
Advanced bash scripting
(block course)

Michael F. Herbst
michael.herbst@iwr.uni-heidelberg.de

https://michael-herbst.com

Interdisziplinäres Zentrum für wissenschaftliches Rechnen
Ruprecht-Karls-Universität Heidelberg

6th – 10th November 2017

michael.herbst@iwr.uni-heidelberg.de
https://michael-herbst.com

Contents

Contents i

List of Tables v

Course description vi
Compatibility of the exercises . vii

Errors and feedback vii

Licensing and redistribution vii

1 Introduction to Unix-like operating systems 1
1.1 The Unix philosophy . 1

1.1.1 Impact for scripting . 2
1.2 The Unix utilities . 2

1.2.1 Accessing files or directories . 3
1.2.2 Modifying files or directories . 3
1.2.3 Getting or filtering file content . 3
1.2.4 Other . 5
1.2.5 Exercises . 6

1.3 The Unix file and permission system . 7
1.3.1 What are files? . 7
1.3.2 Unix paths . 8
1.3.3 Unix permissions . 8

2 A first look at the bash shell 10
2.1 Historic overview . 10

2.1.1 What is a shell? . 10
2.1.2 The Bourne-again shell . 10

2.2 Handy features of the bash . 11
2.2.1 Tab completion . 11
2.2.2 Accessing the command history . 11
2.2.3 Running multiple commands on a single line 13

2.3 Redirecting command input/output . 13
2.4 The return code of a command . 17

2.4.1 Logic based on exit codes: The operators &&, ||, ! 18
2.5 Tips on getting help . 20

i

CONTENTS ii

3 Simple shell scripts 22
3.1 What makes a shell script a shell script? 22

3.1.1 Executing scripts . 23
3.1.2 Scripts and stdin . 23

3.2 Shell variables . 24
3.2.1 Special parameters . 25
3.2.2 Command substitution . 26

3.3 Escaping strings . 28
3.4 Word splitting and quoting . 29

4 Control structures and Input/Output 34
4.1 Printing output with echo . 34
4.2 The test program . 35
4.3 Conditionals: if . 36
4.4 Loops: while . 38
4.5 Loops: for . 43

4.5.1 Common “types” of for loops . 44
4.6 Conditionals: case . 47
4.7 Parsing input using shell scripts . 49

4.7.1 The read command . 49
4.7.2 Scripts have shared stdin, stdout and stderr 51
4.7.3 The while read line paradigm 52

4.8 Influencing word splitting: The variable IFS 55
4.9 Conventions when scripting . 58

4.9.1 Script structure . 58
4.9.2 Input and output . 59
4.9.3 Parsing arguments . 59

5 Arithmetic expressions and advanced parameter expansions 60
5.1 Arithmetic expansion . 60
5.2 Non-integer arithmetic . 65
5.3 A second look at parameter expansion . 67

6 Subshells and functions 71
6.1 Explicit and implicit subshells . 71

6.1.1 Grouping commands . 71
6.1.2 Making use of subshells . 73
6.1.3 Implicit subshells . 75

6.2 bash functions . 79
6.2.1 Good practice when using functions 82
6.2.2 Overwriting commands . 87

6.3 Cleanup routines . 88
6.4 Making script code more reusable . 90

7 Regular expressions 92
7.1 Regular expression syntax . 92

7.1.1 Matching regular expressions in plain bash 92
7.1.2 Regular expression operators . 93
7.1.3 A shorthand syntax for bracket expansions 95
7.1.4 POSIX character classes . 96

CONTENTS iii

7.1.5 Getting help with regexes . 97
7.2 Using regexes with grep . 97
7.3 Using regexes with sed . 100

7.3.1 Alternative matching syntax . 103

8 A concise introduction to awk programming 104
8.1 Structure of an awk program . 104
8.2 Running awk programs . 105
8.3 awk programs have an implicit loop . 106
8.4 awk statements and line breaks . 109
8.5 Strings in awk . 110
8.6 Variables and arithmetic in awk . 110

8.6.1 Some special variables . 113
8.6.2 Variables in the awk code vs. variables in the shell script 114
8.6.3 Setting awk variables from the shell 116

8.7 awk conditions . 116
8.8 Important awk action commands . 120

8.8.1 Conditions inside action blocks: if 122
8.9 Further examples . 122
8.10 awk features not covered . 124

9 A word about performance 125
9.1 Collection of bad style examples . 126

9.1.1 Useless use of cat . 126
9.1.2 Useless use of ls * . 126
9.1.3 Ignoring the exit code . 126
9.1.4 Underestimating the powers of grep 127
9.1.5 When grep is not enough . 127
9.1.6 testing for the exit code . 127

A Setup for the course 128
A.1 Installing the required programs . 128

A.1.1 Debian / Ubuntu / Linux Mint . 128
A.1.2 Mac OS X . 128

A.2 Files for the examples and exercises . 129

B Other bash features worth mentioning 130
B.1 bash customisation . 130

B.1.1 The .bashrc and related configuration files 130
B.1.2 Tab completion for script arguments 130

B.2 Making scripts locale-aware . 130
B.3 bash command-line parsing in detail . 130

B.3.1 Overview of the parsing process . 130
B.4 Notable bash features not covered . 131

C Supplementary information 132
C.1 The mtx file format . 132

Bibliography 134

CONTENTS iv

List of Commands 135

List of Tables

2.1 List of noteworthy shells. 11
2.2 Summary of the output redirectors . 15
2.3 Summary of the types of pipes . 15
2.4 Summary of available commands to get help 20

3.1 Important predefined variables. 25

4.1 A few special escape sequences for echo -e 35
4.2 Overview of the most important test operators 36
4.3 The most important options of find . 55

7.1 Some POSIX character classes . 96

v

Course abstract

The bash shell is the default shell in almost all major UNIX and LinuX distributions,
which makes learning about the bash scripting language pretty much unavoidable if one
is working on a UNIX-like operating system. On the other hand this also implies that
writing bash scripts is conceptually very simple — essentially like making structured
notes of the commands one would need to type in the shell anyway.

When it comes to more involved tasks and more powerful scripts, however, taking
a deeper look at the underlying operating system is typically required. After all bash
scripting is all about properly combining the available programs on the UNIX operating
system in a clever way as we will see.

In the first part of the course we will hence revisit some basic concepts of a UNIX-like
operating system and review the set of UNIX coreutils one needs for everyday scripting.
Afterwards we will talk about the bash shell and its core language features, including

• control statements (if, for, while, . . .)
• file or user input/output
• bash functions
• features simplifying code reuse and script structure

The final part will be concerned with the extraction of information (from files . . .) using
so-called regular expressions and programs like awk, sed or grep.

Learning objectives

After the course you will be able to
• apply and utilise the UNIX philosophy in the context of scripting
• identify the structure of a bash script
• enumerate the core concepts of the bash scripting language
• structure a script in a way such that code is reusable in other scripts
• extract information from a file using regular expressions and standard UNIX tools
• name advantages and disadvantages of tools like awk, sed or grep, cut . . . , and

give examples for situations in which one is more suitable than the others.

Prerequisites

Familiarity with a UNIX-like operating system like GNU/Linux and the bash shell is
assumed. For example you should be able to

• navigate through your files from the terminal.
• create or delete files or folders from the terminal.
• run programs from the terminal (like some “one-liners”).

vi

• edit files using a common graphical (or command-line) text editor like gedit,
leafpad, vim, nano, . . .

It is not assumed, but highly recommended, that you have have some previous experiences
with programming or scripting in a UNIX-like operating system.

Compatibility of the exercises

All exercises and script samples have been tested on Debian 7 “Jessie” with the GNU
bash 4.3, GNU sed 4.2.2 and GNU awk 4.1.1. Everything should work on other Unix-like
operating systems as well, provided that these programs are installed in the denoted
version or newer.

On BSD-like operating systems like Mac OS X it may happen, that examples give
different output or produce errors, due to subtle differences in the precise interface of
the Unix utility programs. Especially awk exists in a couple of different variants. Make
sure that you install specifically gawk, the GNU awk implementation. See appendix A.1
on page 128 for some hints how to install the required programs.

Errors and feedback

If you spot an error or have any suggestions for the further improvement of the material,
please do not hesitate to contact me under michael.herbst@iwr.uni-heidelberg.de.

Licensing and redistribution

Course Notes

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Inter-
national License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-sa/4.0/.

An electronic version of this document is available from https://michael-herbst.com/
teaching/advanced-bash-scripting-2017/. If you use any part of my work, please
include a reference to this URL and as well cite

Michael F. Herbst. Advanced bash scripting 2017. November 2017. URL
http://doi.org/10.5281/zenodo.1045332.

Script examples

All example scripts in the repository are published under the CC0 1.0 Universal Licence.
See the file LICENCE in the root of the repository for more details.

vii

michael.herbst@iwr.uni-heidelberg.de
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://michael-herbst.com/teaching/advanced-bash-scripting-2017/
https://michael-herbst.com/teaching/advanced-bash-scripting-2017/
http://doi.org/10.5281/zenodo.1045332

Chapter 1

Introduction to Unix-like
operating systems

Before we dive into scripting itself, we will take a brief look at the family of operating
systems on which the use of scripting is extremely prominent: The Unix-like operating
systems.

1.1 The Unix philosophy

UNIX itself is quite an old operating system (OS) dating back to the 1970s. It was
developed by Dennis Ritchie1, Ken Thompson and others at the Bell Labs research
centre and was distributed by AT&T — initially in open source form. It included
important new concepts, now known as the Unix philosophy, which made the OS very
flexible and powerful. As a result it became widely used in both business and academia.
Nowadays, where AT&T UNIX is pretty much dead, the Unix philosophy still plays a
key role in operating system design. One can identify a whole family of OSes — the
so-called Unix-like OSes, which derive from the traditional AT&T UNIX. Two of the
most important modern OSes, Mac OS X and GNU/Linux, are part of this family. In
other words: Unix’s importance in academia and business has not changed very much
over the years.

Many formulations of the Unix philosophy exist. The most well-known is the one
given by Doug McIlroy, the inventor of the Unix pipe and head at Bell Labs in the
1970s[1]

Write programs that do one thing and do it well.

1Also the creator of the “C” programming language

1

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS 2

For the Unix-like OSes this implies (at least in theory):
• The OS is a collection of

– small helper programs or “utilities“, that only do a simple thing
(think about ls, mkdir . . .)

– programs (”shell scripts“) that combine the utilities to achieve a bigger task.
• The OS is extremely modular:

– All programs have a well-defined interface
– It is easy to swap one program for a modified/enhanced version without

breaking the rest of the OS
• The OS is standardised:

– The functionality of the programs is (almost) identical for all OSes of the
Unix-family.

