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Community efforts in the computational molecular sciences (CMS) are evolving toward modular, open, and
interoperable interfaces that work with existing community codes to provide more functionality and com-
posability than could be achieved with a single program. The Quantum Chemistry Common Driver and
Databases (QCDB) project provides such capability through an application programming interface (API)70

that facilitates interoperability across multiple quantum chemistry software packages. In tandem with the
Molecular Sciences Software Institute and their Quantum Chemistry Archive ecosystem, the unique function-
alities of several CMS programs are integrated, including CFOUR, GAMESS, NWChem, OpenMM, Psi4,
Qcore, TeraChem, and Turbomole, to provide common computational functions, i.e., energy, gradient,
and Hessian computations as well as molecular properties such as atomic charges and vibrational frequency75

analysis. Both standard users and power users benefit from adopting these APIs as they lower the language
barrier of input styles and enable a standard layout of variables and data. These designs allow end-to-end
interoperable programming of complex computations and provide best practices options by default.

I. INTRODUCTION

The number of quantum chemistry (QC) programs is80

continuously increasing, building a rich spectrum of ca-
pabilities where varied levels of accuracy, performance,
distributed computing, graphics processing units (GPU)-
acceleration, or licensing can be obtained. While this is
generally beneficial to the end user, the diversity of cus-85

tom input and output makes it difficult to switch between
programs without learning the vagaries of each. Even the
simplest research tasks using QC programs require mas-
tering layers of expertise. On the input side, users must
know what model chemistry will treat the molecular sys-90

tem of interest with adequate physics in tractable time, as
well as pertinent modifications like density-fitting (DF),
convergence, and active space, which are all questions
of scientific expertise (I-a). (Labels of non-scientific (i.e.,
beyond I-a) input I-x or output O-x problems enumerated95

here are referenced by solutions in Sec. II.) They must
know the names given by a QC program to the knobs that
dial up that model chemistry and modifications, a ques-
tion of domain-specific-language (DSL) expertise (here,
“domain” is the QC software) (I-b). They would benefit100
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from knowing the insider best-practice knobs that select
the most efficient algorithms, approximations, and imple-
mentations specialized to the model chemistry, a question
of program expertise (I-c). They must know the struc-
ture of the input specification by which the QC program105

receives instruction, a question of formatting and DSL
expertise (I-d). Last on the input side, they must know
the dance of files, environment variables, and commands
to launch the job, a question of program operational ex-
pertise (I-e).110

On the output and analysis side, further skills are re-
quired to process the program-specific ASCII or struc-
tured data file. Users must know what strings in the
output mark the desired result, a matter of DSL ex-
pertise (O-a). If the targeted quantity is not explicitly115

printed but is derivable, they must know the arithmetic
or unit conversion, a question of QC expertise (O-b). If
individual energies or derivatives are to be combined to
create a more sophisticated model chemistry (e.g., ba-
sis set extrapolation,1,2 focal-point methods,3–5 G3 or120

HEAT procedures,6,7 empirical correction8) or for molec-
ular systems decomposition or perturbation (e.g., many-
body expansion (MBE), counterpoise procedure,9 geome-
try optimization, finite difference derivatives), users may
be able to use routines built into QC programs (needing125

DSL expertise) but more generally must script the proce-
dure themselves, requiring QC and programming exper-
tise (O-c). More elaborately, they may want to combine
the results with other programs — requiring recognizing
and compensating for default knobs that render program130

results unmixable — a matter of QC and program ex-
pertise (I-f). Finally, users may hope that completed
calculations can be stored and queried or even reused,
matters of database expertise (O-d). Efforts to reduce
non-scientific expertise burdens on the user have tradi-135

tionally aggregated QC methods, geometry optimizers,
and sundry procedures into vertically integrated “soft-
ware silos” that, by increasing the DSL burden, risk lock-
ing users into one or a few programs. We pursue reduc-
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ing the non-scientific expertise burdens on users by re-140

structuring the QC software ecosystem while minimally
disrupting longstanding, robust, and debugged computa-
tional molecular sciences (CMS) codes.

As a concrete example, in a high-accuracy spectro-
scopic application (see Sec. III) a user might want to145

include numerous small corrections such as electron cor-
relation effects beyond coupled-cluster (CC) through per-
turbative triples [CCSD(T)],10 basis set extrapolation,
relativistic corrections,11 and Born–Oppenheimer diag-
onal corrections.12,13 The best implementation of each150

of these terms is not necessarily found in a single QC
program. Careful users can evaluate different terms us-
ing different programs through a post-processing script
to obtain a focal-point energy, but more complex proce-
dures such as geometry optimizations14 are difficult due155

to tight coupling in QC programs that generally do not
allow arbitrary gradients to be injected into the iterative
optimizer.

Finally, in the emerging “data age” of computational
chemistry, users increasingly want to treat QC results160

as a commodity, obtaining them on demand as part of
complex workflows or generating data sets of millions
of computations to use in force field (FF) parameteriza-
tion, methodology assessment, machine learning (ML),
or other data-driven pipelines. These users must be able165

to set up, execute, and extract computational results as
easily as possible.

To address such challenges, the differing needs of work-
flows for uniform interaction with CMS codes have been
separated into different layers of concern, resulting in the170

development of QCEngine and QCDB15.

• Consider a new QC practitioner learning which
DFT program best suits the local hardware or ac-
cessing the latest ML FF for many molecules. Such
users would benefit from a uniform API to eval-175

uate these diverse capabilities without requiring
knowledge of the specifics of each program’s DSL.
QCEngine is designed to provide this uniform API
and is an I/O runner around individual CMS codes’
core single-point capabilities. QCEngine com-180

municates through a JavaScript Object Notation
(JSON) Schema,16 denoted QCSchema, thus au-
tomatically generating program input files from a
consistent and simple molecule and method speci-
fication.185

• Next, consider the systematic study of dipole mo-
ments at different levels of theory from different
programs or a FF developer training on the many
symmetry-adapted perturbation theory (SAPT)
component results over thousands of molecules.190

These applications would benefit from output lay-
out uniformity and programmatic access to detailed
results. QCEngine covers these cases by harvest-
ing binary, structured, or text output into stan-
dardized QCSchema fields.195

• Next, consider the maintainers of a CMS code

whose users have been making the same formatting
and incomplete input mistakes for the past decade
and have been petitioning for quality-of-life fea-
tures that would incur poor complexity-to-benefit200

ratio if implemented within the native framework
and languages. These barriers to research would
benefit from a shim layer in an easy and expressive
language. QCDB provides a flexible input frame-
work, helpful keyword validation, access to multi-205

job procedures like MBE, and a place (besides doc-
umentation) to inject advice like context-dependent
defaults.

• Now, consider a spectroscopist modeling a molecule
with a composite method or the QC beginner hop-210

ing to avoid learning multiple DSLs. These cir-
cumstances would benefit from uniformity of input
and results across programs. QCDB compensates
for variable defaults and conventions so that multi-
program model chemistries can be safely defined215

and simple methods accessed interchangeably.

• Finally, consider the experienced QC practitioner
who writes inputs from memory and who turns key-
word knobs as nimbly as organ stops but who would
like to try another optimizer or an MBE procedure220

or not worry about capitalization and spaces today.
This situation would benefit from a light hand in
developing the QCSchema translation and com-
mon driver API so that existing expertise in direct
interaction with CMS codes (DSL for keywords, for225

example) is applicable to these current projects.

In enabling uniformity at the input, output, and cross-
program layers, both QCEngine and QCDB have
striven to make their input predictable from customary
input and to make customary output available.230

Central to the ability of QCArchive17 and QCDB to
provide generic I/O, driver, and database interfaces to
CMS codes is a common standard QC data format. Of
course, to develop such a standard information exchange
format for all QC programs and to encourage its adop-235

tion by QC packages is a difficult approach for a single
research group, or even a handful of research groups, to
successfully prescribe to a broad developer community.
However, here the Molecular Sciences Software Institute
(MolSSI),18 funded by the U. S. National Science Foun-240

dation, provides a unique opportunity to sponsor com-
munity discussions and to advocate for standards. Mem-
bers of our collaborative team and the codes represented
have worked closely with MolSSI on their development
of a QCSchema19 for quantum chemistry information245

exchange, and we have adopted it for QCEngine and
QCDB.

There have been previous efforts to provide a unified
interface to set up, drive, and analyze QC computa-
tions. For example, Newton-X20 and FMS9021–23 per-250

form nonadiabatic dynamics computations using any of
several QC programs. The Quantum Thermochemistry
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Calculator (QTC)24 interfaces to a handful of QC pro-
grams to provide unified thermochemistry analysis func-
tions independent of the QC data source. Especially255

tailored to deal with excited state optimizations is py-
sisyphus, an external optimizer that localizes stationary
points on potential energy surfaces by means of IRC in-
tegration, chain-of-state optimization and surface walk-
ing for several QC codes through an uniform interface.25260

Among more general-purpose programs, Cuby26,27 is a
uniform driver and workflow manager that works with
multiple QC and force field tools. Cuby allows the
combination of methods across its interfaced programs
and provides mixed quantum mechanics / molecular me-265

chanics (QM/MM) and molecular dynamics capabilities.
The WebMO project is another that drives several QC
programs as backends from a largely unified web portal
frontend.28 Another popular tool is the Atomic Simula-
tion Environment (ASE),29 which provides a Python270

interface to more than forty QC or force field codes, along
with drivers for geometry optimization and transition
state searching with the nudged elastic band method,
and analysis and visualization functions. A recipes collec-
tion (ASR)30 supplies further spectroscopy and analysis275

tools. ASE and ASR are focused on solid-state com-
putations; while molecular computations are also pos-
sible, they do not provide the level of detail required
for the majority of quantum chemistry workflows. Com-
pared to ASE, QCDB is more focused on high-accuracy280

quantum chemistry (providing, for example, built-in sup-
port for focal-point methods). Newer entrants to the
field of computational chemistry workflow tools at the
scope of QCArchive (rather than the narrower modular
components QCEngine and QCDB discussed here) in-285

clude AiiDA,31,32 which at present is materials focused,
and ChemShell,33 which focuses on multiscale simu-
lations. By interfacing with QCArchive, QCDB can
also focus on high-throughput quantum chemistry and
on creating large databases for force field parameteriza-290

tion and machine-learning purposes. Though not focused
on running CMS codes, the cclib34,35 and HORTON36

projects also have extensive capabilities to regularize out-
put and post-processing.

We describe the modular software built to facilitate in-295

teroperability, the community QC codes, and the techni-
cal challenges associated with an interoperability project
in Sec. II. An example application demonstrating the use
of multiple QC codes to perform very high accuracy com-
putations of spectroscopic constants of some diatomic300

molecules is presented in Sec. III.

II. FEATURES & DESIGN PHILOSOPHY

Discussed are the present software projects and their
place in the CMS ecosystem in Sec. IIA, interfaced soft-
ware providing single-point energies and properties in305

Sec. II B, interfaced and built-in software providing more
complex procedures in Sec. II C, how these are all linked

by a common driver in Sec. IID, and further details about
implementing interoperability in Sec. II E.

