molsturm: Modular electronic structure theory framework A tale inspired by Coulomb-Sturmians

Michael F. Herbst, James E. Avery, Guido Kanschat, Andreas Dreuw

Oberwolfach workshop Mathematical Methods for Quantum Chemistry

 $23 \mathrm{rd}$ March 2018

Contents

1 State of the basis

- An ideal basis for electronic structure theory
- Coulomb-Sturmians
- 2 A modular electronic structure theory code
 - Contraction-based algorithms
 - molsturm electronic structure theory framework

Contents

1 State of the basis

- An ideal basis for electronic structure theory
- Coulomb-Sturmians
- 2 A modular electronic structure theory code
 - Contraction-based algorithms
 - molsturm electronic structure theory framework
- 3 Future work
 - Outlook

State of the basis	A modular electronic structure theory code	Future work	A & Q 00		
An ideal basis for electronic structure theory					

An ideal basis

- Represents physical system well
- Results reliable
 - Error margin known
 - Systematic improvement possible
- Prior knowledge
 - Little required
 - If available: Can be incorporated
- Integrals and eigenproblem are feasible
- \Rightarrow In reality need a good compromise

State of the basis	A modular electronic structure theory code	Future work	A & Q 00		
An ideal basis for electronic structure theory					

Basis function types

- Gaussian-type orbitals
- Geminals
- Slater-type orbitals
- Wavelets
- Finite elements
- Plane wave
- Augmented plane waves
- . . .

State of the basis	A modular electronic structure theory code	Future work	A & Q 00	
An ideal basis for electronic structure theory				

Discretising hydrogen

State of the basis	A modular electronic structure theory code	Future work	A & Q 00
Coulomb-Sturmians			

Coulomb-Sturmians

• Iso-energetic solutions φ_{nlm} to hydrogen-like equation¹

$$\left(-\frac{1}{2}\Delta - \beta_n \frac{Z}{r}\right)\varphi_{nlm}(\underline{r}) = E\varphi_{nlm}(\underline{r})$$

• Scaling factor β_n chosen to uniform energy:

$$\beta_n = \frac{kn}{Z} \quad \Rightarrow \quad E = -\frac{k^2}{2}$$

- φ_{nlm} look like hydrogenic orbitals with $\frac{Z}{n}$ replaced by k
- Radial part R_{nl} satisfies

$$\left(-\frac{1}{2r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{l(l+1)}{2r^2} - \frac{nk_{\exp}}{r} - E\right)R_{nl}(r) = 0.$$

 \Rightarrow Sturm-Liouville equation²

¹Shull and Löwdin 1959 ²Rotenberg 1962, Rotenberg 1970

State of the basis	A modular electronic structure theory code	Future work	A & Q 00
Coulomb-Sturmians			

Coulomb-Sturmians properties

- Only atoms: Different Sturmians for molecules required
- Complete basis for $H^1(\mathbb{R}^3)^1$
- Correctly represent nuclear cusp
- Proper exponential decay for large r
- All functions have the same k_{exp}
- One-to-one onto hyperspherical harmonics
- One-electron integrals sparse and analytic
- Two-electron integrals sparse tensor contraction

¹Klahn and Bingel 1977

State of the basis	A modular electronic structure theory code	Future work	A & Q 00
Coulomb-Sturmians			

Discretising hydrogen

State of the basis	A modular electronic structure theory code	Future work	A & Q 00
Coulomb-Sturmians			

Fock matrix structures

- Main concern: Hartree-Fock
- After discretisation:

$$\mathbf{F}[\mathbf{C}] \mathbf{C} = \operatorname{diag}(\varepsilon_1, \dots, \varepsilon_n) \mathbf{S} \mathbf{C}$$

State of the basis	A modular electronic structure theory code	Future work	A & Q 00
Coulomb-Sturmians			

Fock matrix structures

- Main concern: Hartree-Fock
- After discretisation:

$$\mathbf{F}[\mathbf{C}] \mathbf{C} = \operatorname{diag}(\varepsilon_1, \dots, \varepsilon_n) \mathbf{S} \mathbf{C}$$

Contents

1 State of the basis

- An ideal basis for electronic structure theory
- Coulomb-Sturmians
- 2 A modular electronic structure theory code
 - Contraction-based algorithms
 - molsturm electronic structure theory framework
- 3 Future work
 - Outlook

State of the basis	A modular electronic structure theory code	Future work	A & Q 00
Contraction-based algorithms			

SCF scheme

Start with guess $\mathbf{F}^{(0)}$ and iterate for n = 1, 2, 3, ...

• Diagonalise

$$\tilde{\mathbf{F}}^{(n-1)}\mathbf{C}_{F}^{(n)}$$
diag $(\varepsilon_{1},\ldots,\varepsilon_{N}) = \mathbf{SC}_{F}^{(n)}\mathbf{E}^{(n)}$

under the condition

$$\left(\mathbf{C}_{F}^{(n)}\right)^{\dagger}\mathbf{S}\mathbf{C}_{F}^{(n)}=\mathbf{I}_{N}.$$

- Construct the occupied matrix $\mathbf{C}^{(n)}$ from the full matrix $\mathbf{C}^{(n)}_F$ by the Aufbau principle.
- Build the Fock matrix $\mathbf{F}\left[\mathbf{C}^{(n)}\right]$ and check for convergence.
- Build a trial Fock matrix $\tilde{\mathbf{F}}^{(n)}$ somehow using $\mathbf{F}^{(n)}$ and all insight into the problem gathered so far.