1.1.1 Impact for scripting

On such a platform scripting becomes very helpful since
• all important functionality is available in the OS-provided utilities. So very little

actual code has to be written to glue the utilities together.
• the utilities are not too specific for a particular job and can therefore be used

flexibly throughout the script.
• documentation of their interfaces (commandline arguments) is available.
⇒ If one changes from one Unix-like OS to another or from one version of the OS to

the next, no change in the functionality of the derived script is to be expected.
⇒ Scripts become reusable and portable.

1.2 The Unix utilities

Now let us briefly review some of the most important utility programs on a modern
Unix-like OS. This list is not at all complete and in fact we will add more and more
utilities to our toolbox during the course. See page 135 for a full list of commands
introduced in this course.

This section is just to remind you about these commands. If more detailed information
is required you should consult the manpage by typing man command2 or try the tips in
section 2.5 on page 20.

2We use teletype font in this course to denote shell commands or shell scripts. Furthermore we use
underlined text for parts of the shell command, which represents a descriptive dummy. In this case, for
example, command is a dummy for an actual shell command like ls or mv.

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS 3

1.2.1 Accessing files or directories

cd Change the current working directory of the shell
ls List the content of the current working directory. Important options:

-l long form: More details
-a all: Also include hidden files
-h human-readable: Output sizes in more readable way
-t time: Sort output by time

pwd Print the current working directory of the shell

1.2.2 Modifying files or directories

touch Change the modification time if the file exists, else create an empty file,
options:
-t Change modification time to the one provided

mkdir Create a directory
rm Delete files. Important options:

-r recursive: Delete all files and directories in a directory
-i Ask before each file deleted
-I Ask only in certain circumstances and only once (mass-delete)

rmdir Delete empty folders
chown Change ownership for a file (see section 1.3 on page 7)

1.2.3 Getting or filtering file content

cat Concatenate one or many files together
tac Concatenate files and print lines in reverse order
tee Write input to a file and to output as well
cut Extract <tab>-separated columns from input

-d delimiter: Character to use for the split
-f fields: Which fields (columns) to print

grep Filter input/ by a pattern
-i ignore case
-v invert: only non-matching lines are given
-o only-matching: print only matching content
-C context: print n lines of context as well
-q only the return code is determined

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS 4

sort sort input according to some parameters, Options:
-g general numeric sort: interpret strings like “1E-9” as numeric values
-u unique sort: each identical line is only print once

uniq Take a sorted input and discard double lines
-c count the number of occurrences

Example 1.1. In this example we will assume that the current working directory is the
top level of the git repository 3. If we run

1 cat resources/matrices /3.mtx

we get the content of the file resources/matrices/3.mtx. (Check with a text editor.)
If we do the same thing with tac, we get the file again, but reversed line by line.

Many of you probably already know the < character can be used to get the input for
a command from a file. I.e. the command

1 < resources/matrices /3. mtx cut -f 1

takes its input from the file we just looked at and passes it onto cut. Naively we expect
cut to print only the first column of this file. This does, however, not occur, because cut
per default only considers the tabulator character when splitting the data into columns.
We can change this behaviour by passing the arguments -d "␣". This tells cut that the
space character should be used as the field separator instead. So running

1 < resources/matrices /3. mtx cut -f 1 -d "␣"

gives the first column as desired.
Example 1.2. In this example we want to find all lines of the Project Gutenberg4 books
pg74 and pg76 that contain the word “hunger”. One could run those two commands one
after another

1 < resources/gutenberg/pg74.txt grep hunger
2 < resources/gutenberg/pg76.txt grep hunger

or we can use the pipe “|” to connect the cat and grep commands together like
1 cat resources/gutenberg/pg74.txt \
2 resources/gutenberg/pg76.txt | grep hunger

Reminder: The pipe connects the output of the first with the input of the second
command. More details on this later.

3The top level is the directory in which this pdf is contained
4https://www.gutenberg.org/

https://www.gutenberg.org/

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS 5

Example 1.3. There exists a counterpart to “<”, which writes to a file, namely “>”. In
principle it just takes the output from the last command and writes it to the file specified
afterwards. In other words the effect of the two commands

1 < infile cat > outfile
2 cp infile outfile

is absolutely equivalent.
Note, that there are many cases where the precise place where one puts the < and > is
not important. For example the commands

1 < infile > outfile cat
2 cat <infile > outfile

all work equally well. The space after the “arrows” is also optional.
Example 1.4. Since uniq can only operate on sorted data, it is very common to see
for example

1 < resources/testfile sort | uniq

This can of course be replaced by the shorter (and quicker)
1 < resources/testfile sort -u

One really might wonder at first sight why the sort command has the -u flag, since
somewhat violates the Unix philosophy. Most Unix-like OS have this flag nevertheless,
mostly for performance and convenience reasons.

Note, that in many cases a construct like < file command” can actually be replaced
by “command file”. Most commands are built to do the “right thing” in such a case and
will still read the file. sort is a good representative: The most recent command above
is entirely equivalent to

1 sort -u resources/testfile

In some cases this version, which takes the file as an argument, tends to be faster.
Nevertheless I personally prefer the version < resources/testfile sort -u since this
has a very suggestive syntax: The data flows from the source (< file) on the LHS to
the sink on the RHS and on the way passes through all commands. Sources on the right,
filters (i.e. commands) in the middle and sinks on the right.

1.2.4 Other

less View input or a file in a convenient way
wc Count characters, lines or words on input

-l count number of lines
-w count number of words

echo Print something to output
man Open manual page for a command
whatis Print a short summary describing a command

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS 6

Example 1.5. If we want to find help for the commands tail and head, we could use
the manpage

1 man tail
2 man head

Even man itself has a manpage, e.g.
1 man man

Problems arise with so-called shell builtins. We will talk about this in the next chapter
(see section 2.5 on page 20).

1.2.5 Exercises

Exercise 1.6. Exploring the man program:
• Run the commands man -Lde tail and man -LC tail. What does the -L flag do

to man?
• Find out about the different sections about the Unix manual (read line 21 till 41

of man man).
• Which section number is the most important for us?
• Find out how one can enforce that an article is only from a particular section.

Exercise 1.7. A first look at Project Gutenberg books in resources/gutenberg

• Find out how many lines of the book pg74.txt actually contain “hunger”. Do this
in two possible ways, both times using grep at least once.
– Once use at least one pipe
– Once use no pipe at all.

• Find out what the effect of the grep options -A, -B, -n, -H or -w is.
• (optional) pg74.txt contains two lines that directly follow another in which the

first line contains the word “hunger” and the second line contains the word “soon”.
Find out the line numbers of these two lines.

Exercise 1.8. Looking at some matrices:
• Read the manpages of head and tail. Rebuild the effect of the tail com-

mand using head. I.e. give a commandline that achieves the same effect as
< resources/digitfile tail, but that does not contain tail at all.

• Find out (using the manpage) how one could print all lines but the first of a file. You
can either use the commands from your answer to the first part or use tail, both is
possible. Try your suggested command sequence on resources/matrices/3.mtx
to see that it works.

• You might have noticed that the mtx files contain a few lines right at the top which
begin with the special comment character “%”. Suggest a way to suppress comment
lines in the file 3.mtx.

• Provide a sequence of commands using cut and sort which prints how many
distinct values there are in the third column. I.e. if this column contains 3 fours, 2

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS 7

threes and 1 zero, the answer should be 3. Note that the columns are not separated
by tabs, so you will need to play with the flag -d of cut. Again use your idea
from the previous answer to ignore the comment line. You can check your result
by looking at the file and comparing the output with your manual count.

• Provide a sequence of commands that prints the smallest value in the third column
of 3.mtx. Again make sure your commands ignore the first comment line.

• Do the same thing with resources/matrices/bcsstm01.mtx. Be very careful and
check the result properly. Here you will need the right options for sort to get the
correct answer.

• Run the same sequence of commands as in the previous part on
resources/matrices/lund_b.mtx. The result should surprise you. What goes
wrong here?

• Another tool that can be used to print certain columns in files is awk. The syntax
is awk '{print $n}' to print the nth column. Use it instead of cut for the file
lund_b.mtx. How does it perform?

1.3 The Unix file and permission system

To conclude this chapter we want to spend some time discussing the way Unix-like
operating systems organise files. Please note, that this section is just a very concise
introduction, which sacrifices correctness for simplicity at a couple of places.

1.3.1 What are files?

• Convenience feature for programmers or users of the computer
• File: Virtual chunk of data.
• File path: Virtual location where user expects the file.
• File system: Provides lookup feature to translate file path to hard drive location
• Lookup mechanism incorporates extra information about the file:

– Owner (Person who created the file)
– Group (Group of people file is attributed to)
– Permissions for file access
– Time when file was created/accessed/modified

• All this information can be obtained using the ls -l command
• Some files are “special”, e.g.

– soft links: Files that point to a different file path
⇒ OS performs look-up at the other file path
– hard links: Duplicated entries in the lookup mechanism
⇒ Two paths point to the same hard drive location

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS 8

1.3.2 Unix paths

Paths are a structured syntax that allow the user to tell the operating system which file
he or she is referring to. In Unix these paths are characterised as follows:

• Entities on the path are separated by “/”
• The last entity may be a file or directory, all the others are directories5

• Absolute path: Path starting at the root directory, i.e. who has “/” as the first
character

• Relative path: Gives a location relative to the current directory. May contain “..”
to denote the parent directory relative or “.” to denote the identical directory to
the entity on the left. E.g. the paths

1 foo/bar/baz
2 foo/./bar /../ bar/./baz

are all relative paths to exactly the same location.

1.3.3 Unix permissions

Consider the following output of the command ls -l

1 drwxr -xr -x 4 mfh agdreuw 4096 Aug 15 19:07 resources
2 -rw -r--r-- 1 mfh agdreuw 4115 Aug 15 20:18 file
3 -r-------- 1 mfh agdreuw 4096 Aug 15 00:00 secret

The output means from left to right:
• Permissions (10 chars)

– 1 char (here d or -): Indicates the file type
– 3 chars: Access rights for the owner
– 3 chars: Access rights for the group
– 3 chars: Access rights for the world (anyone else on the machine)
– r means read, w means write, x means execute

• Number of hard links to this hard drive location
• Owner
• Group
• Size (in bytes)
• Last modification time
• File name

A file is (readable/writeable/executable) for a specific user if at least one of the following
is true:

5Which are actually just some special kind of files

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS 9

• He is the owner and the owner (r/w/x)-bit is set (i.e. ls shows the respective letter
in the listing)

• He is in the group the file belongs to and the group has the (r/w/x)-bit set
• The (r/w/x)-bit is set for the world

The permissions can be changed using the command chmod and the owner and group
information can be changed using chown.
Example 1.9. After a run of chmod +x secret the ls -l would show

1 drwxr -xr -x 4 mfh agdreuw 4096 Aug 15 19:07 resources
2 -rw -r--r-- 1 mfh agdreuw 4115 Aug 15 20:18 file
3 -r-x--x--x 1 mfh agdreuw 4096 Aug 15 00:00 secret

Further running chmod g-r file gave the result

1 drwxr -xr -x 4 mfh agdreuw 4096 Aug 15 19:07 resources
2 -rw ----r-- 1 mfh agdreuw 4115 Aug 15 20:18 file
3 -r-x--x--x 1 mfh agdreuw 4096 Aug 15 00:00 secret

Chapter 2

A first look at the bash shell

In this chapter we will take a first look at the bash shell itself. We will discuss some
very handy features to save oneself from typing too much and we will have a closer look
at elementary features of the shell like pipes, redirects and exit codes.