A. QCSchema and the Quantum Chemistry Software310

Ecosystem

The modular software components in our layered ap-
proach to QC interoperability and high-throughput com-
puting are shown in Fig. 1. All are open-source projects,
and community feedback and contributions through315

GitHub are welcome (links at Sec. V; QCEngine doc-
umentation includes the general process for adding a
new QC program). The QCSchema19 definitions layer
is foundational and encodes the community-developed
data layouts and model descriptions useable in any lan-320

guage, from C++ to Rust to JavaScript to Fortran.
Above that is the QCElemental37 data and models
layer that implements QCSchema and imposes a Python
language restriction to gain sophisticated validation and
feature-rich models. Next is the QCEngine38 execu-325

tion layer that adapts CMS codes for standardized QC-
Schema communication and imposes an execution en-
vironment restriction to gain easy access to many pro-
grams. Last is the QCFractal39 batch execution and
database layer which imposes some calculation flexibility330

restrictions to gain multi-site distributed compute orches-
tration and provide structured-data storage and querying
capabilities. (This layer, beyond the scope of the present
work, addresses (O-d).) Together these compose the
QCArchive Infrastructure, the Python software335

stack that backs the MolSSI QCArchive project.17,40
Enhancing QCEngine is the QCDB41 interoperability
layer that imposes feature-registration and cross-program
defaults restrictions to gain input uniformity and multi-
program workflows.340

QCElemental37 (see Fig. 1) provides data and util-
ities (like a QCSchema implementation) useable by all
QC packages. For data, it exposes NIST periodic table
and CODATA physical constants through a lightweight
API and provides internally consistent unit conversion345

aided by the external module pint.42 QCElemental
supports multiple dataset versions for CODATA and for
properties such as covalent and van der Waals radii. Ad-
ditionally, QCElemental provides a Python reference
implementation for the MolSSI QCSchema data lay-350

outs, including Molecule (example at Snippet 2), job
input specification AtomicInput (examples at Fig. 2 (b–
d)), and job output record AtomicResult. In addition
to enforcing the basic key/value data layout inherent
to a schema, QCElemental uses the external module355

Pydantic43 to collocate physics validation, serialization
routines, extra helper functions (like Molecule parsing,
alignment, and output formatting), and schema genera-
tion into a model for the QCSchema. Historically, many
QCElemental capabilities were developed for QCDB360

in Psi4, then refactored into QCElemental for broader
community accessibility free from Psi4 and compiled-
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FIG. 1. Modular ecosystem around QCEngine and QCDB. QCEngine is the central, QCSchema-based QC program runner
in the QCArchive Infrastructure software stack, while QCDB adds additional interoperability features atop it. User
input routes to QC computations are shown as one or more turquoise boxes — “TXT” for a command-line interface, “PyAPI”
for an interactive application programming interface in Python, or “JSON” for single-command QCSchema communication
through command-line or Python.

language dependence. QCEngine and QCDB use all
the QCElemental capabilities mentioned, particularly
for QCSchema communication and for uniform treat-365

ment of fragmented, ghosted, and mixed-basis molecules
across differing QC program features.

QCEngine38 provides a uniform execution interface
whereby community CMS codes consume QCSchema
AtomicInputs and emit AtomicResults via adaptors,370

called ProgramHarnesses. Depending on the degree
of programmatic access a QC package provides, the
ProgramHarness may be simple, as for a package that
already provides a QCSchema interface; moderate, as
for a package that supports a Python API or has se-375

rialized output, be it binary, Extensible Markup Lan-
guage (XML), or JSON; or involved, as for an exe-
cutable with ASCII I/O; further details may be found
in Sec. II E 10. A typical ProgramHarness consists of
taking an AtomicInput, translating it into input file(s)380

and execution conditions, executing it, collecting all use-
ful output, parsing the results into an AtomicResult and
returning it to the user. A ProgramHarness is written
to cover analytic single-point computations, namely en-
ergies, gradients, Hessians, and properties, as discussed385

further in Sec. II B. Adaptors for more complicated ac-
tions are classified as ProcedureHarnesses and are dis-
cussed in Sec. II C. QCEngine additionally collects run-

time data such as elapsed time, the hardware architec-
ture of the host machine, memory consumption of the390

job, software environment details, and execution prove-
nance (e.g., program, version, module). As suggested by
Fig. 1, adaptors written in QCDB have been migrated to
QCEngine so that both projects access more QC codes
and share the maintenance and development burden.395

QCDB41 supplements QCEngine’s program and
procedure capabilities with interoperability-enhanced
ProgramHarnesses and multi-program procedures; fur-
ther, it links QCEngine calls into an interactive driver
interface. From the user’s viewpoint, this layered ap-400

proach to uniform QC computation is shown in Fig. 2
by an open-shell CCSD single-point energy. Running a
QC code directly, as in Fig. 2(a), requires considerable
DSL knowledge for method, basis, and keywords, not to
mention details of layout and execution; essentially only405

the geometry (black text) is uniform. By molding the
text inputs of Fig. 2(a) into the QCSchema data lay-
out Fig. 2(b), QCEngine unifies the grey-shaded fields
but still requires DSL from multiple codes. QCDB im-
poses more dependencies, like its own basis set library410

and utilities, to allow uniform basis specification and
molecule symmetry as in Fig. 2(c). By imposing key-
word registration and precedence logic, QCDB can pro-
vide the uniform and single-DSL input of Fig. 2(d). In
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practice, QCDB harnesses are minimal wrappers around415

QCEngine harnesses.

By choosing an entry point (software component in
Fig. 1) and interface (CLI, Python API, JSON), ex-
ternal projects can satisfy a number of interoperabil-
ity use cases: convention for data layout (stop af-420

ter QCSchema), molecule string parsing (stop after
QCElemental), uniform CMS execution (stop after
QCEngine), tolerant Python interface to single ven-
erable CMS code (QCDB), or multicode workflows
(QCDB).425

B. Program Capabilities

For several community codes or programs (Fig. 3 (i);
not comprehensive) capable of computing analytic en-
ergies, gradients, or Hessians, the authors have writ-
ten QCSchema adaptors for QCEngine known as430

ProgramHarnesses (Fig. 3 (ii)). The primary returns
can be full scalars or arrays, as for most QC methods, or
partial, as for dispersion corrections. So long as program
communication fits into the AtomicResult data layout,
semi-empirical and molecular mechanics programs can435

also formulate QCEngine adaptors. A summary of
interfaced codes can be seen in Table I. QCDB as-
serts greater control over codes to assure consistent out-
put values, so its capabilities are centered on CFOUR,
GAMESS, NWChem, Psi4, and select partial calcula-440

tors (Fig. 3 (iii)). Note that output harvesting capabil-
ities (results available programmatically as opposed to
text files) may lag behind those for input execution. A
test suite that ensures matching values can be extracted
from different programs has been established for both445

QCEngine and QCDB to document differing conven-
tions (e.g., canonicalization for ROHF CC, all-electron
vs. frozen-core). Uncovered incorrect values or missing
properties have been reported to the code developers for
further investigation.450

1. adcc

The interface to adcc allows for computations of ex-
cited states based on the algebraic-diagrammatic con-
struction scheme for the polarization propagator (ADC).
Several methods are available, including ADC(2),455

ADC(2)-x, and ADC(3), together with the respective
core-valence separation (CVS) and spin-flip variants.
For all aforementioned methods, excitation energies and
properties are accessible. The interface uses Psi4 to com-
pute the SCF reference state first and then calls adcc via460

its Python API. A minimum adcc v0.15.1 is required.

TABLE I. Interfaced programs in QCEngine and QCDB.
For each, availability of one or more methods for energy (E),
gradient (G), and Hessian (H) are shown, as well as collec-
tion of properties (e.g., one-electron energy or dipole) and
wavefunction quantities (e.g., number of basis functions and
orbitals). Symbols are present (3), absent (7), or inapplicable
(). Non-QC programs are not suitable for QCDB. Program
I/O is handled primarily through QCSchema API (Q), API
(A), structured XML, JSON, or binary (S), or text (T).

CMS Program QCEngine QCDB Cite I/O
E G H Prop. Wfn E G H

Quantum Chemistry
adcc 3 7 7 3 7 7 7 7 44,45 A
CFOUR 3 3 3 3 7 3 3 3 46 TS
GAMESS 3 3 7 3 7 3 3 7 47 T
Molpro 3 3 7 3 7 7 7 7 48,49 S
MRChem 3 7 7 3 7 7 7 7 50,51 S
NWChem 3 3 3 3 7 3 3 3 52 T
Psi4 3 3 3 3 3 3 3 3 53 Q
Q-Chem 3 3 3 7 7 7 7 7 54 TS
Qcore 3 3 3 7 3 7 7 7 55 S
TeraChem 3 3 7 3 7 7 7 7 56,57 Q,T
Turbomole 3 3 3 7 7 7 7 7 58,59 T
Semi-Empirical
MOPAC 3 3 7 3 7 60 T
xtb 3 3 7 3 7 61 Q
Molecular Mechanics
OpenMM 3 3 7 3 62 A
RDKit 3 3 7 3 63 A
Analytical Corrections
DFTD3 3 3 7 7 3 3 7 8,64 T
DFTD4 3 3 7 7 7 7 7 65,66 Q
gCP 3 3 7 7 7 7 7 67,68 T
MP2D 3 3 7 7 3 3 7 69,70 T
Machine Learning Inference
TorchANI 3 3 3 3 71–73 A

2. CFOUR

Many CFOUR features are available to both
QCEngine and QCDB, including most ground-state
many-body perturbation theory and coupled-cluster en-465

ergies, gradients, and Hessians: Hartree–Fock, MP2,
MP3, MP4, CCSD, CCSD(T) with RHF, UHF, and
ROHF references. Excited states are available for run-
ning but not parsing. Special features include CC with
quadruple excitations through the NCC module, the abil-470

ity to compute the diagonal Born–Oppenheimer correc-
tion using coupled-cluster theory, and, after revision,
second-order vibrational perturbation theory (VPT2),
see Sec. II C 6. The interface generates text input and
collects mixed text and binary output. A minimum475

CFOUR v2.0 is required.

