terminal

2

As we already know the characters < and > can be used to read/write from/to

a file, so the commandline
1 < input comm >output

can be visualised as

/1Y output

mput———

comm

N

terminal

If we want to prevent the content of the file output to be overwritten, we can

use the syntax

1 < input comm >>output

This does exactly the same thing as above, just it appends stdout to the file
output instead of deleting the previous content and replacing it by the output

of comm.

If one wants to redirect the output on stderr to a file called error as well, we

can use the commandline
1 comm >output 2>error

or pictorially

0
keyboard——>

comm

/1Y output

\2‘ error

1

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 15

syntax | Comment

> print stdout to file

>> append stdout to file

2> print stderr to file

2>> append stderr to file

&> print stdout and stderr to file
&>> append stdout and stderr to file

Table 2.2: Summary of the output redirectors of the bash shell. The versions
with a single > always substitute the content of the file entirely, whereas the >>
redirectors append to a file.

syntax ‘ Comment
| connect stdout — stdin
| & connect stdout and stderr — stdin

Table 2.3: Summary of the types of pipes

Many more output redirectors exist. They all differ only slightly depending on
what file descriptor is redirected and whether the data is appended or not. See
table [2.2] for an overview.

Similar to output redirection >, a pipe between commands foo | bar only
connects stdout to the next command and not stderr, i.e.

bar

0
keyboard——| foo 1=0 1 2

S

Again there is also a version that pipes both stdout and stderr to the next
command, see table

One very common paradigm in scripting is output redirection to the special
device files /dev/null or /dev/zero. These devices have the property, that they
discard everything which gets written to them. Therefore all unwanted output
may be discarded by writing it to e.g. /dev/null. For example, consider the
script 2_intro_bash/stdout_stderr.sh and say we really wanted to get
all errors but we are not very much interested in stdout, then running

terminal

2_intro_bash/stdout_stderr.sh > /dev/null
achieves exactly this task. If we want it to be entirely quiet, we could execute

2_intro_bash/stdout_stderr.sh &> /dev/null

Exercise 2.2. Visualise the following command line as a redirection diagram

ls |& grep test | grep blub | awk '{print $2}' &> outfile

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 16

Exercise 2.3. tee is a very handy tool if one wants to log the output of a
long-running command. We will explore it a little in this exercise.

Imagine you run a program called some_program which does a lengthy
calculation. You want to log all the output the program produces (on
either stdout or stderr) to a file log.full and all output that contains
the keyword “error” to log.summary. Someone proposes the commandline

some_program | tee log.full |& grep error &> log.,/
—rsummary

Draw the redirection diagram. Does it work as intended? If not propose
a commandline that does achieve the desired goal making sure that only
output from some_program actually reaches the log files.

What happens if you run the command multiple times regarding the log
files? Take a look at the manpage of tee and propose an alternative com-
mand line that makes sure that no logging data is lost between subsequent
runs of some_program.

Exercise 2.4. e Create a file called in and write some random text to it.

Run < in cat > out. What happens?
Run < in cat > in. What happens here?

Draw a redirection diagram for running plain cat. How can you explain
that the terminal seems to “hang” if just cat is executed on the comman-
dline.

(Hint: Run cat, type something to the terminal and press [Enter])

2.4 The exit status of a command

Apart from writing messages to stdout or stderr, there is yet another channel
to inform the user how the execution of a program went:

Each command running on the shell returns an integer value between 0
and 255 on termination, the so-called “exit status” or “return code”.

By convention 0 means “no errors”, anything else implies that something
went wrong.

The meaning of a specific can be checked from the program’s documenta-
tion (at least in theory)

The return code is usually not printed to the user, just implicitly stored
by the shell.

In order to get the exit code of the most recently terminated command
one may execute echo $7

Note that this is in turn a command and hence alters the value printed
by the next execution of echo $7.

-

-

1

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 17

2.4.1 Logic based on exit codes: The operators &&, ||, !

We already looked at the & and ; operators to separate commands in a command
list, e.g.

foo ; bar
foo & bar

In both syntax there is no control about the execution of bar: Irrespective
whether foo is successful or not, bar is executed. If we want execution of the
bar command only if foo succeeds or fails, we need the operators && or ||,
respectively:

foo || bar # bar only executed if foo fails
foo && bar # bar only executed if foo successful

e Conditional cd:

1 cd blub || cd matrices

Goes into directory matrices if blub does not exist.

e If the annoying error message should be filtered in case blub does not
exist, one could run

1 cd blub &> /dev/null || cd matrices

e Very common when developing code:

1 make && ./a.out

The compiled program ./a.out is only executed if compiling it using make
succeeds.

e A list of commands connected by && is called an “AND list” and a list
connected by || an “OR list”.

e AND lists or OR lists may consist of more than one command

1 ./configure && make && make install && echo Successful
e This works as expected since the return code of such an AND/OR lists is
given by the last command in the sequence
e One can also intermix && and | |
1 cd blub &> /dev/null || cd matrices && vim 3.mtx

although this can lead to very hard-to-read code (see exercise below) and
is therefore discouraged.

Finally there also exist the operator ! that inverts the return code of the fol-
lowing program. So running
! 1s

returns the exit code 1 if 1s has been successful and 0 on error.