2.1 Historic overview

2.1.1 What is a shell?

Back in the days:
• Terminal: Place where commands can be keyed in in order to (compile and) execute

programs which do the work on a computer
• Shell: Interface the OS provides to the user on a terminal

In this definition a graphical user interface is a shell as well!
Nowadays:

• Hardly any work done from actual terminals any more
• Programs to start a virtual terminal: “Terminal emulator”
• Shell: Default program started by the terminal emulator

2.1.2 The Bourne-again shell

• bash is short for Bourne-again shell
• derived and improved version of the Bourne shell sh
• Pretty much the default shell on all Unix-like OS
• Other important shells see table 2.1 on the following page

10

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 11

sh Bourne shell 1977 first Unix shell
csh C shell 1978 syntax more like C
ash Almquist shell 1980s lightweight shell
ksh Korn shell 1983 sh improved by user requests at Bell Labs
bash Bourne-again shell 1987 the default shell
zsh Z shell 1990 massive and feature-rich, compatible to bash

Table 2.1: List of noteworthy shells. For more information see https://en.wikipedia.
org/wiki/Comparison_of_command_shells

2.2 Handy features of the bash

2.2.1 Tab completion

• Can save you from a lot of typing
• Needs to be loaded by running (if not already done automatically)

1 . /etc/bash_completion

• Press −−→−−→ once to complete a command
• Press −−→−−→ −−→−−→ to get list of possible completions
• Works on files and command options, too.

2.2.2 Accessing the command history

Consider a sequence of commands
1 ls resources/
2 cd resources/
3 ls -al
4 ls matrices
5 cd matrices
6 ls -al
7 ls -al

• It would be nice to do as little typing as possible
• Fortunately the bash remembers what was most recently typed
• Navigation through history using ↑ and ↓

• The last line can also be executed by ↑ Enter

Another way of accessing the history is given by the so-called history expansion, e.g.
!! run the most recent command again
!$ the last argument of the previous command line
!^ the first argument of the previous command line
!:n the n-th word of the previous command line
!:n-m words n till m of the previous command line

https://en.wikipedia.org/wiki/Comparison_of_command_shells
https://en.wikipedia.org/wiki/Comparison_of_command_shells

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 12

So if we assume the working directory is the top level directory of the git repository for
this course, we could just type

ls r −−→−−→ Enter
cd !$ Enter
ls -al Enter
ls m −−→−−→ Enter
cd !$ Enter
↑ ↑ ↑ Enter
↑ Enter

1 ls resources/
2 cd resources/
3 ls -al
4 ls matrices
5 cd matrices
6 ls -al
7 ls -al

to achieve the same thing as above.
Another feature worth mentioning here is reverse-i-search. In order to transform

the shell in this mode type Ctrl + R and . . .
• Start typing
• The shell will automatically display the most recent command matching command

line
• type Enter to execute
• type more chars to continue searching
• use ← , → , Home , End , . . . to edit the current match, then Enter to run

the edited version
• type Ctrl + R to go to the next match further back in the history
• type Ctrl + C to abort

Note, that both tab completion as well as the bashs history features do only work in an
interactive environment and not when writing scripts.
A few other bash keystrokes worth trying out:

• Ctrl + W deletes the word on the left

• Esc and then V opens the vim editor to edit the commandline1

Exercise 2.1. What is the smallest number of keystrokes you need to achieve the
execution of the following command sequences.

1 cd resources
2 ls images | grep blue #no file blue exists
3 ls|grep blue
4 mkdir grep_red grep_blue

Assume as usual that the current working is the top level of the repository. Assume
further that the command history is filled exactly with these entries (from oldest to
newest):

1 ls images | grep red
2 ls tables
3 ls resources

1In order for this to work the bash needs to be in vi editing mode. Enable this by running the
command “set -o vi” beforehand.

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 13

Note: Count special symbols like “_” or “|” or combined strokes like Ctrl + R as one
keystroke. Also count all Enter s or −−→−−→ s required.

2.2.3 Running multiple commands on a single line

The bash offers quite a few ways to separate subsequent commands from one another.
The simplest one, which everyone has used already multiple times just for this course,
is the newline character (as produced by the Enter key). The character ; is entirely
synonymous to Enter . So typing

cd -; ls Enter

or
cd - Enter
ls Enter

is equivalent.
In contrast the character & tells the bash to send the program on its left to background

and immediately proceed with the execution of the next command. This is extremely
helpful for running long jobs without blocking the shell, e.g.

1 cp BigFile /media/usbstick/ & ls resources

would start copying the big file BigFile to the USB Stick and immediately display the
content of resources, not waiting for the copying to be finished. During the execution
of the background job cp BigFile /media/usbstick/, output from both jobs will be
displayed on the terminal.

If more than one command is specified on a single commandline, the compound is
also called a “command list”, so

1 cd -; ls

and
1 cp BigFile /media/usbstick/ & ls resources

are examples of command lists.

2.3 Redirecting command input/output

Each command which is run on the terminal per default opens 3 connections to the shell
environment:

• stdin or file descriptor (fd) 0: The command reads all input from here.
• stdout or fd 1: All normal output is printed here.
• stderr or fd 2: All output concerning errors is printed here.

Especially the distinction what is printed to stdout and what is printed to stderr is not
clear and programs interpret this differently and sometimes very unintuitively. Usually
one can expect error messages on stderr, everything else on stdout. There are a few good
reasons to distinguish stdout and stderr :

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 14

1. In many cases one is only interested in part of the output of a program
⇒ One pipes the program into grep

⇒ Only a small portion of the output produced reaches the eye of the user
• But: We still want to see all the errors

2. Scripts often capture the output of a program for later use.
⇒ Programmer only expects normal output in the capture, no error messages
⇒ Can capture stdout and stderr separately.

3. Usually one can safely discard the output on stdout whereas stderr is typically still
important to watch for any unforseen issues.
⇒ Implicitly output split into two categories for sensible logging.

By default stdin is connected to the keyboard and both stdout and stderr are connected
to the terminal. Running a comm in the shell hence gives a redirection diagram like

keyboard comm
0

terminal
1

2

As we already know the characters < and > can be used to read/write from/to a file,
so the commandline

1 < input comm >output

can be visualised as

input comm
0

terminal

output1

2

If we want to prevent the content of the file output to be overwritten, we can use the
syntax

1 < input comm >>output

This does exactly the same thing as above, just it appends stdout to the file output
instead of deleting the previous content and replacing it by the output of comm.

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 15

syntax comment
> file Overwrite file with stdout
>> file append stdout to file
2> file Overwrite file with stderr
2>> file append stderr to file
&> file Overwrite file with stdout and stderr combined
&>> file append stdout and stderr to file

Table 2.2: Summary of the output redirectors of the bash shell. The versions with a
single > always substitute the content of the file entirely, whereas the >> redirectors
append to a file.

syntax comment
| connect stdout → stdin
|& connect stdout and stderr → stdin

Table 2.3: Summary of the types of pipes

If one wants to redirect the output on stderr to a file called error as well, we can
use the commandline

1 comm >output 2>error

or pictorially

keyboard comm
0

error

output1

2

Many more output redirectors exist. They all differ only slightly depending on what file
descriptor is redirected and whether the data is appended or not. See table 2.2 for an
overview.

Similar to output redirection >, a pipe between commands foo | bar only connects
stdout to the next command but not stderr, i.e.

keyboard foo
0

bar

1 → 0

terminal2

1
2

Again there is also a version that pipes both stdout and stderr to the next command,
see table 2.3.

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 16

One very common paradigm in scripting is output redirection to the special device files
/dev/null or /dev/zero. These devices have the property, that they discard everything
which gets written to them. Therefore all unwanted output may be discarded by writing
it to e.g. /dev/null.

For example, consider the script 2_intro_bash/stdout_stderr.sh2 and say we
really wanted to get all errors but we are not very much interested in stdout, then
running

1 2_intro_bash/stdout_stderr.sh > /dev/null

achieves exactly this task. If we want it to be entirely quiet, we could execute
1 2_intro_bash/stdout_stderr.sh &> /dev/null

Exercise 2.2. Visualise the following command line as a redirection diagram
1 ls |& grep test | grep blub | awk '{print $2}' &> outfile

Exercise 2.3. tee is a very handy tool if one wants to log the output of a long-running
command. We will explore it a little in this exercise.

• Imagine you run a program called some_program which does a lengthy calculation.
You want to log all the output the program produces (on either stdout or stderr) to
a file log.full and all output that contains the keyword “error” to log.summary.
Someone proposes the commandline

1 some_program | tee log.full |& grep error &> log.summary

Draw the redirection diagram. Does it work as intended? If not suggest an
alternative that does achieve the desired goal making sure that only output from
some_program actually reaches the log files.

• What happens if you run the command multiple times regarding the log files? Take
a look at the manpage of tee and propose yet an alternative command line that
makes sure that no logging data is lost between subsequent runs of some_program.

Exercise 2.4.
• Create a file called in and write some random text to it.
• Run < in cat > out. What happens?
• Run < in cat > in. What happens here?
• (optional) Run just plainly cat in a terminal. What do you observe? (Recall that

you can quit any execution by Ctrl + C .)
Some hints to help you explore and explain what is going on:
– Draw a redirection diagram for just cat.
– Run cat followed by Ctrl + D . What happens?
– Read up on the keywords “end-of-file” or “EOF” in the bash manual and on

wikipedia3.
2The script contains the stderr redirector >&2, which allows to redirect command output (like the

printing of echo) to stderr explicitly. There is no need to worry about this right now, we will cover this
aspect in more detail in chapter 4 on page 34.