3. GAMESS

The GAMESS interface for QCEngine and QCDB
provides Hartree–Fock, DFT, MP2, and coupled-cluster
methods. Special features include full configuration480

interaction. In future, the GAMESS interface will
also provides effective fragment potential (EFP) capa-
bility through potential file generation (see Sec. II C 7)
and running pure EFP calculations on molecular clus-



7

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cfour	
  
>	
  qcengine	
  run	
  gamess	
  json	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  nwchem	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  psi4

PSI4
CCCC|‹ ‹

SILOS: UNIFIED THEORY, DISJOINTED PRACTICE
geometry	
  units	
  bohr	
  
N	
  	
  0.000	
  	
  0.000	
  -­‐0.146	
  
H	
  	
  0.000	
  -­‐1.511	
  	
  1.014	
  
H	
  	
  0.000	
  	
  1.511	
  	
  1.014	
  
end	
  
charge	
  0	
  
basis	
  spherical	
  
	
  	
  h	
  library	
  aug-­‐cc-­‐pvdz	
  
	
  	
  n	
  library	
  aug-­‐cc-­‐pvdz	
  
end	
  
scf	
  
	
  	
  rohf	
  
	
  	
  nopen	
  1	
  
end	
  
tce	
  
	
  	
  ccsd	
  
end	
  
task	
  tce	
  energy

comment	
  
N	
  	
  0.000	
  	
  0.000	
  -­‐0.146	
  
H	
  	
  0.000	
  -­‐1.511	
  	
  1.014	
  
H	
  	
  0.000	
  	
  1.511	
  	
  1.014	
  

*CFOUR(REFERENCE=ROHF	
  
CALC_LEVEL=CCSD,BASIS=AUG-­‐PVDZ	
  
CHARGE=0,MULTIPLICITY=2	
  
COORDINATES=CARTESIAN,UNITS=BOHR)

molecule	
  {	
  
0	
  2	
  
N	
  	
  0.000	
  	
  0.000	
  -­‐0.146	
  
H	
  	
  0.000	
  -­‐1.511	
  	
  1.014	
  
H	
  	
  0.000	
  	
  1.511	
  	
  1.014	
  
units	
  au	
  
}	
  

set	
  reference	
  rohf	
  

energy('ccsd/aug-­‐cc-­‐pvdz')

$ccinp	
  ncore=0	
  $end	
  
$basis	
  gbasis=accd	
  $end	
  
$contrl	
  cctyp=ccsd	
  coord=prinaxis	
  
	
  icharg=0	
  ispher=1	
  mult=2	
  
	
  runtyp=energy	
  scftyp=rohf	
  
	
  units=bohr	
  $end	
  
$data	
  

C1	
  
N	
  7	
  	
  0.000	
  	
  0.000	
  -­‐0.146	
  
H	
  1	
  	
  0.000	
  -­‐1.511	
  	
  1.014	
  
H	
  1	
  	
  0.000	
  	
  1.511	
  	
  1.014	
  
$end

>	
  cp	
  infile	
  .	
  &&	
  xcfour	
  	
  	
  	
  	
  	
  	
  	
  >	
  outfile	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  rungms	
  infile	
  >	
  outfile	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  nwchem	
  infile	
  >	
  outfile	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  psi4	
  	
  	
  infile	
  	
  	
  outfile

PTXT

(a)

EXECUTION

all-electron restricted-open-shell CCSD/aug-cc-pVDZ energy of  NH2 molecule

{	
  
	
  	
  'molecule':	
  	
  	
  	
  	
  ,	
  
	
  	
  'driver':	
  'energy',	
  
	
  	
  'model':	
  {	
  
	
  	
  	
  	
  'method':	
  'ccsd',	
  
	
  	
  	
  	
  'basis':	
  'aug-­‐cc-­‐pvdz'},	
  
	
  	
  'keywords':	
  {	
  
	
  	
  	
  	
  'basis__spherical':	
  True,	
  
	
  	
  	
  	
  'scf__rohf':	
  True,	
  
	
  	
  	
  	
  'qc_module':	
  'tce'},	
  
}

{	
  
	
  	
  'molecule':	
  	
  	
  	
  	
  ,	
  
	
  	
  'driver':	
  'energy',	
  
	
  	
  'model':	
  {	
  
	
  	
  	
  	
  'method':	
  'ccsd',	
  
	
  	
  	
  	
  'basis':	
  'aug-­‐pvdz'},	
  
	
  	
  'keywords':	
  {	
  
	
  	
  	
  	
  'reference':	
  'rohf'},	
  
}

{	
  
	
  	
  'molecule':	
  	
  	
  	
  	
  ,	
  
	
  	
  'driver':	
  'energy',	
  
	
  	
  'model':	
  {	
  
	
  	
  	
  	
  'method':	
  'ccsd',	
  
	
  	
  	
  	
  'basis':	
  'aug-­‐cc-­‐pvdz'},	
  
	
  	
  'keywords':	
  {	
  
	
  	
  	
  	
  'reference':	
  'rohf'},	
  
}

{	
  
	
  	
  'molecule':	
  	
  	
  	
  	
  ,	
  
	
  	
  'driver':	
  'energy',	
  
	
  	
  'model':	
  {	
  
	
  	
  	
  	
  'method':	
  'ccsd',	
  
	
  	
  	
  	
  'basis':	
  'accd'},	
  
	
  	
  'keywords':	
  {	
  
	
  	
  	
  	
  'contrl__ispher':	
  1,	
  
	
  	
  	
  	
  'contrl__scftyp':	
  'rohf',	
  
	
  	
  	
  	
  'ccinp__ncore':	
  0},	
  
}

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  'cfour'	
  
ene	
  =	
  qcng.compute(json,	
  'gamess')	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  'nwchem'	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  'psi4'

QCENGINE: UNIFIED MOLECULE, METHOD, & EXECUTION(b)

PJSON

{	
  
	
  	
  'molecule':	
  	
  	
  	
  	
  ,	
  
	
  	
  'driver':	
  'energy',	
  
	
  	
  'model':	
  {	
  
	
  	
  	
  	
  'method':	
  'ccsd',	
  
	
  	
  	
  	
  'basis':	
  'aug-­‐cc-­‐pvdz'},	
  
	
  	
  'keywords':	
  {	
  
	
  	
  	
  	
  'nwchem_scf__rohf':	
  True,	
  
	
  	
  	
  	
  'qc_module':	
  'tce'},	
  
}

{	
  
	
  	
  'molecule':	
  	
  	
  	
  	
  ,	
  
	
  	
  'driver':	
  'energy',	
  
	
  	
  'model':	
  {	
  
	
  	
  	
  	
  'method':	
  'ccsd',	
  
	
  	
  	
  	
  'basis':	
  'aug-­‐cc-­‐pvdz'},	
  
	
  	
  'keywords':	
  {	
  
	
  	
  	
  	
  'cfour_reference':	
  'rohf'},	
  
}

{	
  
	
  	
  'molecule':	
  	
  	
  	
  	
  ,	
  
	
  	
  'driver':	
  'energy',	
  
	
  	
  'model':	
  {	
  
	
  	
  	
  	
  'method':	
  'ccsd',	
  
	
  	
  	
  	
  'basis':	
  'aug-­‐cc-­‐pvdz'},	
  
	
  	
  'keywords':	
  {	
  
	
  	
  	
  	
  'psi4_reference':	
  'rohf'},	
  
}

{	
  
	
  	
  'molecule':	
  	
  	
  	
  	
  ,	
  
	
  	
  'driver':	
  'energy',	
  
	
  	
  'model':	
  {	
  
	
  	
  	
  	
  'method':	
  'ccsd',	
  
	
  	
  	
  	
  'basis':	
  'aug-­‐cc-­‐pvdz'},	
  
	
  	
  'keywords':	
  {	
  
	
  	
  	
  	
  'gamess_contrl__scftyp':'rohf',	
  
	
  	
  	
  	
  'gamess_ccinp__ncore':	
  0},	
  
}

QCDB: +UNIFIED BASIS(c)

{	
  
	
  	
  'molecule':	
  	
  	
  	
  	
  ,	
  
	
  	
  'driver':	
  'energy',	
  
	
  	
  'model':	
  {	
  
	
  	
  	
  	
  'method':	
  'ccsd',	
  
	
  	
  	
  	
  'basis':	
  'aug-­‐cc-­‐pvdz'},	
  
	
  	
  'keywords':	
  {	
  
	
  	
  	
  	
  'reference':	
  'rohf',	
  
	
  	
  	
  	
  'freeze_core':	
  False},	
  
}

{	
  
	
  	
  'molecule':	
  	
  	
  	
  	
  ,	
  
	
  	
  'driver':	
  'energy',	
  
	
  	
  'model':	
  {	
  
	
  	
  	
  	
  'method':	
  'ccsd',	
  
	
  	
  	
  	
  'basis':	
  'aug-­‐cc-­‐pvdz'},	
  
	
  	
  'keywords':	
  {	
  
	
  	
  	
  	
  'reference':	
  'rohf',	
  
	
  	
  	
  	
  'freeze_core':	
  False},	
  
}

{	
  
	
  	
  'molecule':	
  	
  	
  	
  	
  ,	
  
	
  	
  'driver':	
  'energy',	
  
	
  	
  'model':	
  {	
  
	
  	
  	
  	
  'method':	
  'ccsd',	
  
	
  	
  	
  	
  'basis':	
  'aug-­‐cc-­‐pvdz'},	
  
	
  	
  'keywords':	
  {	
  
	
  	
  	
  	
  'reference':	
  'rohf',	
  
	
  	
  	
  	
  'freeze_core':	
  False},	
  
}

{	
  
	
  	
  'molecule':	
  	
  	
  	
  	
  ,	
  
	
  	
  'driver':	
  'energy',	
  
	
  	
  'model':	
  {	
  
	
  	
  	
  	
  'method':	
  'ccsd',	
  
	
  	
  	
  	
  'basis':	
  'aug-­‐cc-­‐pvdz'},	
  
	
  	
  'keywords':	
  {	
  
	
  	
  	
  	
  'reference':	
  'rohf',	
  
	
  	
  	
  	
  'freeze_core':	
  False},	
  
} 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  c4	
  

ene	
  =	
  qcdb.energy('gms-­‐ccsd/aug-­‐cc-­‐pvdz')	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  nwc	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  p4

QCDB: +UNIFIED KEYWORDS(d)
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  'cfour'	
  
ene	
  =	
  qcdb.compute(json,	
  'gamess')	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  'nwchem'	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  'psi4'

PJSON

PPyAPI

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  c4	
  
ene	
  =	
  qcdb.energy('gms-­‐ccsd/aug-­‐cc-­‐pvdz')	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  nwc	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  p4

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  'cfour'	
  
ene	
  =	
  qcdb.compute(json,	
  'gamess')	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  'nwchem'	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  'psi4'

PJSON

PPyAPI

like (c)

like (d)

FIG. 2. Degrees of unifying access to quantum chemical calculations illustrated through an open-shell CCSD energy compu-
tation. Black text or grey shading are aspects not requiring user knowledge of multiple DSLs. See penultimate paragraph of
Sec. IIA for discussion.
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tail called by head

C

Fortran

Python

C++

PSI4

CCCC|‹ ‹
DFTD3

QCNG 
GAMESS 

HARNESS

QCNG 
NWChem 

HARNESS

QCNG 
PSI4 

HARNESS

QCNG 
DFTD3 
HARNESS

QCNG 
CFOUR 
HARNESS

QCDB 
DFTD3 
HARNESS

QCDB 
CFOUR 
HARNESS

QCDB 
GAMESS 

HARNESS

QCDB 
NWChem 

HARNESS

QCDB 
PSI4 

HARNESS

frequency() 
DRIVER FN

optimize() 
DRIVER FN

hessian() 
DRIVER FN

gradient() 
DRIVER FN

QCDB 
OptKing 

HARNESS

QCNG 
OptKing 

HARNESS

QCDB 
geomeTRIC 

HARNESS*

QCNG 
geomeTRIC 

HARNESS

QCDB 
resp 

HARNESS*

QCDB 
vpt2 

HARNESS*

QCDB 
manybody 

HARNESS

QCDB 
vib 

HARNESS

QCDB 
finitedifference 

HARNESS*

QCDB 
makefp 
HARNESS*

QCDB 
composite 

HARNESS

QCDB 
diatomic 

HARNESS

QCEngine 
PROGRAMS

QCDB 
PROGRAMS

QCEngine 
PROCEDURES

QCDB 
PROCEDURES

property() 
DRIVER FN*

QCDB 
DRIVER

(a)

(b) (c,d)

COMMUNITY CMS CODES

PROCEDURE HARNESSES 
multi-job, multi-step, generic

PO
ST

-P
RO

CE
SS

IN
G

PR
O

G
RA

M
 E

XT
EN

SI
O

N
S

G
EO

M
ET

RY
 O

PT
'Z

ER
S

M
UL

TI
-J

O
B 

D
RI

VE
RS

vpt2() 
DRIVER FN*

resp() 
DRIVER FN*

diatomic() 
DRIVER FN

PROGRAM HARNESSES 
energy, gradient, Hessian, property

energy() 
DRIVER FN

USER API

(i)

(ii) (iii)

(v)

(vi)

(iv)

UPSTREAM

DOWNSTREAM

. . . among others . . .