Contraction-based SCF scheme

- Iterative solvers only need matrix-vector products
- \Rightarrow Contraction-based or matrix-free¹ algorithm:
 - Never build Fock matrix in storage
 - Use matrix-vector contraction expressions
 - Avoid full density matrix
 - $\bullet\,$ Employ SCF iterating orbital coefficients ${\bf C}$

¹Kronbichler and Kormann 2012

Advantages

- Scaling (storage and time) reduced
- Parallelisation easier
 - \Rightarrow Less data management
 - \Rightarrow Easier modularisation
- Hardware trends are in favour

Disadvantages

- Matrices more intuitive than contraction-functions
- More computations
 - $\Rightarrow\,$ Need efficient contraction schemes for the contraction
 - \Rightarrow Algorithms more complex

Data from https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast

Contraction based algorit	hms		00
00000000	000000000	00	00
State of the basis	A modular electronic structure theory code	Future work	A & Q

Storage layer	Latency /ns	FLOPs
L1 cache	0.5	13
L2 cache	7	180
Main memory	100	2600
SSD read	$1.5\cdot 10^4$	$4 \cdot 10^5$
HDD read	$1 \cdot 10^7$	$3 \cdot 10^8$

Data from

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html FLOPs for a Sandy Bridge 3.2GHz CPU with perfect pipelining

Advantages

- Scaling (storage and time) reduced
- Parallelisation easier
 - \Rightarrow Less data management
 - \Rightarrow Easier modularisation
- Hardware trends are in favour

Disadvantages

- Matrices more intuitive than contraction-functions
- More computations
 - $\Rightarrow\,$ Need efficient contraction schemes for the contraction
 - \Rightarrow Algorithms more complex

State of the basis	A modular electronic structure theory code	Future work	A & Q 00
Contraction-based algorithms			

Lazy matrices

- Stored matrix: All elements reside in memory
- Lazy matrix:
 - Generalisation of matrices
 - Elements may be expressions
 - May represent non-linear operators
 - State
 - \Rightarrow Obtaining elements expensive
 - Evaluation of internal expression: Delayed until contraction
 - For convenience: Offer matrix-like interface

State of the basis	A modular electronic structure theory code	Future work	A & Q 00
Contraction-based algorithms			

Using lazy matrices

• Program as usual

$$\mathbf{D}=\mathbf{A}+\mathbf{B}$$

• Build expression tree internally

$$\boxed{\mathbf{D}} = \boxed{\mathbf{A}} + \boxed{\mathbf{B}}$$

• On application:

 $\mathbf{D}\underline{\boldsymbol{x}} = (\mathbf{A}\underline{\boldsymbol{x}}) + (\mathbf{B}\underline{\boldsymbol{x}})$

State of the basis	A modular electronic structure theory code	Future work	A & Q 00
Contraction-based algorithms			

Using lazy matrices

• Program as usual

$$\mathbf{D}=\mathbf{A}+\mathbf{B}$$

• Build expression tree internally

$$\mathbf{D} = \mathbf{A} + \mathbf{B} = \mathbf{A}^{+} \mathbf{B}$$

• On application:

$$\mathbf{D}\underline{x} = (\mathbf{A}\underline{x}) + (\mathbf{B}\underline{x})$$

State of the basis	A modular electronic structure theory code	Future work	A & Q 00
Contraction-based algorithms			

Using lazy matrices

• Program as usual

$$\mathbf{D}=\mathbf{A}+\mathbf{B}$$

• Build expression tree internally

$$\mathbf{D} = \mathbf{A} + \mathbf{B} = \mathbf{A} + \mathbf{B}$$

• On application:

$$\mathbf{D}\underline{\boldsymbol{x}} = (\mathbf{A}\underline{\boldsymbol{x}}) + (\mathbf{B}\underline{\boldsymbol{x}})$$

State of the basis	A modular electronic structure theory code	Future work	A & Q 00
Contraction-based algorithms			

Observations

- Lazy matrices allow layered responsibility for computation, e.g. $({\bf A}+{\bf B})\underline{\pmb{x}}$
 - $\mathbf{A}\underline{x}$ and $\mathbf{B}\underline{x}$ decided by implementation of \mathbf{A} and \mathbf{B}
 - $(\mathbf{A}\underline{x}) + (\mathbf{B}\underline{x})$ done in linear algebra backend
- \Rightarrow Proper modularisation between
 - Higher-level algorithms
 - Lazy matrix implementations
 - LA backends

State of the basis	A modular electronic structure theory code	Future work	A & Q 00
molsturm electronic structure theory framework			