3https://en.wikipedia.org/wiki/End-of-file

https://en.wikipedia.org/wiki/End-of-file

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 17

2.4 The return code of a command

Apart from writing messages to stdout or stderr, there is yet another channel to inform
the user how the execution of a program went:

• Each command running on the shell returns an integer value between 0 and 255
on termination, the so-called exit status or return code.

• By convention 0 means “no errors”, anything else implies that something went
wrong.

• The meaning of a specific code can be checked from the program’s documentation
(at least in theory).

• The return code is usually not printed to the user, just implicitly stored by the
shell. Note, however, that there exist handy addons to the shell to change this.

• In order to get the exit code of the most recently terminated command one may
execute echo $?.

• Since this is in turn a command, which may be executed unsuccessfully, this by itself
alters the return code and hence effects the value printed by the next execution of
echo $?.

Exercise 2.5. To give you an idea why exit codes are useful as indicators what is going
on, do the following

• Run a plain cat in your terminal:

$ cat

It hangs as expected after exercise 2.4 on the preceding page. Now key in
Ctrl + D and check the return code by

$ echo $?

What is the output of the last command?
• Repeat the procedure using Ctrl + C instead of Ctrl + D . What is the

result now? What is the reason for the difference, keeping the results of exercise
2.4 in mind.

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 18

2.4.1 Logic based on exit codes: The operators &&, ||, !

We already looked at the & and ; operators for separating commands in a command list,
e.g.

1 foo ; bar
2 foo & bar

In both cases there is no control about the execution of bar: Irrespective whether foo
is successful or not, bar is executed. If we want execution of the bar command only if
foo succeeds or fails, we need the operators && or ||, respectively:

1 foo || bar # bar only executed if foo fails
2 foo && bar # bar only executed if foo successful

A few examples:
• Conditional cd:

1 cd blub || cd matrices

Goes into directory matrices if blub does not exist.
• If the annoying error message should be filtered in case blub does not exist, one

could run
1 cd blub &> /dev/null || cd matrices

• Very common when developing code:
1 make && ./a.out

The compiled program ./a.out is only executed if compiling it using make succeeds.
• A list of commands connected by && is called an “AND list” and a list connected

by || an “OR list”.
• AND lists or OR lists may consist of more than one command

1 ./ configure && make && make install && echo Successful

• This works as expected since the return code of such an AND/OR lists is given by
the last command in the sequence

• One can also intermix && and ||

1 cd blub &> /dev/null || cd matrices && vim 3.mtx

although this can lead to very hard-to-read code (see exercise below) and is therefore
discouraged.

Finally there also exist the operator ! that inverts the return code of the following
program. So running

1 ! ls

returns the exit code 1 if ls has been successful and 0 on error.

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 19

Exercise 2.6. Find out what the programs true and false do. Look at the following
expressions and try to determine the exit code without executing them. Then check
yourself by running them on the shell. You can access the exit code of the most recent
command via echo $?.

1 false || true
2 true && false || true
3 false && false && true
4 false || true || false

Run the following commands on the shell
1 false | true
2 true | true
3 true | false
4 false | false
5 false |& true

What does the pipe do wrt. to the return code?
Exercise 2.7. The main use of echo is to print all of its arguments to stdout. This is
typically not needed a lot in interactive terminal sessions, but in fact one nevertheless
can make a lot use of echo to provide very particular input to another command using
a pipe.

Keeping this in mind take a look at the following commands, which are all valid bash
shell syntax. What do the commandlines mean? How are stdin, stdout and stderr of
grep connected to the shell environment? What is the exit code?

• echo test | grep test

• echo test & grep test

• echo test |& grep test

• echo test && grep test

• echo test || grep test

Exercise 2.8. We already talked about the grep command in order to search for
strings. One extremely handy feature of grep is that it returns 0 if it found a match and
1 otherwise. Change to the directory resources/gutenberg. Propose bash one-liners
for each of the following problems.

• Print “success” if the file pg1661.txt contains the word “the” (there is a special
grep flag for word matching), else it should print “error”.

• Do the same thing, but use a special flag of grep in order to suppress all output
except the “success” or “error” in the end. Apart from there being less amount of
output, what is different?

• Now print “no matches” if pg1661.txt does not contain the word “Heidelberg”,
else print the number of times the word is contained in the file.

• Try a few other words in the above command, like “Holmes”, “a”, “Baker”, “it”,
“room” as well.

• Count the number of words in the file pg1661.txt

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 20

program description
man Accessing the manual pages
info Accessing the Texinfo manual
whatis Print a short summary describing a command
apropos Search in manpage summaries for keyword
help Access help for bash builtin commands

Table 2.4: Summary of available commands to get help

Exercise 2.9. (optional) Go to the directory resources/directories.
• Run the rather confusing command

1 cd 3/3 || cd 4/2 && cd ../4 || cd ../3 && cat file

and explain what goes on in terms of the output printed on the terminal.
Note, that this changes the working directory on the shell, so in order to run it
again, you need to cd back to resources/directories beforehand.

• Suggest the places at which we need to insert a 2>/dev/null in order to suppress
the error messages from cd. Try to insert as little code as possible.

• Go back to the directory resources/directories. Now run

mkdir -p 3/3

to create the directory resources/directories/3/3. Explain the output of
1 cd 3/3 || cd 4/2 && cd ../4 || cd ../3 && pwd

As a general hint for this exercise: Try to run each command of the list in a shell and
check the action as well as the return code each time, before moving on to the next
command which would run.

2.5 Tips on getting help

It is not always clear how to get help when writing a script or using the commandline.
Many commands exist that should provide one with these answers. Table 2.4 gives an
overview.
If one knows the name of a command usually a good procedure is:

1. Try to execute command --help or command -h. Many commands provide a good
summary of their features when executed with these arguments.

2. Try to find help in the manpage man command.
3. If the manpage did not answer your problem or says something about a Texinfo

manual, try accessing the latter using info command.
4. If both is unsuccessful the command is probably not provided by the system, but

by the bash shell instead – a so-called shell builtin. In this case try finding help
via help command.

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 21

If the precise command name, however is not known, try to find it first using
apropos keyword.
A word of warning about shell builtin commands:

• It is intentional that shell builtin commands act extremely alike external commands.
• Examples for perhaps surprising shell builtins are cd, test or echo.
• Some of these commands — like test or echo — are provided by the OS as well.
• The builtins get preference by the bash for performance reasons.
⇒ The manpage for some commands (describing the OS version of it) do not always

agree with the functionality provided by the bash builtin.
• Usually the bash has more features.
⇒ Bottom line: Sometimes you should check help command even though you found

something in the manpages.
Exercise 2.10. By crawling through the help provided by the help and the man com-
mands, find out which of these commands are shell builtins:

man kill time fg touch info history rm pwd ls exit

Chapter 3

Simple shell scripts

Now that we looked at the interactive bash shell and what can be achieved using return
codes and conditional code execution, we will finally dive into proper scripting in this
chapter.

3.1 What makes a shell script a shell script?

The simplest script one can think of just consists of the so-called shebang
1 #!/bin/bash

This line, starting with a hash(#) and a bang(!) — hence the name — tells the OS which
program should be used in order to interpret the following commands. If a file with
executable rights is encountered, which furthermore begins with a shebang, the OS calls
the program specified (in this case /bin/bash) and passes the path to the script file12

In order to compose a shell script we hence need two steps
• Create a file containing a shebang like #!/bin/bash
• Give the file executable rights by calling chmod +x on it.

1Strictly speaking the shebang is not required, since a missing shebang causes the default shell to
be used, which is typically the bash as well. Therefore this works well in many cases. It is nevertheless
good practice to include the shebang as it makes the scripts more portable to other setups.

2The precise process is that the OS calls the program in the shebang exactly as it is specified (i.e.
including possible extra arguments) and then passes the path to the file as the last argument to the
program as well. This allows to send the program some flags to infulence the processing of the whole
script. Typical examples are /bin/bash -e to cause the shell to exit on any errors or /bin/bash -x for
debugging scripts.

22

CHAPTER 3. SIMPLE SHELL SCRIPTS 23

3.1.1 Executing scripts

Once script files are made executable using chmod +x we can execute it on the shell like
any other command. Consider the simple script

1 #!/bin/bash
2 echo Hello world!

3_simple_scripts/hello.sh

which just issues a “Hello world.” If the current working directory of the shell is exactly
the directory in which hello.sh has been created, we can just run it by executing

1 ./ hello.sh

Otherwise we need to call it by either the full or the relative path of the script file3. E.g.
if we are in the top directory of the course git repository, we need to execute

1 3_simple_scripts/hello.sh

instead.

3.1.2 Scripts and stdin

Similar to other commands, scripts by themselves can also process data provided on
their stdin. E.g. consider the script

1 #!/bin/bash
2 cat

3_simple_scripts/cat.sh

which just contains a cat. On call we can redirect input to it
1 < resources/testfile 3_simple_scripts/cat.sh

or pipe to it
1 echo "data" | 3_simple_scripts/cat.sh

both is allowed. As you probably noticed in both cases the effect is exactly identical to
1 < resources/testfile cat

or
1 echo "data" | cat

This is because everything that is input on the script’s stdin is available for the programs
inside the script to process. In other words the stdin of the programs inside the script is
fed by the stdin of the whole script. We will discuss this in more detail in section 4.7.2
on page 51.

For stdout and stderr unsurprisingly the same applies, namely that all output of all
programs called in the script is combined and presented to the caller of the script as a
common stream of stdout and stderr for the full script.

3This can be changed by altering the PATH variable. See section 6.4 on page 90.

CHAPTER 3. SIMPLE SHELL SCRIPTS 24

3.2 Shell variables

Shell variables are defined using the syntax
1 VAR=value

and are accessed by invoking the so-called parameter expansion, e.g.
1 echo $VAR

• The name of the variable, i.e. VAR has to start with a letter and can only consist
of alphanumeric characters and underscores.

• The convention is to use all-upper-case names in shell scripts.
1 123=4 # wrong
2 VA3=a # ok
3 V_F=2 # ok

• The value does not need to be a plain string but may contain requests to expand
other variables, command substitutions (see section 3.2.2 on page 26), arithmetic
expansion (see section 5.1 on page 60 and many more (see manual [2])

1 VAR=a${OTHER }34

• value may be empty
1 VAR=

• When expanding a parameter the braces {} are only required if the character which
follows can be misinterpreted as part of the variable name

1 VAR =123
2 VAR2=$VAR23 #fails
3 VAR2=${VAR }23 #correct

• Undefined variables expand to an empty string.
• All bash variables are stored as plain strings4, but they can be interpreted as

integers if a builtin command requires this (e.g. test — see section 4.2 on page 35)
• Variables can also be deleted5 using

1 unset VAR

• A wide range of predefined variables exist (see table 3.1 on the next page)

4This can be changed, however, see the declare command in the manual [2]
5This is not exactly the same thing as setting the variable to the empty string, but still often

equivalent.