FIG. 3. Layout and access pattern between selected existing and planned (marked by *) community quantum chemistry
codes, QCEngine, and QCDB. Community codes (i) in a variety of languages are wrapped in QCSchema input/output by
a QCEngine harness (ii, iv), which may be light (if the code has an API or structured output) or heavy (if only text output
available). The QCDB harnesses (iii, v) add unifying and ease-of-use layers atop the QCEngine calls. Whereas analytic
energies and derivatives are classified as programs (ii, iii) and call QC codes directly, multi-stage and post-processing jobs are
written as procedures (iv, v) for composability and distributability and call programs in turn. The QCDB driver provides API
access to both sets. The (a), (b), (c, d) labels correspond to the stages of unified input in Fig. 2.
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ters, energy("gms-efp"). A particular complication for485

GAMESS is the controlled molecule and custom ba-
sis syntax, which led to QCDB feeding only symmetry-
unique atoms and their full basis sets into the GAMESS
input file. As QCEngine does not have symmetry ca-
pabilities, QCEngine-based GAMESS calculations are490

restricted to C1. The interface generates text input and
collects text output. The harness has been tested with
the GAMESS 2017 R1 version.

4. Molpro

Energies and gradients are available in QCEngine495

from Hartree–Fock, DFT, MP2, CCSD, and CCSD(T)
levels of theory, including some local methods. The in-
terface generates text input and collects XML output. A
minimum Molpro v2018.1 is required.

5. MRChem500

Thanks to a harness to the MRChem software pack-
age, quasi-exact energies and selected properties in the
multiwavelet, multiresolution basis are available with
QCEngine. MRChem provides an efficient imple-
mentation for Hartree–Fock and DFT. Electric dipoles,505

quadrupoles, static and frequency-dependent polariz-
abilities, magnetizabilities, and NMR shielding con-
stants are available. At variance with GTO-based
quantum chemical software packages, the basis used in
MRChem is adaptively refined: thanks to the multi-510

wavelet framework, these results are exact to within the
user-requested precision.74 As a practical consequence,
only the method keyword is required to define an in-
put model to MRChem. JSON files are used to han-
dle communication between QCEngine and MRChem.515

The harness can leverage the hybrid MPI/OpenMP par-
allelization of MRChem, provided suitable resources are
available. At minimum MRChem v1.0.0 is required.

6. NWChem

The NWChem interface for QCEngine and QCDB520

provides a large selection of the quantum mechanical
methods available, including Hartree–Fock, DFT, MP2,
and coupled-cluster methods (both the code automati-
cally derived and implemented with the Tensor Contrac-
tion Engine75 (TCE) and the hand-coded implementa-525

tions, where available). Additional calculations available
in the TCE include configuration interaction through sin-
gle, doubles, triples, and quadruples level of theory and
MBPT methods through the fourth order. Special fea-
tures include CCSDTQ energies, excited states through530

equation of motion (EOM) coupled-cluster energies, and
relativistic approximations. The interface generates text

input and collects text output. The harness has been
tested with NWChem v6.6 and v6.8.

7. Psi4535

Essentially all Psi4 features are available to
QCEngine and QCDB, as Psi4 communicates
natively in QCSchema (psi4 --qcschema in.json)
and QCDB began as the Psi4 driver. These include
conventional and density-fitted Hartree–Fock, DFT,540

MP2, and coupled-cluster methods. Special features are
symmetry-adapted perturbation theory, coupled-cluster
response properties, density-fitted CCSD(T) gradients,
and optimized-orbital MP2, MP2.5, and MP3 energies
and gradients. Wavefunction information is returned545

in QCSchema format. The interface generates JSON
(QCSchema) input and collects JSON output. A
minimum Psi4 v1.3 is required for QCEngine and v1.4
for QCDB.

8. Q-Chem550

Energies, gradients, Hessians, and some properties are
available in QCEngine at the SCF (Hartree–Fock and
tens of DFT functionals) and MP2 levels (both conven-
tional and density-fitted). The interface generates text
input and collects mixed text and binary output. A min-555

imum Q-Chem v5.1 is required.

9. Qcore

Energies, gradients, and Hessians are available in
QCEngine from Hartree–Fock, DFT, and extended
tight-binding (xTB). Qcore along with Psi4 are the two560

programs which can return wavefunction information in
QCSchema. The interface generates JSON input and
collects JSON output. A minimum of Qcore v0.7.1 is
required.

10. TeraChem565

TeraChem features two modes for driving computa-
tions via QCEngine: a standard text interface and a
typed Protocol Buffers76 interface. The former generates
text input and collects text output to provide energies
and gradients from Hartree–Fock and DFT levels of the-570

ory. A minimum TeraChem v1.5 is required.
TeraChem’s Protocol Buffers Server (TCPB)57 in-

terface offers a second way to drive computations us-
ing QCEngine. It provides energies and gradients from
Hartree–Fock and DFT levels of theory, molecular prop-575

erties including dipoles, charges, and spins, and limited
wavefunction data including alpha- and beta-spin or-
bitals and orbital occupations. The TCPB interface also
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accelerates calculations by performing GPU initialization
routines once at server startup. As a result, subsequent580

computations can begin instantaneously, thereby provid-
ing substantial speed-up for small systems (∼10 heavy
atoms) and minor speed-up for medium systems (∼100
atoms).77 The TCPB interface requires the installation of
an additional Python package tcpb78 minimum v0.7.0 to585

power the QCEngine integration. Subsequent updates
to the tcpb package will expand the set of properties
and wavefunction data available from TeraChem via
QCEngine.

11. Turbomole590

Energies, gradients, and Hessians are available in
QCEngine for Hartree–Fock, many DFT functionals,
and density-fitted MP2, MP3, MP4, and CC2. Turbo-
mole’s interactive define function for processing input
proved an extra challenge to integrate with QCSchema.595

The interface generates interactive text input and collects
text output. The harness has been tested with Turbo-
mole v7.3 and v7.4.

12. xtb

The interface uses the Python API of xtb, which600

provides QCSchema support, to generate JSON (QC-
Schema) input and collect JSON output. A minimum
of xtb v6.3 is required.

13. dftd3 & dftd4

A Python API to Grimme’s dftd3 executable for com-605

puting variants of -D2 and -D3 for arbitrary QCSchema
Molecule with automatic or custom parameter sets has
been available in Psi4 for several years.8,79,80 This has
been adapted as a ProgramHarness for QCEngine and
QCDB. The interface generates text input and collects610

text output. A minimum of dftd3 v3.2.1 is required.
For the separate dftd4 software, the interface uses

the Python API, which provides QCSchema support,
to generate JSON (QCSchema) input and collect JSON
output. A minimum of dftd4 v3.1 is required.615

14. gCP

Energies and gradients are available for the geomet-
rical counterpoise correction gCP program developed
by Kruse and Grimme that corrects the inter- and in-
tramolecular basis set superposition error in Hartree–620

Fock and DFT calculations.68 It also offers the gCP-part
of the “3c” correction used in composite methods like HF-
3c or PBEh-3c.81 The interface generates text input and

collects text output. The harness was tested with gCP
v2.02.625

C. Procedure Capabilities

Whenever a quantum chemistry work sequence takes
in QC-program-agnostic energies, gradients, Hessians,
or properties (i.e., AtomicResults) but requires multi-
ple ones (e.g., a finite difference derivative) or needs630

additional software (e.g., EFP potentials or symmetry-
adapted linear combination (SALC) coordinates), or
needs to take action in multiple stages (e.g., a geometry
optimizer), or could combine AtomicResults from differ-
ent programs (e.g., a composite method), it is classified635

in QCEngine or QCDB as a procedure (see Fig. 3 (iv,
v)). Procedures are implemented in a ProcedureHarness
to facilitate modularity and address O-c. Because pro-
cedures act upon generalized quantities, any code inter-
faced with QCEngine or QCDB gets all of the appli-640

cable procedures “for free.” Together, programs and pro-
cedures are elements that can be composed into work-
flows both simple (e.g., opt+freq+vib) or complex as in
Sec. III.

Presently available in QCEngine are the geomeT-645

RIC, PyBerny, and (Python) OptKing geometry op-
timizers, the first of which has been used extensively
(380k+ optimizations) by the Open Force Field82 com-
munity. Presently available or anticipated (*) for QCDB
are the Composite, FiniteDifference,* ManyBody,650

diatomic and vib routines inherited from the Psi4 recur-
sive driver.14 The Psi4 OptKing geometry optimizer,
written in C++, has been redeveloped in Python as
a more versatile tool for future development and with
the independence suitable for QCDB, while resp* and655

CrystaLattE* have been expanded from Psi4 to work
with QCDB. Procedures makefp* and vpt2* make use
of specially extractable features from GAMESS and
CFOUR, respectively, and require installation of the
parent code. Similarly, findif retains for the short term660

a dependence on Psi4. Note that the full capabilities
from proven software components that were once or are
presently partially or fully interfaced are in the proce-
dure descriptions below. Procedures in QCEngine and
QCDB have passed through the proof-of-principle stage665

and are presently being reworked and expanded into the
below forms; current availability is limited.

1. geometry optimizers

To be used by QCEngine or QCDB, a geometry
optimizer must be able to take an input geometry in670

Cartesian coordinates and to take an arbitrarily sourced
gradient and produce a next-candidate geometry dis-
placement rather than be in control of both gradient and
geometry-step stages. Regrettably, this eliminates most
optimizers embedded in QC programs. Some alternatives675
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are Wang’s geomeTRIC project,83,84 which uses the
TRIC coordinate system to specialize in interfragment
and constrained optimizations, King’s OptKing,85
which is a conventional IRC- and TS-capable QC opti-
mizer, and Hermann’s PyBerny,86 also a QC-focused680

optimizer. OptKing can apply flexible convergence
criteria including those related to energy change and
the maximum or root-mean-square of the gradient or
displacement, and it has the most common settings for
many embedded/native optimizers conveniently acces-685

sible as keywords. QCEngine presently has available
geomeTRIC, PyBerny, and the Python OptKing,
while QCDB only has the original C++ OptKing. Af-
ter a planned driver update, all three Python optimizers
will work with QCEngine and hence with QCDB. All690

optimizers communicate through schema, in particular
a QCSchema OptimizationInput that contains an
ordinary AtomicInput as template for the gradient
engine. Optimizations are called through QCEngine
using qcng.compute_procedure({"input_molecule":695

..., "keywords": {"program": "gamess"},
"input_specification": {"model": {"method":
"mp2", "basis": "6-31G"}}}, "geometric")
or qcdb.optking("gms-mp2/6-31G"), where
the latter can take as model chemistry any700

sensible combination of other procedures
(i.e., qcdb.optking("gms-mp2/[23]zapa-nr",
bsse_type="cp")).