Lazy matrices for Hartree-Fock codes

- Contraction-based algorithms
- \Rightarrow Lower memory footprint, scaling improvements
 - Abstraction between integrals and SCF algorithms
- \Rightarrow Plug and play integral libraries
- \Rightarrow Swap LA backends
- \Rightarrow Basis-type independent SCF
 - Integral back end stays in control of contraction
- \Rightarrow Decides order of data production and consumption

State of the basis	A modular electronic structure theory code	Future work	A & Q 00
molsturm electronic structure theory framework			

molsturm structure

Integral backends

Post HF methods

State of the basis	A modular electronic structure theory code	Future work	A & Q 00		
molsturm electronic structure theory framework					
molaturm doci	molaturm docim				

molsturm design

- Lightweight connection between integrals and Post-HF
- Flexiblity as primary goal
- Behaviour controlled via python
 - Keywords to change basis type or solver
 - All computed data available in numpy format
 - No input file, just a python script
- python utilities
 - Import / export results
 - Post-HF calculations
- Integration with python ecosystem

 State of the basis
 A modular electronic structure theory code
 Future work
 A & Q

 000000000
 0000000000
 00
 00

 molsturm electronic structure theory framework
 00
 00

molsturm interface: CCD residual (parts)

$$\begin{split} r_{ij}^{ab} &= -\frac{1}{2} \sum_{mnef} \left\langle mn ||ef \right\rangle t_{mn}^{af} t_{ij}^{eb} + \frac{1}{2} \sum_{mnef} \left\langle mn ||ef \right\rangle t_{mn}^{bf} t_{ij}^{ea} - \frac{1}{2} \sum_{mnef} \left\langle mn ||ef \right\rangle t_{in}^{ef} t_{mj}^{ab} \\ &+ \frac{1}{2} \sum_{mnef} \left\langle mn ||ef \right\rangle t_{jn}^{ef} t_{mi}^{ab} + \frac{1}{4} \sum_{mnef} \left\langle mn ||ef \right\rangle t_{mn}^{ab} t_{ij}^{ef} + \frac{1}{2} \sum_{mnef} \left\langle mn ||ef \right\rangle t_{im}^{ae} t_{jn}^{bf} \\ &- \frac{1}{2} \sum_{mnef} \left\langle mn ||ef \right\rangle t_{jm}^{ae} t_{in}^{bf} - \frac{1}{2} \sum_{mnef} \left\langle mn ||ef \right\rangle t_{im}^{be} t_{jn}^{af} + \frac{1}{2} \sum_{mnef} \left\langle mn ||ef \right\rangle t_{jm}^{be} t_{in}^{af} \end{split}$$

```
eri_phys = state.eri.transpose((0, 2, 1, 3))
eri = eri_phys - eri_phys.transpose((1, 0, 2, 3))
res = \
    - 0.5 * einsum("mnef,manf,iejb->iajb", eri.block("oovv"), t2, t2) \
    + 0.5 * einsum("mnef,ienf,majb->iajb", eri.block("oovv"), t2, t2) \
    + 0.5 * einsum("mnef,ienf,majb->iajb", eri.block("oovv"), t2, t2) \
    + 0.5 * einsum("mnef,ienf,maib->iajb", eri.block("oovv"), t2, t2) \
    + 0.5 * einsum("mnef,ienf,maib->iajb", eri.block("oovv"), t2, t2) \
    + 0.5 * einsum("mnef,iame,jbf->iajb", eri.block("oovv"), t2, t2) \
    + 0.5 * einsum("mnef,iame,jbf->iajb", eri.block("oovv"), t2, t2) \
    + 0.5 * einsum("mnef,iame,jbf->iajb", eri.block("oovv"), t2, t2) \
    + 0.5 * einsum("mnef,iame,ibf->iajb", eri.block("oovv"), t2, t2) \
    + 0.5 * einsum("mnef,iame,ibf->iajb", eri.block("oovv"), t2, t2) \
    + 0.5 * einsum("mnef,iame,iaf->iajb", eri.block("oovv"), t2, t2) \
    + 0.5 * einsum("mnef,iame,iaf->iajb", eri.block("oovv"), t2, t2) \
```

Contents

1 State of the basis

- An ideal basis for electronic structure theory
- Coulomb-Sturmians
- 2 A modular electronic structure theory code
 - Contraction-based algorithms
 - molsturm electronic structure theory framework

Outlook

- Exploring further basis functions
 - Molecular Sturmians
 - Ionising Sturmians
 - k_{exp} -free Hartree-Fock
- pammap
 - Hierachical interface
 - Data transfer between high and low level
 - Easy parameter adjustment from python, julia, ...
- Fuzzing of integral back ends
- Lazy matrix expression optimisation

State of the basis	A modular electronic structure theory code	Future work	A & Q ●○

Acknowledgements

- Dr. James Avery
- Prof. Andreas Dreuw
- Prof. Guido Kanschat
- HGS Mathcomp

Questions?

- EMail: michael.herbst@iwr.uni-heidelberg.de
- https://michael-herbst.com
- Projects: https://lazyten.org and https://molsturm.org

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.