CHAPTER 3. SIMPLE SHELL SCRIPTS 25

name value
USER Name of the user running the shell
HOSTNAME Name of the host on which the shell runs
PWD The current working directory
RANDOM Random value between 0 and 32767
HOME The user’s home directory
PATH Search path for commands (see ex. 4.19 on page 57)
SHELL Full path of the shell currently running

Table 3.1: Important predefined variables in the bash shell. See [2] for details.

3.2.1 Special parameters

Apart from the variables we mentioned above, the shell also has a few special parameters.
Their expansion works exactly like for other variables, but unlike their counterparts
above, their values cannot be changed.

• positional parameters 1, 2, . . . ; expand to the respective argument passed to the
shell script. E.g. if the simple script

1 #!/bin/bash
2

3 echo The first: $1
4 echo The second: $2

3_simple_scripts/first_script.sh

is executed like

$ 3_simple_scripts/first_script.sh ham egg and spam

we get6

1 The␣first:␣ham
2 The␣second:␣egg

• parameter @, which expands to the list of all positional parameters
• parameter #, expands to the number of positional parameters, that are non-empty
• parameter ?, expands to the return code of the most recently executed command

list.
• parameter 0, expands to name of the shell or the shell script.

6For command output we will sometimes use special symbols like “␣” to make whitespace characters
visible.

CHAPTER 3. SIMPLE SHELL SCRIPTS 26

Example 3.1. If the script
1 #!/bin/bash
2 echo 0: $0
3 echo 1: $1
4 echo 2: $2
5 echo 3: $3
6 echo 4: $4
7 echo @: $@
8 echo ?: $?
9 echo "#:␣$#"

3_simple_scripts/special_parameters.sh

is executed like
1 3_simple_scripts/special_parameters.sh 1 2 3 4 5 6 7 8 9

we get

1 0:␣3_simple_scripts/special_parameters.sh
2 1:␣1
3 2:␣2
4 3:␣3
5 4:␣4
6 @:␣1␣2␣3␣4␣5␣6␣7␣8␣9
7 ?:␣0
8 #:␣9

For more details about the parameter expansion see chapter 5 on page 60.

3.2.2 Command substitution

In order to store the output of a command in a variable, we need a feature called
command substitution. The basic syntax is

1 VAR=$(command_list)

• Command substitution only catches output produced on stdout, e.g. running
1 VAR=$(ls /nonexistent)

would still result in the “File not found” error message being printed on the terminal,
since ls prints this message to stderr.

• Inside the $() we have a so-called subshell (see also section 6.1 on page 71), where
output redirection is possible. We could hence suppress the error message by

1 VAR=$(ls /nonexistent 2> /dev/null)

• Another consequence of the subshell is, that output of all commands within the
$() is combined:

1 VAR=$(echo one;echo two)
2 echo "$VAR"

CHAPTER 3. SIMPLE SHELL SCRIPTS 27

gives

1 one
2 two

Note, that the double quote “"” is crucial here to keep the line break, for reasons
we will discuss in section 3.4 on page 29.

• The return code of a command substitution is the return code of the internal
command list, i.e. the code of the last command executed. So we could use

1 VAR=$(ls /nonexistent 2> /dev/null) || echo something wrong ↙
↪→here

in order to inform the user that something went wrong with the ls command.
• Command substitution may be used as an argument for another command:

1 ls $(echo chem_output)

• Command substitutions may be nested:
1 VAR=$(echo $(echo $(echo value)))
2 # VAR now contains "value"

Exercise 3.2. (optional) Write a bash quine7, i.e. a script that produces its source
code as output when executed. Hint: The solution has less then 20 characters.
Exercise 3.3. This exercise is again considered with the matrices in resources/matrices.

• Write a script that copies all data from resources/matrices/3.mtx to output.mtx
with the exception that the first (comment) line should appear at the very end of
the file output.mtx

• In other words the net effect should be that the script moves the comment line to
the end of output.mtx

Now generalise the script: Make use of the positional parameters in order to:
• Write a script that takes two arguments: The first should be a matrix file, the

second should be an output file, to which the script will write all data.
• The script should again copy all data over from the matrix file to the output file,

with the exception that the comment line appears at the end of the output file.
Exercise 3.4. (optional) Remind yourself that all commands in a script are connected
to the script’s stdin and stdout.
(a) Write a script, which takes a keyword as first argument and greps for this keyword

on all data supplied on stdin. Test it with a call like

$ < resources/gutenberg/pg1661.txt ./ your_script.sh bla

Suppose that now we want to do some further processing in the same script on the very
filtered output we got by the initial grep.
(b) Adjust your script to only print the first matching line.

7https://en.wikipedia.org/wiki/Quine_%28computing%29

https://en.wikipedia.org/wiki/Quine_%28computing%29

CHAPTER 3. SIMPLE SHELL SCRIPTS 28

(c) Discard what you did in (b) and now print only the last matching line.
(d) Now try to combine (a), (b) and (c): The script should now print only the first

and the last matching line, then an empty line (just a plain echo) and then all
matching lines including the first and the last, exactly as they are returned from
the initial grep you used in (a). Most importantly the script should always print
all these things in exaclty the given order.
You will most probably run into problems. Read on to get an idea how to solve
them.

Achieving part (d) of the exercise is a bit tricky, since both the stdin and stdout of are
pretty volatile. Because they both are so-called streams everything which is received
on stdin or sent to stdout is gone immediately and cannot be processed again.

In order to be able to use for example stdin twice in the same script, one can make
use of the following trick:

1 # Cache from stdin
2 CACHE=$(cat)
3 # Use it once
4 echo "$CACHE" | grep ...
5 # Use it twice
6 echo "$CACHE" | grep ...

where the double quote “"” are again neccessary to keep the line breaks.
(e) Try to understand how this works in light of what we discussed in section 3.1.2 on

page 23.
(f) Use this (or something similar) to finally solve part (d).

3.3 Escaping strings

Some characters are special to the bash shell:
• “$”: Initiates parameter substitution
• “#”: Starts a comment
• “;”, “&”, “&&”, “||”: Separate commands in a command list
• “\”: Starts an escape (see below)
• A few more [2]

It happens many times that one needs to use these characters not by their special, but
by their literal, i.e. original meaning. Examples are:

• Printing data with echo

• Defining variables
In such a case we need to escape them, i.e. precede them by a \ character, e.g.

1 blubber=foo
2 echo \$blubber \#\;\\

produces

CHAPTER 3. SIMPLE SHELL SCRIPTS 29

1 $blubber␣#;\

whereas
1 blubber=foo
2 echo $blubber #;\

gives rise to

1 foo

We can even escape a line break by using a \ as the very last character on a commandline
1 echo some very \
2 long line of code \
3 | grep line

1 some␣very␣long␣line␣of␣code

As a rule of thumb the escape \ causes the next character to loose its special meaning
and be interpreted like any other character.

3.4 Word splitting and quoting

Right before the execution of a commandline8,i.e. after all variables, parameters and
commands have been substituted, the shell performs an operation called word splitting:

• The whole commandline is expected and split into smaller strings at each <newline>,
<tab> or <space> character. These smaller strings are called words.

• Each word is now considered a separate entity: The first word is the program to be
executed and all following words are considered to be arguments to this command9.

Example 3.5. When the shell encounters the command line
1 grep ${KEYWORD} $4 $(echo test blubber blub)

it first substitutes the commands and parameters:
1 # assume KEYWORD=search and 4=3:
2 grep search 3 test blubber blub

So the command executed is grep and it will be passed the five arguments search, 3,
test, blubber, blub.
If we want to prevent word splitting at certain parts of the commandline we need to
quote. This means that we surround these respective parts by either the single quote
“'” or the double quote “"”, e.g.

1 echo "This␣whole␣thing␣is␣a␣single␣word"
2 echo 'This guy as well '

8See appendix B.3.1 on page 130 for more details how a commandline is parsed
9With command lists the shell obviously interprets the first word of each “instruction” as the command

to be executed an the remaining ones as corresponding arguments.

CHAPTER 3. SIMPLE SHELL SCRIPTS 30

Similar to escaping, quoting also causes some special characters to loose their meaning
inside the quotation:

• single quote “'”: No special characters, but “'” survive
⇒ “"”, “$”, “#” are all non-special
⇒ No parameter expansion or command substitution
⇒ No word splitting

• double quote “"”: Only “"”, “$” and “\” remain special
⇒ We can use parameter expansion, command substitution and escaping
⇒ No word splitting

Example 3.6. We consider the output of the script
1 #!/bin/bash
2

3 ABC=abcdef
4 NUM =123
5 EXAMPLE="ABCNUM$(date)␣next"
6 EXAMPLE2='ABCNUM$(data)'
7 echo "$EXAMPLE"
8 echo "\"some other example: "␣$EXAMPLE2
9

10 CODE="echo"
11 CODE="$CODE 'test '"
12 $CODE
13

14 #␣we␣can␣quote␣inside␣command␣substitutions:
15 TEST="$(echo "some␣words")"
16 echo␣"$TEST"

3_simple_scripts/quoting_example.sh

which is

1 abcdef123Mo␣24.␣Aug␣21:07:23␣CEST␣2015␣next
2 "some␣other␣example:␣␣ABCNUM$(data)
3 'test '
4 some␣words

Example 3.7. The only way to represent an empty string or pass an empty argument
to a function is by quoting it, e.g. calling

1 VAR=
2 3_simple_scripts/first_script.sh $VAR -h

gives

1 The␣first:␣-h
2 The␣second:

Whilst
1 3_simple_scripts/first_script.sh "$VAR" -h

CHAPTER 3. SIMPLE SHELL SCRIPTS 31

gives

1 The␣first:
2 The␣second:␣-h

Forgotten quoting or escaping is a very common source of error — some hints:
• When passing arguments to commands always quote them using double quotes

(unless you have a reason not to)
⇒ This avoids problems when variables are empty
⇒ It does not hurt anything

• When initialising variables always quote the values on the right of the = using
double quotes
⇒ Same reason as above

• When a variable contains a path be extra careful that you really use double quotes
everywhere you use the variable
⇒ Paths or filenames may contain spaces

• Use syntax highlighting in your editor10

⇒ You will discover missing escapes or closing quotes much more quickly
Exercise 3.8. The following script is supposed to search for a keyword in a few selected
Project Gutenberg books. Right now it does not quite work as expected. Identify and
correct possible problems.