2. vib: harmonic vibrational analysis

The harmonic vibrational analysis routine is automat-705

ically run after any qcdb.frequency() computation.87
Taking in a Hessian matrix, the molecule, basis set in-
formation, and optional dipole derivatives, vib() per-
forms the usual solution of whole or partial Hessians into
normal modes and frequencies, reduced masses, turn-710

ing points, infrared intensities, all returned in schema.
Other features include rotation-translation space projec-
tion, isotopic substitution analysis, Molden output, and
a full thermochemical report incorporating the best fea-
tures of several QC programs’ vibrational output.715

3. FiniteDifference: derivatives

As QCEngine and QCDB are focused on interfac-
ing QC programs’ analytic quantum chemical methods
or unique features, user calls for non-analytic derivatives
in QCDB are by default routed through the finite differ-720

ence procedure.87 This procedure (originally from Psi4)
performs 3- or 5-point stencils for gradients and Hessians
(full or partial), communicates through schema, and is
parallelism-ready. The alternative of letting the inter-
nal finite difference of a QC program run, then parsing725

output files for multiple energies or gradients has been
implemented in some cases, but this is not preferred (nor

for internal geometry optimization).

4. Composite: composite method and basis extrapolation
treatments730

Whenever an additive model chemistry is designated
which involves differences of method (i.e., a focal point
analysis or “delta” correction), basis (i.e., a complete ba-
sis set (CBS) extrapolation), keywords (e.g., all-electron
minus frozen-core), or any combination thereof, the735

Composite procedure can encode it. Here, one can mix
QC programs to perform conventional coupled cluster
with CFOUR and DF-MP2 with Psi4, for example. Im-
plementing new basis extrapolation formulae is simple,
and it works on gradients and Hessians, as well as ener-740

gies. If a subsidiary method energy can be obtained in
the course of a target method, the procedure will recog-
nize and avoid the unnecessary calculation (thus a TQ
MP2 correlation energy extrapolation atop a DTQ HF
energy will do 3, not 5, jobs). Input specification can be745

through API, schema, or strings (a user-friendly example
is in the final paragraph of Sec. II E 5). All Composite
communication is through schema, and the procedure is
parallelism-ready.

5. ManyBody: fragmentation and many-body approaches750

All fragmentation and basis set superposition error
(BSSE) treatments are collected into the ManyBody wrap-
per for many-body expansion (MBE) inherited from
Psi4. The fragmentation pattern known from the QC-
Schema Molecule is applied to determine the degree755

of decomposition into monomers, dimers, etc., up to
the full molecule, or the user can set the max_nbody
level. Total quantities (energy, gradient, or Hessian)
and interaction quantities are accessible through uncoun-
terpoise (noCP), couterpoise (CP), and Valiron–Mayer760

functional counterpoise (VMFC) schemes.9,88,89 Geome-
try optimization with many-body-adapted quantities is
also available. The wrapper can act on uniform single-
method quantities or apply different model chemistries
to each expansion level or interface with Composite or765

FiniteDifference results or both. All ManyBody com-
munication is through schema, and the procedure is
parallelism-ready.

6. vpt2: anharmonic vibrational analysis

Anharmonic vibrational analysis has long been a fea-770

ture of CFOUR. It requires a high-quality harmonic fre-
quency procedure as input. It then performs further
Hessian computations at geometry displacements along
the normal coordinates. These are then combined into
a third-order and partial fourth-order potential followed775

by vibrational analysis. Though many analytic Hessians
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are available in CFOUR itself, the qcdb.vpt2() proce-
dure focuses on the formulation through analytic gradi-
ents, as being suited to distributed computing and gener-
alization to program-generic gradients. Thus, CFOUR780

is a helper program that, with the QCDB procedure,
can perform anharmonic analyses of, for example, CCSD
(from CFOUR gradients called through QCDB), DFT
(from another QC program’s gradients), or CBS (that
produces a generalized gradient). All qcdb.vpt2() com-785

munication is through schema, and the procedure is
parallelism-ready.

A complication is the vpt2() procedure is essentially
a series of invocations of CFOUR subcommands like
xcubic, which expect files in native JOBARC form with790

energies, dipoles, and gradients. To accommodate this,
QCDB uses Python modules to write imitations of the
native files in string representations of binary form, which
is lossless. So a Psi4 DFT gradient is represented as a
JOBARC to pass through the CFOUR mechanisms.795

7. makefp: EFP library generation

The two engines for computing EFP interactions,
LibEFP90,91 and GAMESS,47 use the same parameter
file for storing the EFP potential at a given basis set and
monomer geometry. Only GAMESS can generate that800

file, and the routine has been wrapped by QCDB for
access through qcdb.makefp(). The resulting .efp file
contents are returned in the QCSchema output and so
are available for writing to a personal library or to feed to
subsequent qcdb.energy("gms-efp") (or "lefp-efp"805

or "p4-efp") calls to determine non-covalent interactions
between EFP fragments. Certain EFP integrations await
expansion of QCSchema Molecule.

8. diatomic: spectroscopic constants

The electronic potential analysis for diatomic810

molecules has long been encoded in Psi4 as a post-
processing procedure from a list of electronic energies
along the interatomic coordinate. This has been
reworked as a procedure and is demonstrated in Sec. III.

9. resp: charge fitting815

The restrained electrostatic potential (RESP) charge
model92 is obtained by an iterative fitting of the electro-
static potential emerging from QC calculations on one
or several conformers of a molecule to a classical point-
charge potential. An existing RESP plugin93,94 drives820

the property calculations with Psi4, and this has been
expanded to alternately draw from GAMESS using the
QCDB API.

10. CrystaLattE: crystal lattice energies

The process of estimating the lattice energy of a molec-825

ular monocrystal via the many-body expansion is en-
coded in the CrystaLattE software.95,96 Starting with
extracting a subsample from a cif file, the program han-
dles fragmentation into dimers, trimers, etc., identifies
unique N -mers, prepares QC inputs, and keeps track830

of many-body results into final quantities. Though the
thousands of component calculations mean that it will
only become practical after QCDB upgrades to the dis-
tributed driver (see Sec. IID), CrystaLattE is ready to
be integrated in serial mode in QCDB.835

D. QCDB Common Driver

The driver component of QCDB (Fig. 3 (vi))
is the fairly lightweight coordinator code that (1)
facilitates the interactive API of set_molecule,
set_keywords, energy("nwc-b3lyp/6-31g*"),840

print(variable("b3lyp dipole")) rather than
communicating through QCSchema; (2) imposes
cross-QC-program suggestions like tightening conver-
gence for higher derivatives or for finite difference;
and (3) weaves together procedures and programs so845

that optimize("mp6") commences finite difference
or energy("ccsd/cc-pv[tq]z", bsse_type="vmfc")
runs ManyBody, Composite, and program harnesses in
the right sequence. The driver is primarily concerned
with processing user-friendly input (“User API” in850

Fig. 3 (vi)) into QCSchema as directly as possible and
then routing it into a program harness (Fig. 3 (iii) for
analytic single-points) or through procedures (Fig. 3 (v))
on their way to program harnesses (e.g., for Composite,
FiniteDifference) or through procedures after pro-855

gram harnesses (e.g., for resp(), vib()). In order to
make good use of the QCDB common driver, a QC pro-
gram must register capabilities and information. These
include the available analytic methods (for appropriate
use of finite difference), insider best-practice options860

from the program’s developers (see Sec. II E 9), and all
keywords and their defaults (for flexible and informative
keyword validation through Python).

The common driver is based upon the Psi4 v1.0 recur-
sive driver described in Ref. 14 that unifies many complex865

treatments (e.g., MBE and CBS) into a few user-facing
functions that focus on what, not how. After polish-
ing in Psi4 v1.5, a new distributed driver with the same
interface but tuned to QCSchema communication and
embarrassingly parallel execution through QCArchive870

Infrastructure will be substituted. See Sec. IV and
Fig. 2 of Ref. 53 or details.
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E. Technical Aspects to Interoperability

Details of specifying and running QC computations,
particularly arbitrating the expression of QCSchema by875

QCEngine and QCDB, are collected below. Readers
who prefer a software overview should proceed to Sec. III.
Symbols like (I-b) mark strategies for overcoming or uni-
fying the expertise barriers to using QC programs enu-
merated in the initial paragraphs of Sec. I.880

1. Memory

User specification of memory resources is managed
by QCEngine and is outside the QCSchema. By
default, the job is given all of the compute node’s
memory (less some buffer). If user-specified, input885

units are in GiB, e.g., qcdb or qcng.compute(...,
local_options={"memory": 10}) (I-b). In either
case, the memory quantity is translated into DSL
keyword names like memory_size and mem_unit for
CFOUR. Because QCEngine exercises total control890

over memory, any specification misplaced as a key-
word into QCSchema is ignored and overwritten in
QCEngine or raises an error if conflicting in QCDB.
An exception is cases like NWChem, where aggregated
memory is managed by QCEngine but distribution be-895

tween heap, stack, and global is editable through key-
words (e.g., memory__total or memory__stack).

2. Disk

The working directory and execution environment are
also governed by QCEngine, and user modifications are900

outside QCSchema. Each job is run in a quarantined
scratch directory created for it and populated by input
and any auxiliary files. Execution occurs through Python
subprocess (or less often through Python API). Output
files and any program-specific files in text or binary for-905

mat (including the generated input) are collected and
returned in QCSchema fields before scratch directory
deletion (I-e).

3. Parallelism

The execution flags or environment variables that910

control CMS program parallelism and their single- or
multi-node capabilities are built into their respective
QCEngine harnesses. A job gets the full single-node
resources (max cores and near-max memory) assigned to
it by default; multinode execution (only for NWChem915

at present) requires explicit specification. Assigning in-
stead an optimal portion of the full resources on the
basis of method and memory could be implemented
in a harness, but none presently do. User specifica-
tion of parallelism is managed by QCEngine and is920

outside QCSchema (e.g., qcdb or qcng.compute(...,
local_options={"ncores": 4})) (I-e).

4. Molecule Specification

Molecule specification is the most important aspect
that QCEngine and QCDB control via QCSchema925

to the exclusion of a program’s DSL. The QCSchema
Molecule can store mass, isotope, charge/multiplicity,
fragmentation, ghostedness, and connectivity informa-
tion (and more), along with the basic element and Carte-
sian geometry data (I-d). All quantities are stored in amu930

or Bohr to avoid imprecision from multiple unit conver-
sions through different revisions of physical constants.

Initializing a molecule can occur through a variety of
string formats (of Cartesian coordinates) or directly by
arrays. Extensive validation and application of physics-935

based defaults follows such that string Snippet 1 be-
comes (Ref. 97 for details) the schema Snippet 2. In the
QCDB API, molecules can additionally be specified via
Z-matrix, mixed Cartesian/Z-matrix, and with variable
and deferred coordinates. QCSchema Molecule holds940

almost all data relevant to molecular system specification
in QC, including EFP fragments, which are parseable
without additional software and are stored in a secondary
object. Items that appear in the molecule specification
sections of some programs but do not fit in QCSchema945

Molecule, such as the stars signaling optimizable inter-
nal coordinates in CFOUR, reside in an extras section.
(EFP and extras are future extensions.)