AW o e

[

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 18

Exercise 2.5. Go to the directory resources/directories. Explain the out-
put of the following commands

e Run

1 cd 3/3 || cd 4/2 && cd ../4 || cd ../3 && cat file

Note, that this changes the working directory on the shell, so in order to
run it again, you need to cd back to resources/directories beforehand.

e Suggest the places at which we need to insert a 2>/dev/null in order
to suppress the error messages from cd. Try to insert as little code as
possible

e Go back to the directory resources/directories. Now run

. mkdir -p 3/3; cd 3/3 || cd 4/2 && cd ../4 || cd ../3
—&& pwd

Exercise 2.6. Find out what the programs true and false do. Look at the
following expressions and try to determine the exit code without executing them.
Then check yourself by running them on the shell. Remember that you can
access the exit code of the most recent command via echo $7

false || true

true && false || true
false && false && true
false || true || false

Run the following commands on the shell

false | true
true | true

true | false
false | false

false |& true

What does the pipe do wrt. to the return code?

Exercise 2.7. We already talked about the grep command in order to search
for strings. One extremely handy feature of grep is that it returns 0 if it
found a match and 1 otherwise. Change to the directory resources/gutenberg.
Propose bash one-liners for each of the following problems.

e Print “success” if the file pg1661.txt contains the word “the” (there is a
special grep flag for word matching), else it should print “error”.

e Do the same thing, but use a special flag of grep in order to suppress all
output except the “success” or “error” in the end. Apart from there being
less amount of output, what is different?

e Now print “no matches” if pg1661.txt does not contain the word “Hei-
delberg”, else print the number of times the word is contained in the file.

e Try a few other words like “Holmes”, “a”, “Baker”, “it”, “room” as well.

e Count the number of words in the file pg1661.txt

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 19

program | description

man Accessing the manual pages

info Accessing the Texinfo manual

whatis Print a short summary describing a command
apropos | Search in manpage summaries for keyword
help Access help for bash builtin commands

Table 2.4: Summary of available commands to get help

Exercise 2.8. Code echo is a command which just prints all of its arguments
to stdout As usually we can use output redirection to write this to a file or use
a pipe to pipe it to a different program.

Keeping this in mind take a look at the following commands, which are all
valid bash shell syntax. What do the commandlines mean? How are stdin,stdout
and stderr of grep connected? What is the exit code?

echo test | grep test

echo test & grep test

echo test |& grep test

echo test && grep test

echo test || grep test

2.5 Tips on getting help

It is not always clear how to get help when writing a script or using the com-
mandline. Many commands exist that should provide one with this answers.
Table gives an overview.

If one knows the name of a command usually a good procedure is:

1. Try to execute command --help or command -h. Many commands provide
a good summary of their features when executed with these arguments.

. Try to find help in the manpage man command

If the manpage did not answer your problem or says something about a
Texinfo manual, try accessing the latter using info command

If both is unsuccessful the command is probably not provided by the
system, but by the bash shell instead — a so-called shell builtin. In this
case try finding help via help command

If the precise command name, however is not known, try to find it first using
apropos keyword.

A word of warning about shell builtin commands:

e It is intentional that shell builtin commands act extremely alike external

commands

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 20

e Examples for perhaps surprising shell builtins are cd, test or echo

e Some of these commands — like test or echo — are provided by the OS
as well.

e The builtins get preference by the bash for performance reasons

= The manpage for some commands (describing the OS version of it) do not
always agree with the functionality provided by the bash builtin.

e Usually the bash has more features

= Bottom line: Sometimes you should check help command even though you
found something in the manpages.

Exercise 2.9. By crawling through the help provided by the help and the man
commands, find out which of these commands are shell builtins:

man kill time fg touch info history rm pwd 1ls exit

-

N

Chapter 3

Simple shell scripts

In this chapter we will dive into proper scripting and discuss the basic bash
scripting syntax.

3.1 What makes a shell script a shell script?

The simplest script one can think of just consists of the so-called shebang
#!/bin/bash

This line, starting with a hash(#) and a bang(!) — hence the name — tells the
OS which program should be used to interpret the following commands. If a
file with executable rights is encountered that begins with a shebang, the OS
starts up the specified program (in this case /bin/bash). Then the remaining
content of the file is fed into this program’s stdz'n[ﬂ In order to compose a shell
script we hence need two steps

e Create a file containing a shebang like #!/bin/bash

e Give the file executable rights by calling chmod +x on it.

3.1.1 Executing scripts

Once script files are made executable using chmod +x we can execute it on the
shell like any other command. Consider the simple script

#!/bin/bash
echo Hello world!

3_simple_scripts/hello.sh
which just issues a “Hello world.” If the current working directory of the shell

is exactly the directory in which hello.sh has been created, we can just run it
by executing

./hello.sh

IStrictly speaking the shebang is not required, since a missing shebang causes the default
shell to be used — which works well for many cases. It is nevertheless good practice to include
the shebang as it makes the scripts more portable

21

=

1

CHAPTER 3. SIMPLE SHELL SCRIPTS 22

Otherwise we need to call it by either the full or the relative path of the script
ﬁlﬂ E.g. if we are in the top directory of the course git repository, we need to
execute

3_simple_scripts/hello.sh

instead.

3.1.2 Scripts and stdin

Similar to other commands, scripts can also process data provided on their stdin.
E.g. consider the script

#!/bin/bash
cat

3_simple_scripts/cat.sh
which just contains a cat. On call we can redirect input to it
< resources/testfile 3_simple_scripts/cat.sh
or pipe to it
echo "data" | 3_simple_scripts/cat.sh

both is valid syntax. As you probably noticed in both cases the effect is exactly
identical to

< resources/testfile cat
or
echo "data" | cat

This is because everything that is input on the script’s stdin is available for the
programs inside the script to process. In other words the stdin of the programs
inside the script is fed by the stdin of the whole script. We will discuss this in
more detail in section 4.7.2 on page 48|

3.2 Shell variables