1 #!/ bin/bash
2 # Script to extract matching lines from a few project
3 # gutenberg books and show the results
4 # $1: Keyword to search for
5 #
6 cd resources
7 ILLIAD=$(<Project Gutenberg selection/The Iliad.txt grep -i $1)
8 YELLOW=$(<Project Gutenberg selection/The Yellow Wallpaper.txt ↙

↪→grep -i $1)
9

10 cd Project Gutenberg selection
11 OTHERS=$(<Dracula.txt grep -H $1; <The Count of Monte Cristo.txt ↙

↪→grep -H $1)
12 COUNT=$(echo '$OTHERS ' | wc -l)
13

14 echo Searching for the keyword $1:
15 echo " Illiad :" $ILLIAD
16 echo ' Yellow Wallpaper: $YELLOW '
17 echo We found $COUNT more findings in
18 echo $OTHERS

3_simple_scripts/ex_quoting.sh

10vi: syntax on, Emacs: font-lock-mode

CHAPTER 3. SIMPLE SHELL SCRIPTS 32

Exercise 3.9. It is very common to see the paradigm
1 echo "$VAR" | wc -l

in order to count the number of lines in the variable VAR. Try this for the following
values of VAR:

• VAR=$(echo line1; echo line2), i.e. two lines of data
• VAR=$(echo line1), i.e. one line of data
• VAR="", i.e. no data at all

Can you describe the problem? There exists an alternative method to count the number
of lines, which is more reliable, namely

1 echo -n "$VAR" | grep -c ^

You will learn in the next chapter that the -n flag prevents echo from printing an extra
trailing <newline> character after the content of VAR has been printed. The parameter
^ which is passed to grep is a so-called regular expression, which we will discuss in more
detail in chapter 7 on page 92. For now it is sufficient to know that ^ is a “special” kind
of keyword that matches all beginnings of all lines.

• Try this command on the three examples above to verify that it works.
Exercise 3.10. (optional) Write a script that

• takes a pattern (which may contain spaces) as an argument.
• uses recursive ls (manpage) to find all directories below the current working

directory, which have a relative path, that matches the pattern.
• prints the relative paths of these matching directories.

For example: If the current working directory contains the directory resources/matrices
as well as the directory resources/gutenberg, and the pattern is “gut”, the script should
print resources/gutenberg but not the other path.
A few hints:

• First run ls --recursive once and try to understand the output
• What distinguishing feature do directory paths have compared to the other output

printed?
• Everything can be achieved in a single line of bash using only 3 different programs

(ls, grep and one more).
• You might need to make the assumption that none of the files or directories below

the working directory contains a “:” character in their name in order to achieve
the functionality.

CHAPTER 3. SIMPLE SHELL SCRIPTS 33

Exercise 3.11. In this exercise we want to write a script that searches for keywords in
a file and displays how many findings there were and where these were found.

• Familiarise yourself with the way the -n flag changes the output of grep. How
could you use this together with cut to find all line numbers where a particular
keyword was found?

• Proceed to write a script that takes a filename as first argument and a search word
a second argument. Return the line numbers where the word was found.

• Now also display a summarising message, which shows how many matches were
found.

• Test your results for some keywords and a few project gutenberg books.
• Now take a look at the exit command (help exit). It can be used to abort a

script prematurely and provide a return code to the caller. Use it to amend your
script such that it returns 0 if any match is found and 1 otherwise.
Hint: You probably need something from section 2.4.1 on page 18.

• Count the number of characters of your script, excluding comments (use the script
resources/charcount.sh for this task). The shortest shell script (using only what
we have covered so far) wins :).

Chapter 4

Control structures and
Input/Output

This chapter we will jump from simple scripts where instructions are just executed
line-by-line to more complicated program flows, where scripts may contain conditions
or loops. We will also discuss some of the available options to read or write data from
scripts.

4.1 Printing output with echo

The most basic output mechanism in shell scripts is the echo command. It just takes all
its arguments and prints them to stdout separated by a <space> character. A few notes:

• For printing to stderr one can use a special kind of redirector, namely >&2. You
can think of this syntax like sending output to the special, non-existent file &2,
symbolising stderr1.

1 echo "This␣goes␣to␣stdout"
2 echo "This␣goes␣to␣stderr" >&2

This is needed for error messages, which should by convention be printed on stderr.
• The argument -n suppresses the final newline (see exercise 3.9 on page 32)
• The argument -e enables the interpretation of a few special escapes (see help echo

and table 4.1 on the next page)

1This redirector is general: It works also in command substitution expressions or anywhere else on
the shell

34

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 35

escape meaning
\t <tab> char
\\ literal \
\n <newline> char

Table 4.1: A few special escape sequences for echo -e

4.2 The test program

test is a very important program that is used all the time in scripting. Its main purpose
is to compare numbers or strings or to check certain properties about files. test is
extremely feature-rich and this section can only cover the most important options. For
more detailed information about test, consider help test and the bash manual [2].
Most checks the test program can perform follow the syntax

1 test <operator > <argument >

or
1 test <argument1 > <operator > <argument2 >

e.g.
1 test -z "$VAR" # Test if a string is empty
2 test "a" == "b" # Test if two strings are equal
3 test 9 -lt 3 # Test if the first number is less than the second
4 test -f "file" # Test if a file exists and is a regular file

An overview of important test operators gives table 4.2 on the following page. In fact
test is so important that a second shorthand notation using rectangular brackets exists.
In this equivalent form the above commands may be written as

1 [-z "$VAR"]
2 ["a" == "b"]
3 [9 -lt 3]
4 [-f "file"]

There are a few things to note:
• The space after the “[” and before the “]” is important, else the command fails.
• bash can only deal with integer comparison and arithmetic. Floating point values

cannot be compared on the shell (but there are other tools like bc to do this, see 5.2
on page 65)

• The test command does not produce any output, it only returns 0 for successful
tests or 1 for failing tests.

• Therefore we can use the test command and the && or || operators to guard other
commands. E.g.

1 [-f "file"] && < "file" grep "key"

makes sure that grep is only executed if the file “file” does exist.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 36

operator description
-e FILE True if file exists.
-f FILE True if file exists and is a regular file.
-d FILE True if file exists and is a directory.
-x FILE True if file exists and is executable.
-z STRING True if string is empty
-n STRING True if string is not empty
STRING = STRING True if strings are identical
STRING != STRING True if strings are different
! EXPR True if EXPR is false
EXPR1 -o EXPR2 True if EXPR1 or EXPR2 are true
EXPR1 -a EXPR2 True if EXPR1 and EXPR2 are true
() grouping expressions
NUM1 -eq NUM2 True if number NUM1 equals NUM2
NUM1 -ne NUM2 True if NUM1 is not equal to NUM2
NUM1 -lt NUM2 True if NUM1 is less than NUM2
NUM1 -le NUM2 True if NUM1 is less or equal NUM2
NUM1 -gt NUM2 True if NUM1 is greater NUM2
NUM1 -ge NUM2 True if NUM1 is greater or equal NUM2

Table 4.2: Overview of the most important test operators

• There also exists the command [[in the bash shell, which is more powerful. We
will talk about this command briefly when we introduce regular expressions in
section 7.1.1 on page 92.

Exercise 4.1. Write a shell script that takes 3 arguments and prints them in reverse
order. If -h is entered anywhere a short description should be printed as well.
Exercise 4.2. (optional) Write a shell script that does the following when given a path
as first arg:

• If the path is a file, print whether it is executable and print the file size2.
• If the path is a directory cd to it and list its content.

4.3 Conditionals: if

The simplest syntax of the if command is
1 if list; then list; fi

It has the effect:
• All the commands in the list are executed.
• If the return code of the list is 0, the then-list is also executed.

for example
2man wc

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 37

1 #!/bin/bash
2 if [1 -gt 2]; then echo "Cannot␣happen"; fi
3 if [1 -gt 2]; true; then echo "Will␣always␣be␣true"; fi
4 if ! cd ..; then echo "Could␣not␣change␣directory" >&2 ; fi
5 echo $PWD

4_control_io/ifexamples.sh

gives output

1 Will␣always␣be␣true
2 /export/home/abs/abs001/bash -course

An extended syntax with optional else and elif (else-if) blocks is also available:
1 if list; then
2 list
3 elif list; then
4 list
5 ...
6 else list
7 fi

• Again first the if-list is executed
• If the return code is 0 (the condition is true) the first then-list is executed
• Otherwise the elif-lists are executed in turn. Once such an elif-list has exit

code zero, the corresponding then-list is executed and the whole if-command
completes.

• Otherwise, the else-list is executed.
• The exit status of the whole if-command is the exit status of the last command

executed, or zero if no condition tested true.
Example 4.3. The script

1 #!/bin/bash
2 USERARG =0 # bash does not know bolean
3 # convention is to use 0/1 or y/n for this purpose
4

5 # ["$1"] is the same as ! [-z "$1"]
6 if ["$1"]; then
7 USERARG =1
8 echo "Dear␣user:␣Thanks␣for␣feeding␣me␣input"
9 fi

10

11 if [$USERARG -ne 1];then
12 echo "Nothing␣to␣do"
13 exit 0
14 fi
15

16 if ["$1" == "status"]; then
17 echo "I␣am␣very␣happy"
18 elif ["$1" == "weather"]; then
19 echo "No␣clue"

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 38

20 elif ["$1" == "date"]; then
21 date
22 elif [-f "$1"];then
23 if ! < "$1" grep "robot"; then
24 echo "Could␣not␣find␣keyword" >&2
25 exit 1
26 fi
27 else
28 echo "Unknown␣command:␣$1" >&2
29 exit 1
30 fi

4_control_io/more_ifexamples.sh

when run with arg "date" produces the output

1 Dear␣user:␣Thanks␣for␣feeding␣me␣input
2 Di␣18.␣Aug␣16:38:47␣CEST␣2015

when run with arg "4_control_io/more_ifexamples.sh"

1 Dear␣user:␣Thanks␣for␣feeding␣me␣input
2 if␣!␣<␣"$1"␣grep␣"robot";␣then

when run with arg "/nonexistent"

1 Dear␣user:␣Thanks␣for␣feeding␣me␣input
2 Unknown␣command:␣/nonexistent

A general convention is to have tests in the if-list and actions in the then-list for
clarity. Compare

1 if [-f "file"] && [-d "dir"] ; then
2 mv "$file" "dir" || exit 1
3 echo "Moved␣file␣successfully"
4 fi

and
1 if [-f "file"] && [-d "dir"] && mv "$file" "dir" || exit 1; ↙

↪→then
2 echo "Moved␣file␣successfully"
3 fi

It is easy to overlook the mv or the exit commands in such scripts.

4.4 Loops: while

while syntax:
1 while list1; do list2; done

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 39

• list1 and list2 are executed in turn as long as the last command in list1 gives a
zero return code.