O 0 0 0
H 2 0 0
--
@22Ne 5 0 0
units bohr

Snippet 1: A string molecule input with complicating
mass number, fragments, and implicit multiplicity.
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{"atom_labels": ["", "", ""],
"atomic_numbers": [ 8, 1, 10],
"fix_com": False,
"fix_orientation": False,
"fragment_charges": [0.0, 0.0],
"fragment_multiplicities": [2, 1],
"fragments": [[0, 1], [2]],
"geometry": [[0., 0., 0.],

[2., 0., 0.],
[5., 0., 0.]],

"mass_numbers": [16, 1, 22],
"masses": [15.99491462, 1.00782503, 21.99138511],
"molecular_charge": 0.0,
"molecular_multiplicity": 2,
"name": "HNeO",
"provenance": {"creator": "QCElemental",

"routine": "qcelemental.molparse.from_schema",
"version": "v0.8.0"},

"real": [ True, True, False],
"schema_name": "qcschema_molecule",
"schema_version": 2,
"symbols": ["O", "H", "Ne"],
"validated": True}

Snippet 2: QCSchema Molecule from Snippet 1.
Translation described at Ref. 97.

Like memory or other aspects monopolized by QC-
Schema, user specification of the molecule in the DSL950

through keywords (e.g., scf__nopen in NWChem or
contrl__icharg in GAMESS) is ignored and overwrit-
ten in QCEngine or raises an error if inconsistent in
QCDB.

A requirement for combining vector data from multi-955

ple jobs is that the data be in a common frame of ref-
erence. Though each QC program has a standard in-
ternal orientation, these can be different between pro-
grams or between input specifications, and not all pro-
grams can return quantities in an arbitrary input frame960

and atom ordering. To smooth over inconsistent capa-
bilities, the input geometry and the output geometry are
both collected from output data, and an aligner com-
putes the displacement, rotation matrix, and atom map-
ping needed to transform between them. Then, any vec-965

tor results have the appropriate transformations applied
so that all results in AtomicResult are in input orienta-
tion (O-a). This occurs for both QCEngine and QCDB
when the Molecule fields fix_com and fix_orientation
are True. (Here, “fix” is used in the “fasten” sense, not970

the “repair” sense.) When False, QCEngine returns
in program native frame, while QCDB returns in Psi4
native frame.

5. Methods

Perhaps the most compelling element of QCSchema975

is the ability to request methods by a single string
rather than piecemeal (e.g., "blyp-d3(bj)", "mp2",
"cis" in place of {"method": "blyp", "dft_d":
"d3_bj"}, {"mplevl": 2}, {"calclevel": "hf",
"excite": "cis"}), thereby closely tying results to the980

model section (with subfields method and basis) of the
data layout (barring algorithm, space, auxiliary basis
set choices). As far as possible, all method specifica-
tion and no extraneous information is consolidated into
the atomicinput.model.method field. This is the pri-985

mary translation effort of each QCEngine harness, as
shown by the uniformity of the field in Fig. 2(b). In call-
ing QCEngine, the user supplies the canonical method
name (I-b). There is no compensation for program pecu-
liarities; for example, "b3lyp" returns different answers if990

submitted to programs that have made a different choice
of VWN3 vs. VWN5, consistent with the principle that
users can translate an input directly into QCSchema.

A complication to this principle is when programs con-
flate non-method information like algorithm (e.g., rimp2)995

or alternate code paths (e.g., task tce energy) into
the primary method call. To maintain QCSchema in-
tegrity for model.method, the project invents top-level
keywords like {"qc_module": "tce"} to allow deliber-
ate choice of the TCE over hand-coded CC in NWChem1000

and {"mp2_type": "df"} to instruct DF in GAMESS,
NWChem, or Q-Chem. Keyword qc_module can
also control choice of VCC/ECC/NCC in CFOUR and
DFMP2/DFOCC/DETCI in Psi4, though these also have lo-
cal knobs cfour_cc_module and psi4_qc_module.1005

Method specification in QCDB is similar
to QCEngine except a compound program-
method argument like optimize("nwc-mp2")
is used. This difference is historical and en-
dures for ease of specifying composite model1010

chemistries like gradient("p4-mp2/cc-pv[56]Z + d:
nwc-ccsd/cc-pv[tq]z + d: c4-ccsdtq/cc-pvdz")98

employing Psi4, NWChem, and CFOUR for different
stages. Additionally, QCDB tests the major methods
to ensure the same string yields the same result (I-f).1015

It also maintains a list of capabilities, so, for example,
ROHF CCSD in NWChem can be automatically routed
to TCE (see Fig. 2(d)). User specification of method
information in keywords instead of through the model
field is overwritten without warning in QCEngine,1020

while in QCDB, contradictory information yields an
error.

6. Basis Sets

Notwithstanding the curation efforts of the Basis Set
Exchange99 (BSE), every QC program maintains an in-1025

ternal library of basis sets with uneven upstream (from
the basis set developer) updates applied, uneven down-
stream (by the program owner) specializations applied,
and different spellings for accessing a given basis, not to
mention different data formats. In QCEngine, only the1030

internal library of a program is used, accessed from the
atomicinput.model.basis field. Thus, due to DSL, the
same string value directed toward different programs can
lead to different results, and different strings can lead to
the same results, as in Fig. 2(b). To allow consistency1035
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between programs and to reduce user DSL demands,
QCDB pulls basis sets from a single library (Psi4’s in
.gbs format, which is amply stocked with Pople, Dun-
ning, Peterson, Karlsruhe, and other orbital and fitting
basis sets) and performs the translation into the custom1040

per-atom specification and format for each program, in-
cluding setting spherical or Cartesian for d -shells and
higher according to basis set design. In this way, a stan-
dard case-insensitive label and a consistent interface to
custom and mixed basis sets is available (I-b). Alterna-1045

tively, QCDB can act like QCEngine to access a pro-
gram’s internal basis set library through program-specific
keywords (e.g., set gamess_basis__gbasis accd vs.
set basis aug-cc-pvdz). While the Psi4 basis set li-
brary is used at present, future work will switch to the1050

new MolSSI BSE.

7. Execution

Apart from CMS programs, QCEngine requires
only QCElemental and some common Python pack-
ages. It is readily installed by conda install1055

qcengine -c conda-forge or pip install qcengine.
Execution occurs through CLI or one-call API with
JSON-like input. For example, if AtomicInput
specification {..., "model": {"method": "ccsd",
"basis": "aug-cc-pvdz"}} was in a file, qcengine1060

spec run cfour would run CFOUR and return QC-
Schema AtomicResult (I-e). If the specifica-
tion was a dictionary in a Python script, then
qcengine.compute(spec, "cfour") produces the same
results, as in the “execution” column of Fig. 2(b).1065

QCEngine can be run through a queue manager, but
for more than incidental jobs, users should consider the
job orchestration capabilities of QCFractal.

QCDB requires only QCEngine and is installed simi-
larly by conda install qcdb -c conda-forge. Execu-1070

tion modes CLI and one-call API are called analogously,
only replacing qcng by qcdb (and ccsd by c4-ccsd)
as shown in Fig. 2(c–d). Additionally, though, QCDB
can function through an interactive driver API to reuse
molecule and keyword sets and perform more complex se-1075

quences. This is shown in Snippet 3 that scans an energy
potential then performs a computation at the optimum
distance at a better level of theory. This is analogous to
the PsiAPI mode in Psi4. A simplified, plain-text in-
put that gets processed into the API and is analogous to1080

the PSIthon mode of Psi4 will be available after further
integration with Psi4; an example is at Snippet 4.

import qcdb
nefh = qcdb.set_molecule("""Ne

--
F 1 R
H 2 1.0 1 135.0""")

qcdb.set_options({"e_convergence": 7,
"mp2_type": "df"})

results = {r / 100: None for r in range(200, 400, 10)}
for intra in results:

nefh.R = intra
results[intra] = qcdb.energy("p4-mp2/jun-cc-pvtz")

rmin = min(results, key=results.get)
qcdb.set_options({"e_convergence": 9})
nefh.R = rmin
model = "p4-mp2/aug-cc-pv[tq]z + d:c4-ccsd(t)/aug-cc-pvtz"
ene = qcdb.energy(model, bsse_type="cp")
print(f"Ne...FH at optimal dist. {rmin} A has IE {ene} E_h.")

Snippet 3: An interfragment potential energy scan fol-
lowed by composite energy in QCDB.

8. Modes

QCDB operates in two modes, which treat keywords,
particularly keyword defaults, differently. QCDB sup-1085

ports distinct modes of operation to tailor its capa-
bilities toward driver integration of multiple programs
(when unified results are needed) or toward interfacing
a single program (when user familiarity is preferred).
Most controlling is the driver or unified mode, which1090

endeavors to elicit from different QC programs identi-
cal results out of identical input conditions (roughly the
combination of method, basis, reference, active space,
integrals treatment) (I-f). Here, the driver imposes
QCDB-level defaults such as non-DF algorithms, all-1095

electron spaces, and graduated convergence criteria for
energy vs. analytic derivative vs. finite difference
derivative. This mode is required for multi-program
procedure runs (e.g., energy("p4-mp2/cc-pv[tq]z +
d:c4-ccsd/cc-pvtz")) and is active by default.1100

Another mode, denoted sandwich since the QCDB
pre- and post-processing is less intrusive, is for users fo-
cusing on a single QC program who want the driver rou-
tines, method mapping (e.g., energy("gms-ccsd(t)",
bsse_type="vmfc")), and I/O-wrapping advantages of1105

QCDB but do not want surprise resets of their ac-
customed defaults. Driver-suggested QCDB-level (e.g.,
frozen-core), driver-level (e.g., graduated derivative con-
vergence), and best-practices (e.g., module selection) de-
faults are all turned off. This mode is effectively how1110

QCEngine runs.
Some background facts to illustrate the modes:

• For default MP2 algorithm, Psi4 uses DF, while
CFOUR, GAMESS, NWChem, QCDB use CONV

• The CFOUR, GAMESS, NWChem, Psi4, and1115

QCDB default HF density convergences are 10−7,
10−5, 10−4, 10−8, and 10−8, respectively.
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• For the CCSD energy from CFOUR, the default
CC module is VCC, while QCDB best-practices is
ECC.1120

• The NWChem default task ccsd energy does
not run for open-shell, while QCDB uses the CCSD
module for RHF and TCE module for ROHF.

• GAMESS freezes core by default, while CFOUR,
NWChem, Psi4, & QCDB correlate all electrons.1125

In the unified mode, energy("gms-mp2") and
energy("p4-mp2") both run all-electron MP2 with-
out DF and with 10−8 convergence. After setting
ROHF, energy("c4-ccsd") runs through ECC, and
energy("nwc-ccsd") runs through TCE, again both1130

HF to 10−8 and all-electron. In contrast, sandwich
mode energy("gms-mp2") produces a conventional
frozen-core MP2 energy converged to 10−5, while
energy("p4-mp2") produces a DF all-electron value
converged to 10−8. In the ROHF CCSD case, the1135

CFOUR job runs as all-electron through VCC with HF
converged to 10−7, while the NWChem submission
declines to run.