1 #!/bin/bash
2

3 C=0
4 while echo "while:␣$C"; [$C -lt 3]; do
5 ((C++)) #increase C by 1
6 echo $C
7 done
8

9 # a nested loop
10 N=5
11 while [$N -gt 2]; do
12 ((N--)) #decrease N by 1
13 echo "N␣is␣now␣$N"
14 M=2
15 while [$M -lt 4]; do
16 echo "␣␣␣␣M␣is␣now␣$M"
17 ((M++))
18 done
19 done
20

21 # more generally the statement
22 # ((I++))
23 # increases the value of the variable I
24 # by one. Analoguously
25 # ((I--))
26 # decreases it by one.

4_control_io/whileloop.sh

produces the output

1 while:␣0
2 1
3 while:␣1
4 2
5 while:␣2
6 3
7 while:␣3
8 N␣is␣now␣4
9 ␣␣␣␣M␣is␣now␣2

10 ␣␣␣␣M␣is␣now␣3
11 N␣is␣now␣3
12 ␣␣␣␣M␣is␣now␣2
13 ␣␣␣␣M␣is␣now␣3
14 N␣is␣now␣2
15 ␣␣␣␣M␣is␣now␣2
16 ␣␣␣␣M␣is␣now␣3

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 40

We can stop the execution of a loop using the break command. This will only exit the
innermost loop.

1 #!/bin/bash
2

3 C=0
4 while echo "while:␣$C"; [$C -lt 3]; do
5 ((C++)) #increase C by 1
6 echo $C
7 [$C -eq 2] && break
8 done
9

10 # a nested loop
11 N=5
12 while [$N -gt 2]; do
13 ((N--)) #decrease N by 1
14 echo "N␣is␣now␣$N"
15 M=2
16 while [$M -lt 4]; do
17 echo "␣␣␣␣M␣is␣now␣$M"
18 ((M++))
19 [$M -eq 3 -a $N -eq 3] && break
20 done
21 done

4_control_io/whilebreak.sh

produces the output

1 while:␣0
2 1
3 while:␣1
4 2
5 N␣is␣now␣4
6 ␣␣␣␣M␣is␣now␣2
7 M␣is␣now␣3
8 N␣is␣now␣3
9 M␣is␣now␣2

10 N␣is␣now␣2
11 M␣is␣now␣2
12 M␣is␣now␣3

There also exists the command continue which jumps straight to the beginning of the
next iteration, i.e. list1 is evaluated once again and if it is true, list2 and so fourth.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 41

The continue command allows to skip some instructions in a loop.
1 #!/bin/bash
2

3 C=0
4 while echo "while:␣$C"; [$C -lt 3]; do
5 ((C++)) #increase C by 1
6 [$C -eq 2] && continue
7 echo $C
8 done
9

10 # a nested loop
11 N=5
12 while [$N -gt 2]; do
13 ((N--)) #decrease N by 1
14 echo "N␣is␣now␣$N"
15 M=2
16 while [$M -lt 4]; do
17 ((M++))
18 [$M -eq 3 -a $N -eq 3] && continue
19 echo "␣␣␣␣M␣is␣now␣$M"
20 done
21 done

4_control_io/whilecontinue.sh

produces the output
1 while:␣0
2 1
3 while:␣1
4 while:␣2
5 3
6 while:␣3
7 N␣is␣now␣4
8 ␣␣␣␣M␣is␣now␣3
9 M␣is␣now␣4

10 N␣is␣now␣3
11 M␣is␣now␣4
12 N␣is␣now␣2
13 M␣is␣now␣3
14 M␣is␣now␣4

Exercise 4.4. (optional) Write a script that takes two integer values as args, I and J.
The script should:

• create directories named 1, 2, . . . , I
• Use touch to put empty files named 1 till J in each of these directories
• Print an error if a negative value is provided for I or J
• If any of the files exist, the script should exit with an error.
• Provide help if one of the args is -h, then exit the script.
• If the third argument is a file, the script should copy this file to all locations instead

of creating empty files with touch.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 42

Exercise 4.5. Implement the seq command in bash:
• If called with a single argument, print all integers from 1 to this value, i.e.

1 seq 5

should give

1 1
2 2
3 3
4 4
5 5

• If called with two arguments, print from the first arg to the second arg, e.g. seq
3 5:

1 3
2 4
3 5

Assume that the first number is always going to be smaller or equal to the second
number.

• (optional) If called with three arguments, print from the first arg to the third in
steps of the second, in other words

1 seq 1 4 13

gives

1 1
2 5
3 9
4 13

Again assume that the first number is smaller or equal to the third one.
• Your script should print help if the first arguments is -h, and then exit.
• (optional) Your script should print an error if any of the assumptions is violated

and exit.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 43

4.5 Loops: for

Basic syntax:
1 for name in word ...; do list; done

• The variable name is subsequently set to all words following in and the full list
executed each time thereafter:

1 #!/bin/bash
2

3 for word in 1 2 dadongs blubber; do
4 echo $word
5 done
6

7 for row in 1 2 3 4 5; do
8 for col in 1 2 3 4 5; do
9 echo -n "$row.$col␣"

10 done
11 echo
12 done

4_control_io/forbasic.sh

which gives the output
1 1
2 2
3 dadongs
4 blubber
5 1.1␣1.2␣1.3␣1.4␣1.5
6 2.1␣2.2␣2.3␣2.4␣2.5
7 3.1␣3.2␣3.3␣3.4␣3.5
8 4.1␣4.2␣4.3␣4.4␣4.5
9 5.1␣5.2␣5.3␣5.4␣5.5

• We can again use break or continue in order to skip some executions of the loops:
1 #!/bin/bash
2

3 for word in 1 2 dadongs blubber; do
4 echo "$word" | grep -q da && continue
5 echo $word
6 done
7

8 for row in 1 2 3 4 5; do
9 for col in 1 2 3 4 5; do

10 [$col -gt $row] && break
11 echo -n "$row.$col␣"
12 done
13 echo
14 done

4_control_io/forbreakcontinue.sh

with output

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 44

1 1
2 2
3 blubber
4 1.1
5 2.1␣2.2
6 3.1␣3.2␣3.3
7 4.1␣4.2␣4.3␣4.4
8 5.1␣5.2␣5.3␣5.4␣5.5

4.5.1 Common “types” of for loops

As we said in the previous chapter, word splitting occurs right before the execution, i.e.
basically after everything else. Therefore there is quite a large variety of expressions one
could use after the “in”. This section gives an overview.

• Explicitly provided words: What we did in the examples above.
• Parameter expansion

1 #!/bin/bash
2 VAR="a␣b␣c␣d"
3 VAR2="date␣$(date)"
4 for i in $VAR $VAR2; do
5 echo $i #note: all spaces become line breaks
6 done | head

4_control_io/forparameter.sh

1 a
2 b
3 c
4 d
5 date
6 Sa
7 4.
8 Aug
9 13:44:57

10 CEST

• Command substitution
1 #!/bin/bash
2 N=10
3 for i in $(seq $N); do
4 echo $i
5 done

4_control_io/forcommandsubst.sh

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 45

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 10

• The characters * and ? are so-called glob characters and are again treated specially
by the bash: If replacement of * by zero or more arbitrary characters gives the name
of an existing file, this replacement is done before execution of the commandline.
In a similar manor ? is may be replaced by exactly one arbitrary character if this
leads to the name of a file3. In the context of for loops this is usually encountered
like so

1 #!/bin/bash
2 cd resources/matrices/
3 for i in *.mtx; do
4 echo $i
5 done
6

7 # there is no need for a file to be in pwd
8 for i in ../ matrices /?a.mtx; do
9 echo $i

10 done
11

12 #NOTE: Non -matching strings still contain * or ?
13 for i in /non?exist*ant; do
14 echo $i
15 done

4_control_io/forwildcard.sh

1 3a.mtx
2 3␣b.mtx
3 3.mtx
4 bcsstm01.mtx
5 lund_b.mtx
6 ../ matrices /3a.mtx
7 /non?exist*ant

• Of course combinations of these in one for loop in any arbitrary order are fine as
well.

3This process is called pathname expansion and a few other glob patterns exist as well. See [2] for
details.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 46

A word of warning: The paradigm
1 for file in $(ls); do
2 # some stuff with $file
3 done

is extremely problematic, since files with spaces are not properly accounted for4 Compare
the following results with the last example we had above

1 #!/bin/bash
2 for i in $(ls resources/matrices /*.mtx); do
3 echo $i
4 done

4_control_io/forlscommandsubst.sh

1 resources/matrices /3a.mtx
2 resources/matrices /3
3 b.mtx
4 resources/matrices /3.mtx
5 resources/matrices/bcsstm01.mtx
6 resources/matrices/lund_b.mtx

Exercise 4.6. With this exercise we start a small project trying to recommend a book
from Project Gutenberg based on keywords the user provides.

• Write a script that greps for a pattern (provided as an argument) in all books of
resources/gutenberg

– Make sure that your script keeps working properly if spaces in the pattern or
in the files are encountered

– Ignore case when grepping in the files
– You may assume all books of Project Gutenberg to end in the extension .txt.
– (optional) Provide help if the argument is -h
– (optional) Use proper error statements if something goes wrong or is not

sensible.
• Change your script such that it prints the number of matches and the number of

actual lines next to the script name. The fields of the table should be separated
by tabs (use echo -e). A possible output could be

1 pg74.txt 45 1045
2 pg345.txt 60 965

• (optional) Suppress the output of books without any match.

4The reason is that command substitution happens earlier than pathname expansion: The results of
the command substitution $(ls) go through word splitting before being executed, whereas the results
of *- and ?-expressions are still seen as single words at the execution stage. See appendix B.3.1 on
page 130 for more details.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 47

Exercise 4.7. (demo) With your current knowledge of bash, propose two one liners
that

• substitute all <tab> or <space> of a string in a variable VAR by <newline> char-
acters

• substitute all <newline> or <tab> characters by <space> characters
Hint: Both expressions have less than 30 characters.

4.6 Conditionals: case

The case command has the following basic syntax:
1 case word in
2 pattern) list ;;
3 pattern) list ;;
4 # as many such statements as desired ...
5 esac

• The command tries to match word against one of the patterns provided5

• If a match occurs the respective list block is executed.
• Both the word as well as the inspected patterns are subject to parameter expansion,

command substitution, arithmetic expansion and a few others [2].
⇒ We may have variables and commands in both word and pattern.

Usually in case statements we have a string containing a variable and we want to
distinguish a few cases, e.g.