9. Keywords

QC programs have hundreds of keywords con-1140

trolling their operation on matters of substance
(e.g., RAS3), strategy (e.g., DIIS), computer science
(e.g., INTS_TOLERANCE), and research convenience (e.g.,
DFT_NEW). The variety in spelling and text arrangement
by which the same ideas are communicated to different1145

QC programs is staggering (and a considerble barrier
to trying new codes). The necessity to represent any
(single-stage, single-program) input file as QCSchema
requires mapping rules so that a user familiar with the
native DSL can readily translate into the key/value rep-1150

resentation of an AtomicInput’s keywords field. The pri-
mary guideline is that the right-hand-side value must be
a simple data quantity in natural Python syntax (e.g.,
CFOUR’s 3-1-1-0/3-0-1-0 becomes [[3, 1, 1, 0],
[3, 0, 1, 0]]), and the left-hand-side key is a string1155

that encodes any level of nesting with double-underscore
(e.g., GAMESS’s contrl__scftyp or NWChem’s
dft__convergence__density). A present/absent key-
word (as opposed to a key/value pair) becomes a boolean,
like NWChem scf__rohf. The ProgramHarness han-1160

dles formatting the keywords field (back) into the in-
put grammar (I-d), including quashing unnecessary case-
sensitivity (e.g., Qz2p converts to lowercase for CFOUR,
while a filename option passes unchanged). For QCDB,
prefixing a keyword by program name targets it to-1165

ward a particular program; hence, reference becomes
cfour_reference or psi4_reference.

The greatest challenge to mapping rules is that some
programs have an input structure that blurs module nest-
ing vs. keyword name vs. keyword value. An ex-1170

tra mapping rule not strictly required by QCEngine

is for keywords to be independent and granular such
that they are one-to-one with other programs, not
overworked like dft__grid={"lebedev": (99, 11),
"treutler": True} (insufficiently granular) nor under-1175

worked like scf__rhf=False plus scf__uhf=True (insuf-
ficiently independent). QCDB uses internal aliasing and
mutually exclusive groups to help keyword specification
be intuitive for native users.

Making a QCSchema fed to multiple programs1180

produce uniform output is not within the scope of
QCEngine. Barriers to accessing multiple QC backends
through a single DSL or, more intricately, to compat-
ibly mixing backends include (a) heterogeneous control
knobs across QC programs each with its own keyword1185

set and (b) incompatible results due to different defaults
yielding slightly different answers. QCDB takes up the
task of uniting keywords into a single DSL for a further
layer of interoperability. Unlike QCEngine, QCDB reg-
isters valid keywords for each QC program and can ap-1190

ply custom validation functions to each. Additionally
registered are unified keywords so that, for example, set-
ting REFERENCE is translated into CFOUR_REFERENCE or
GAMESS_CONTRL__SCFTYP, as shown in Fig. 2(c–d) (I-b,
I-f). As mentioned above, insisting on granular key-1195

words for the QCSchema representation allows cleaner
mapping between QC programs. As mentioned below,
QCDB also encodes best-practice keywords to allow
shorter inputs, context-dependent defaults, and bridg-
ing the developer-user knowledge gap. QCSchema or1200

QCDB API offer ample opportunities for users to sub-
mit contradictory input specification, several of which are
shown in Snippet 4.

memory 300 mb
molecule {
H
H 1 0.74

}
set {
basis 6-31g # ok, new info
cfour_calc_level ccsd # clash w/"c4-hf" below
cfour_deriv_level first # clash w/energy() below (use gradient())
cfour_memory_size 9000000 # clash w/300 mb above
cfour_multiplicity 3 # clash w/implicit singlet of mol above
cfour_units angstrom # ok, consistent w/mol above

}

energy("c4-hf")

Snippet 4: Contradictory input opportunities.

QCDB resolves competing keyword suggestions and
requirements by the user, driver, schema, and best prac-1205

tices into a final keyword set that is passed to QCEngine
for final formatting. Because of this step, incompatible
keywords pass without warning in QCEngine, while in
QCDB, contradictory information yields an error.

Codebase authors know best how to run a computa-1210

tion, but they may have conveyed that knowledge only
through documentation and forum posts. Due to the
unwieldiness of large legacy codebases and the circuity
of research (and the burden of backwards compatibil-
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ity), it can happen that a method needs several key-1215

words to express it or that valuable approximations or
code-routing do not get turned on by default. Due to
its layered Python/C++ structure, Psi4 naturally has a
place to express such “best-practice” defaults based on
method, basis, system size, etc. The advantage is that1220

simple method+basis inputs yield production-grade re-
sults. Thus, QCDB takes advantage of working with
codebase authors and the intermediate Python layer to
implement best-practice keywords based on available cal-
culation data (I-c). These take the form of routing to1225

the best (or only capable) module for a given method,
reference, derivative level, and active space; or of sup-
plying sensible defaults like the number of electrons or
roots; or of tuning convergence to the derivative and
needed precision (analytic vs. finite difference) at hand;1230

or of specifying C1 or highest-Abelian symmetry to mod-
ules with symmetry restrictions. Such options can be
overridden by the user and can be disabled in sandwich
mode (Sec. II E 8). These defaults are themselves subject
to change as recommendations evolve, but their state is1235

readily viewed in program inputs.

10. QCVariables

The QC output stream, whether ASCII, binary, or
structured, is read immediately after program execution.
Scalar and array result quantities, such as PBE TOTAL1240

ENERGY, MP4 CORRELATION ENERGY and PBE TOTAL
GRADIENT, CCSD DIPOLE, are extracted and held as
significant-figure-preserving floats or NumPy arrays,
respectively, and are known collectively as QCVariables
(O-a). Extraction uses the most precise available source,1245

whether the standard output stream or available auxil-
iary files (e.g., CFOUR GRD). The internal geometry is
always collected, and any vector results are manipulated
in concert with it, as described in Sec. II E 4. For
QCEngine, many of the same harvested quantities are1250

directed into QCSchema AtomicResultProperties
lists. Results are available programmatically
through qcdb.variable("mp2 total energy") or
atomicresult.properties.mp2_total_energy in
QCDB and QCEngine, respectively.1255

A mild vexation in QC output files is that they contain
different quantities like total vs. correlation energy or
opposite-spin vs. triplet energy that are interconvertible
but not directly comparable. QCVariables enforce the
consistency of common QC definitions and encode com-1260

mon combining rules (O-b). They are applied in post-
processing to ensure that a maximum of data gets har-
vested from each run, that exactly the same quantities are
collected from each QC program, and that trivially de-
fined methods such as SCS(N)-MP2 and B3LYP-D3(BJ)1265

need not clutter either the QC code or its parsing.
Using binary representations of floats rather than trun-

cated strings from output files is a powerful argument
for API integration rather than parsing. Binary repre-

sentation is essential when dealing with many numbers1270

with slight differences, such as finite differences or MBE
sums. Programs with Python APIs (and that use APIs
for internal inter-language transfer like between C++ and
Python in Psi4) can transfer data with full precision; for
QCEngine, these are, for example, adcc, OpenMM,1275

RDKit, TorchANI, dftd4, Psi4, TCPB TeraChem,
and xtb. Of these, the last four have implemented QC-
Schema directly for API access. An intermediate step is
to use structured output like XML or JSON from Mol-
pro, MRChem, and Qcore. For certain programs, a1280

combination of reading available binary files (e.g., 99.0
for return energy in Q-Chem and JOBARX/JAINDX for cer-
tain QC results and organizational data in CFOUR) and
text parsing is employed. Results from other programs
are collected solely through text parsing: e.g., dftd3,1285

GAMESS, gCP, MOPAC, mp2d, NWChem, the clas-
sic interface to TeraChem, and Turbomole. Though
results are collected into QCSchema from QC programs
at the greatest accessible precision, in order to maintain
that precision among the data transfers and storage of1290

the QCDB and QCArchive Infrastructure ecosys-
tem, the QCElemental implementation of QCSchema
(nominally a JSON Schema,16 which does not handle bi-
nary or numpy.ndarray) includes MessagePack100 serial-
ization.1295

III. EXAMPLE: DIATOMIC SPECTROSCOPIC
CONSTANT FITTING

With contemporary QC software, it is entirely possi-
ble to approach the ab initio limit in the description of
diatomic molecules.101 Such spectroscopically accurate1300

calculations require extrapolating to the full configura-
tion interaction and complete basis set limits under the
non-relativistic Born–Oppenheimer (BO) approximation,
followed by usually negligible corrections to account for
both relativistic effects and the BO approximation itself.1305

Not only does this type of calculation present a remark-
able computational challenge [as it is significantly more
expensive than CCSD(T), the usually sufficient target
of quantum chemistry], it can also be practically diffi-
cult to incorporate multiple corrections and extrapola-1310

tions into a workflow. While all of the necessary fea-
tures are present across various QC software packages,
no single package implements everything (let alone has
the best implementation). Furthermore, enforcing con-
sistent geometries, basis sets, convergence criteria, frozen1315

orbitals, etc. between programs is a cumbersome, often
error-prone task. The QCDB driver remedies this prob-
lem by providing an easy-to-use Python interface to mul-
tiple QC programs.

To showcase this capability of the QCDB driver, the1320

ground states of a few diatomic molecules (BH, HF,
and C2) are optimized at essentially the ab initio limit,
and spectroscopic constants are computed and compared
to experiment. Previous studies estimating the ab ini-
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tio limit for the full set of standard spectroscopic con-1325

stants of these molecules have been reported (see, e.g.,
Refs. 102–104). The present study provides improved
treatments for some of the small corrections, and/or in-
cludes more correction terms. Here we include correc-
tions for electron correlation beyond CCSD(T), basis1330

set effects beyond an already high-quality core-valence
quadruple/quintuple-ζ extrapolation, relativistic effects,
and the Born–Oppenheimer diagonal correction, using
four different QC programs through the unified QCDB
interface. The effect of each correction is examined sepa-1335

rately, as well as the cumulative effect of all corrections.
Understanding the cost and importance of each correc-
tion is helpful for designing reasonable extrapolations for
larger systems.

A spectroscopically accurate model chemistry energy1340

(ETotal) is defined as a base energy (EBase) with five sep-
arate corrections:

ETotal = EBase + ∆EBasis + ∆EDBOC + ∆ERel (1)
+∆ECCSDTQ + ∆EFCI

Each energy and the QC program(s) used to obtain it is
defined in Table II.

TABLE II. Composite level of theory for spectroscopic con-
stants and associated QC programs.

Name Method Program
EBase CCSD(T) / cc-pCV[Q5]Z NWChem
∆EBasis MP2 / (aug-cc-pCV[56]Z − cc-pCV[Q5]Z) Psi4
∆EDBOC CCSD / cc-pCVDZ CFOUR
∆ERel X2C-CCSD(T) / cc-pCVTZ Psi4
∆ECCSDTQ (CCSDTQ − CCSD(T)) / cc-pVTZ CFOUR
∆EFCI (FCI − CCSDTQ) / cc-pVDZ GAMESS/

CFOUR

The rovibrational spectrum of a diatomic molecule is1345

often expressed with Dunham’s expansion:

EνJ = h
∑
kl

Ykl

(
ν +

1

2

)k[
J(J + 1)

]l
(2)

The first few Dunham coefficients correspond to well-
studied spectroscopic constants:

Y10 = ωe, Y20 = −ωexe, Y01 = Be, Y02 = −D̄e, Y11 = −αe
(3)

The following truncation of the expansion is used to de-
scribe a diatomic:1350

E ≈ U(re) + hωe

(
ν +

1

2

)
+ hBeJ(J + 1) − hωexe

(
ν +

1

2

)2

− hαe

(
ν +

1

2

)
J(J + 1) − hD̄eJ

2(J + 1)2 (4)

The spectroscopic constants are then describable in terms
of the electronic PES U(r) and its derivatives:

Ie ≡ µr2
e Be ≡

h

8π2Ie
ωe ≡

1

2π

[U ′′(re)
µ

]1/2
(5)

ωexe ≡
B2
er

4
e

4hω2
e

[10Ber
2
e [U
′′′(re)]

2

3hω2
e

− U iv(re)
]

(6)

αe ≡
2B2

e

ωe

[2Ber
3
eU
′′′(re)

hω2
e

+ 3
]

D̄e ≡
4B3

e

ω2
e

(7)

Note that these are all “equilibrium” constants, i.e., they1355

are with respect to the bottom of the potential well (but
with inclusion of the Born-Oppenheimer diagonal correc-
tion).

Accessed through the QCDB interface, the Psi4
diatomic procedure fits a set of points (r, E(r)) to this1360

truncation, solving for the spectroscopic constants via a
least-squares optimization.105 This procedure was used
in the following way for each diatomic:

1. Through the QCDB driver, ETotal was calculated
at 7 values of r, spaced 0.005 Å apart and centered1365

approximately at the minimum of the PES. The
spectroscopic constants were calculated with Psi4,
including an approximate re.

2. This 7-point calculation was repeated, using the
approximate re from the first step as the central1370

point. The spectroscopic constants calculated from
these PES points are those tabulated here.

Basis sets with spherical harmonics were used in all
calculations, and basis set coefficients were standardized
across all programs via QCDB. Electrons in core orbitals1375

were frozen for computations using the cc-pVXZ basis
set family, which lack core correlation functions. En-
ergies were converged to at least 10−10 Hartrees in all
programs. Even tighter convergence would be beneficial
for the numerical differentiation performed in the fitting.1380

Numerical tests suggest that this precision in energy can
lead to uncertainties in αe (proportional to U ′′′(re)) and
ωexe (proportional to U iv(re)) as large as 0.0001 cm−1

and 0.2 cm−1, respectively.
The calculations of all diatomics and spectroscopic1385

constants are presented in Table III, and the results for
re and ωe are shown in Fig. 4 for easier analysis. Prior
to discussing the chemical and computational implica-
tions of these results, it is worthwhile to first note that
the corrections for BH closely match those of a previous1390

study103 by Temelso et al. (which used a similar but less
exact extrapolation). This validates these results from a
software perspective: each program must be using cor-
rect geometries, basis sets, convergence criteria, etc. The
finite-difference nature of the fitting procedure makes1395

close agreement between programs particularly impor-
tant.

The total extrapolation procedure shows remarkable
agreement with experiment for bond lengths re (within
0.0005 Å) except for BH, off by 0.0022 Å. However this1400

extrapolation lacks nonadiabatic BO effects, which were
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TABLE III. Comparison between theory and experiment for bond lengths (Å) and spectroscopic constants (cm−1) of three
diatomic molecules. All ∆ terms correspond to the difference between a value and the base CCSD(T)/cc-pCV[Q5]Z calculation.
Experimental values from Refs. 106 (BH), 107 (HF), and 108 (C2). All published experimental uncertainties are smaller
than the displayed precision of the spectroscopic values presented here.

Molecule & Method re ωe ωexe Be De αe

BH
Base 1.22890 2371.24 49.4 12.088 0.001257 0.423

∆Basis +0.00018 −0.44 −0.4 −0.004 −0.000001 −0.001
∆DBOC +0.00065 −2.33 −0.2 −0.013 −0.000002 +0.000
∆Rel −0.00001 −0.57 +0.1 +0.000 +0.000001 +0.000
∆CCSDTQ +0.00019 −2.07 +0.1 −0.004 +0.000001 +0.001
∆FCI +0.00000 +0.00 −0.2 +0.000 +0.000000 +0.000
∆Total +0.00101 −5.41 −0.5 −0.020 +0.000000 +0.000

Total 1.23000 2365.83 49.0 12.068 0.001256 0.423
Experiment 1.23216 2366.72 49.3 12.026 0.001235 0.422

HF
Base 0.91654 4147.01 90.5 20.968 0.002144 0.793

∆Basis +0.00017 −1.79 −0.7 −0.008 −0.000001 −0.002
∆DBOC +0.00001 +0.32 −0.2 −0.001 −0.000001 +0.000
∆Rel +0.00006 −3.54 −1.3 −0.003 +0.000003 +0.000
∆CCSDTQ +0.00021 −4.49 +0.1 −0.009 +0.000002 +0.002
∆FCI +0.00001 −0.19 +0.0 +0.000 +0.000000 +0.000
∆Total +0.00047 −9.70 −2.2 −0.021 +0.000004 +0.000

Total 0.91700 4137.31 88.3 20.947 0.002148 0.792
Experiment 0.916808 4138.32 89.0 20.956 0.002151 0.798

C2

Base 1.24039 1873.63 12.6 1.826 0.000007 0.017
∆Basis +0.00016 −1.01 +0.0 +0.000 +0.000000 +0.000
∆DBOC +0.00001 +0.09 +0.0 +0.000 +0.000000 +0.000
∆Rel −0.00016 −0.41 +0.1 +0.000 +0.000000 +0.000
∆CCSDTQ +0.00146 −11.76 +0.8 −0.004 +0.000000 +0.001
∆FCI +0.00100 −4.58 +0.0 −0.003 +0.000000 +0.000
∆Total +0.00248 −17.81 +0.8 −0.007 +0.000000 +0.001

Total 1.24287 1855.82 13.4 1.819 0.000007 0.018
Experiment 1.24244 1855.01 13.6 1.820 0.000007 0.018
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FIG. 4. Influence of post-CCSD(T)/CBS corrections on two
spectroscopic constants, (a) re and (b) ωe, and three diatomic
systems, BH, HF, and C2. For each system, the right grey
bar is the difference between the experimental constant and
the constant calculated at the EBase (CCSD(T)/CBS) level
of theory. The left grey bar is the difference in constants
calculated at the ETotal and EBase levels of theories. Within
the left grey bar, contributions from each correction are shown
as colored bars. Data are from Table III.

found by Martin102 to be unusually high for BH, approx-
imately 0.0025 Å. This is rather close to the overall dif-
ference of 0.0022 Å between experiment and our best
estimate. Theoretical harmonic frequencies ωe are in ex-1405

cellent agreement with experiment, off by only 1 cm−1.
The rotational constant Be is also well predicted, within
0.01 cm−1 for HF and C2 and off by a somewhat larger
0.04 cm−1 for BH. The latter error may be largely due to
already-noted non-BO effects, which cause a larger dis-1410

crepancy in re for BH. ωexe is in good agreement with
experiment, matching within 0.2–0.4 cm−1 for BH and
C2, but is off by a larger 1.6 cm−1 for HF. It is not clear
that the corrections employed here actually improve this
constant, and the remaining discrepancy could be due to1415

the numerical precision limitations discussed earlier. D̄e

is very well predicted already by the base method, and
the various corrections are extremely small. Similarly,
αe appears to not require corrections on top of the base
method, each of which change it by only ± 0.002 cm−1 or1420

less. Final values are within 0.005 cm−1 of experiment.

Fig. 4 shows that the sum of the small corrections
matches experiment very well for re and ωe, except for
the bond length of BH, where non-BO effects are impor-
tant as noted above. All of the small corrections con-1425

sidered can be important for re and ωe, although there
is no consistency about their relative importance from
one molecule to another. For example, the DBOC is
rather important for BH (which has the lightest nuclei),
but not for HF and even less so for C2. Similarly, the1430
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FCI correction (beyond CCSDTQ) is negligible for BH
and HF but is important for C2 (worth 0.001 Å and 4.6
cm−1) In total, the corrections for C2 lower the value
of ωe by a surprisingly large 17.81 cm−1 from the base
CCSD(T) value, which is very close to the experimental1435

ωe (18.61 cm−1 lower than the base). A large major-
ity of this change is due to missing electron correlation:
the CCSDTQ correction is responsible for about 12 cm−1

and the FCI correction by about another 5 cm−1. This
is presumably due to the much larger degree of electron1440

correlation in C2, arising from the close near-degeneracy
of the [core]2σ2

g2σ2
u1π2

x1π2
y and [core]2σ2

g1π2
x1π2

y3σ2
g con-

figurations.

IV. SUMMARY AND CONCLUSIONS

Users increasingly desire programmatic (i.e., API: ap-1445

plication programming interface) access to QC results,
either for their convenience or for incorporation into au-
tomated workflows. The interface, volume, and intri-
cacy requirements of that access vary widely across ap-
plications and increasingly involve uniform results across1450

QC programs. The QCElemental, QCEngine, and
QCDB software modules (the former two being part
of the Molecular Sciences Software Institute18 (MolSSI)
QCArchive17 project) provide a framework to facilitate
interoperability among community computational molec-1455

ular sciences (CMS) programs.
QCArchive and QCDB have been designed to work

with emerging tools and standards developed by MolSSI,
particularly the QCSchema JSON format for infor-
mation passing. QCElemental provides implementa-1460

tions and validators around QCSchema objects, while
QCEngine provides QCSchema I/O adaptors for CMS
codes. In addition to wrapping nearly a dozen QC
programs for uniform execution and programmatic ac-
cess to results, QCEngine interfaces with geomeTRIC1465

and other geometry optimizers that can, in turn, call
QCEngine for QC gradients. QCEngine easily ex-
pands to additional CMS codes, has parallel execution
capabilities through QCFractal, and by definition al-
lows uniform execution, yet it is not in itself a coherent1470

QC driver, due to the differing implementations, conven-
tions, defaults, and DSL of QC codes.

The Quantum Chemistry Common Driver and
Databases (QCDB) project provides a simple and pow-
erful driver front-end to multiple QC programs, allowing1475

users automatic access to several features formerly re-
quiring specialized scripts or laborious post-processing.
These include built-in composite methods, many-body
expansion procedures, vibrational analysis, and combi-
nations thereof, for not only energies but also gradients,1480

Hessians, and geometry optimizations. By adding ba-
sis set, keywords, and results tools for uniformity and
interoperability, QCDB also allows mixing and match-
ing capabilities of multiple quantum chemistry programs
within a single computation. These features have been1485

demonstrated with an application computing spectro-
scopic constants of diatomic molecules at the ab initio
limit, including corrections for post-CCSD(T) electron
correlation, beyond-cc-pCV[Q5]Z basis set effects, rela-
tivistic effects, and the Born–Oppenheimer diagonal cor-1490

rection, combining total energies computed by CFOUR,
GAMESS, NWChem, and Psi4.

V. EXTERNAL MATERIAL

Software repositories and documentation are avail-
able for QCElemental at https://github.com/1495

MolSSI/QCElemental/ and https://molssi.github.
io/QCElemental/; for QCEngine at https://github.
com/MolSSI/QCEngine/ and https://molssi.github.
io/QCEngine/; for QCDB at https://github.com/
qcdb/qcdb/ and https://qcdb.github.io/qcdb/; and1500

for general QCArchive Infrastructure at http://
docs.qcarchive.molssi.org/. These programs remain
in active development. Production computations are un-
derway using many features of the software, and test
suites are expected to pass. However, users are encour-1505

aged to contact the developers as they venture afield of
the verified tests. Many snippets from this work, includ-
ing an abbreviated diatomic fitting, are demonstrated in
the test suite: https://github.com/qcdb/qcdb/blob/
master/qcdb/tests/test_manuscript.py1510
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