1 #!/bin/bash
2 VAR=$@ # VAR assigned to all arguments
3 case $VAR in
4 a) echo "VAR␣is␣\"a\""
5 ;; #<- do not omit these
6 l*) echo "VAR␣starts␣with␣l"
7 ;;
8 l?) echo "VAR␣is␣l␣and␣something"
9 echo "Never␣matched"

10 # because it is more speciffic
11 # than pattern l* above
12 ;;
13 $1) echo "VAR␣is␣\$1"
14 # i.e. there is none or only one arg
15 # because exaclty then $1 == $@
16 ;;
17 *) echo "VAR␣is␣something␣else"
18 ;;
19 esac

4_control_io/caseexample.sh

5In the sense of globbing like in pathname expansion

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 48

The output is
• 4_control_io/caseexample.sh lo

1 VAR␣starts␣with␣l

• 4_control_io/caseexample.sh

1 VAR␣is␣$1

• 4_control_io/caseexample.sh bash is so cool

1 VAR␣is␣something␣else

• 4_control_io/caseexample.sh unihd

1 VAR␣is␣$1

The case command is extremely well-suited in the context of parsing commandline
arguments. A very common paradigm is while-case-shift:

1 #!/bin/bash
2 # assume we allow the arguments -h, -f and --show
3 # assume further that after -f there needs to be a
4 # filename following
5 #
6 FILE=default_file # default if -f is not given
7 while ["$1"]; do # are there commandline arguments left?
8 case "$1" in # deal with current argument
9 -h|--help) echo "-h␣encountered"

10 ;;
11 # it is common to have "long" and "short" options
12 -f|--file) shift # access filename on $1
13 echo "-f␣encountered ,␣file:␣$1"
14 FILE=$1
15 ;;
16 --show) echo "--show␣encountered"
17 ;;
18 *) echo "Unknown␣argument:␣$1" >&2
19 exit 1
20 esac
21 shift # discard current argument
22 done

4_control_io/argparsing.sh

• The shift command shifts the positional parameters one place forward. After the
execution: $1 contains the value $2 had beforehand, equally 3→2, 4→3, . . .

• The while loop runs over all arguments in turn, $1 always contains the argument
we currently deal with.

• case checks the current argument and takes appropriate action.
• If a flag (like -f in this case) requires a value afterwards, we can access this value

by issuing another shift in the code executed for -f in case.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 49

Example output
• 4_control_io/argparsing.sh -h --show

1 -h encountered
2 --show encountered

• 4_control_io/argparsing.sh -f file --sho

1 -f encountered , file: file
2 Unknown argument: --sho

Exercise 4.8. Write a script that takes the following arguments:
• -h, -q
• --help, --quiet
• -f followed by a filename
• anything else should cause an error message

Once the arguments are parsed the script should do the following
• Print help if -h or --help are present, then exit
• Check that the filename provided is a valid file, else throw an error and exit
• Print a nice welcome message, unless --quiet or -q are given

4.7 Parsing input using shell scripts

4.7.1 The read command

The syntax to call read is
1 read <Options > NAME1 NAME2 NAME3 ... NAME_LAST

read reads a single line from stdin and performs word splitting on it. The first word is
assigned to the variable NAME1, the second to NAME2, the third to NAME3 and so on. All
remaining words are assigned to the last variable as a single unchanged word.
Example 4.9. The first line of resources/matrices/3.mtx is

1 %% MatrixMarket␣matrix␣coordinate␣real␣symmetric

So if we execute
1 #!/bin/bash
2 < resources/matrices /3. mtx read COMMENT MTX FLAGS
3 echo "com:␣␣␣$COMMENT"
4 echo "mtx:␣␣␣$MTX"
5 echo "flags:␣$FLAGS"

4_control_io/readexample.sh

we obtain

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 50

1 com:␣␣␣%% MatrixMarket
2 mtx:␣␣␣matrix
3 flags:␣coordinate␣real␣symmetric

Two options worth mentioning:
• -p STRING: Print STRING before waiting for input — like a command prompt.
• -e: Enable support for navigation through the input terminal and some other very

comfortable things.
The return code of read is 0 unless it encounters an EOF (end of file), i.e. unless the

stream contains no more data. This way we can easily check, whether we were able to
obtain any data from the user or not. We cannot check with the return code, however,
whether all fields are filled or not.
Example 4.10. Consider the script

1 #!/bin/bash
2 while true; do #infinite loop
3 # the next command breaks the loop if it was successful
4 read -p "Please␣type␣3␣numbers␣>" N1 N2 N3 && break
5 # if we get here read was not successful
6 echo "Did␣not␣understand␣your␣results ,␣please␣try␣again"
7 done
8 echo "You␣entered␣\"$N1\",␣\"$N2\",␣\"$N3\""

4_control_io/readerror.sh

We run it and enter a few numbers:

$ 4_control_io/readerror.sh
Please type 3 numbers >1 2 3

it gives

1 You␣entered␣"1",␣"2",␣"3"

and similarly

$ 4_control_io/readerror.sh
Please type 3 numbers >1 2

1 You␣entered␣"1",␣"2",␣""

On the other hand if we issue a Ctrl + D — the EOF character — we get

1 Did␣not␣understand␣your␣results ,␣please␣try␣again

followed by the prompt to enter numbers again.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 51

4.7.2 Scripts have shared stdin, stdout and stderr

Compared to writing simple one-liners there is a fundamental difference when writing
a script: All commands of the script share the same stdin, stdout and stderr (if their
input/output is not redirected). Especially when it comes to parsing stdin, this has a
few consequences, which are best described by examples.
Example 4.11. Consider the script

1 #!/bin/bash
2 cat
3 cat

4_control_io/cat_script.sh

If we run it like so
1 < resources/matrices /3. mtx 4_control_io/cat_script.sh

we might expect the output to show the content of the input file twice. This is
not what happens. We only get the content of resources/matrices/3.mtx once,
i.e. exactly what would have happened if only a single cat was be contained in
4_control_io/cat_script.sh. This is due to the fact that cat reads stdin until noth-
ing is left (i.e. until EOF is reached). So when the next cat starts its execution, it
encounters the EOF character straight away and stops reading. Hence no extra output
is produced.

The same thing occurs if we use two other commands that keep reading until the
EOF, like two consecutive greps:

1 grep match
2 grep "i␣will␣never␣match␣anything"

the second grep is pointless. If subsequent greps on stdin are desired, one usually
employs a temporary caching variable in order to circumvent these problems6:

1 CACHE=$(cat)
2 echo "$CACHE" | grep match
3 echo "$CACHE" | grep "i␣have␣a␣chance␣to␣match␣sth."

Example 4.12. In contrast to cat the read only reads a single line. Therefore a script
may swap the first two lines of stdin like this

1 #!/bin/bash
2 read OLINE # read the first line
3 read LINE # read the second line
4 echo "$LINE" # print second line
5 echo "$OLINE" # print first line
6 cat

4_control_io/swaplines.sh

where the last cat just print whatever is left of the file.

6like we introduced it in exercise 3.4 on page 27

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 52

Exercise 4.13. Write a simple script read_third.sh that outputs the third line pro-
vided on stdin to stdout and the fourth line to stderr. When you call it like

1 < resources/testfile ./ read_third.sh

it should provide the output

1 some
2 other

and when called like
1 < resources/testfile ./ read_third.sh >/dev/null

it should only print

1 other

Exercise 4.14.
• Write a script which asks the user for two numbers N and M (using read). and then

counts from N to M. You may assume that N << M.
• (optional) Lift the assumption and generalise your script such that it will count

from the smaller of N and M to the larger of N and M.

4.7.3 The while read line paradigm

Probably the most important application of the read command is the while read line
paradigm. It can be used to read data from stdin line by line:

1 #!/bin/bash
2 while read line; do
3 echo $line
4 done

4_control_io/whilereadline.sh

This works because
• read tries to read the current line from stdin and stores it in the variable line.
• The line variable is then available for the loop body to do something with it.
• If all data has been read, read will exit with an return code 1, causing the loop to

be exited.
Since a loop is considered as a single command by the bash shell it has its own stdin
(and stdout), meaning that

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 53

• we can redirect its stdin to read from a file
1 #!/bin/bash
2

3 if ["$1" == "-h"];then
4 echo "Scipt␣adds␣line␣numbers␣to␣a␣file␣on␣\$1"
5 exit 1
6 fi
7

8 if [! -f "$1"]; then
9 echo "File␣$1␣not␣found" >&2

10 exit 1
11 fi
12

13 C=0
14 while read line; do
15 echo "$C:␣␣$line"
16 ((C++))
17 done < "$1"

4_control_io/addlinenumbers.sh

Note: The < input arrow has to be added after the done and not in front of the
while or similar — otherwise an error results.

• we can pipe the output of a command to it
1 #!/bin/bash
2 if ["$1" == "-h"];then
3 echo "Scipt␣sorts␣lines␣of␣file␣\$1␣and␣adds␣indention"
4 echo "Sorted␣file␣is␣written␣to␣\$1.sorted"
5 exit 1
6 fi
7

8 if [! -f "$1"]; then
9 echo "File␣$1␣not␣found" >&2

10 exit 1
11 fi
12

13 echo "Writing␣sorted␣data␣to␣\"$1.sorted\""
14 < "$1" sort | while read line; do
15 echo "␣␣␣$line"
16 done > "$1.sorted"

4_control_io/sort_and_indent.sh

• we can dump the loop’s output in a file by adding > file after the done (see
previous example)

Exercise 4.15. We want to write a more general version of exercise 3.3 on page 27.
• Write a script takes the arguments --help, --from (followed by a line number)

and parses them. Deal with --help and detect unknown arguments.
• The default for --from should be the first line.
• Move the line of stdin given by --from to the last line on stdout, copy all other

lines.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 54

• You may assume that the users of your script are nice and only pass integer values
after --to or --from.

• If an error occurs, e.g. if the --to line number is larger than the number of lines
on stdin, inform the user.

• Now add an argument --to, which is followed by a number. It should have the
default setting of "end"(symbolising the last line on stdin)

• Assume (and check the input accordingly) that the value given to --to is larger
that the value to --from

• Change your code such that the line --from is moved to the line --to.
• Be careful when comparing line numbers to variables that may contain a string:

1 ["end" -eq 4]

gives an error. This can be circumvented by guarding the [with another [, e.g.
1 VAR="end"
2 ["$VAR" != "end"] && [$VAR -eq 4]

Exercise 4.16. (optional)
• Run the following lines of code

1 CACHE=$(echo "$CACHE"; echo "line␣1")
2 CACHE=$(echo "$CACHE"; echo "line␣2")
3 CACHE=$(echo "$CACHE"; echo "line␣3")
4 echo "$CACHE"

by pasting them into a script or just by running them in a terminal interactively.
Can you explain the result of the final echo?

• How would you alter the code in order to reverse the order in which the lines are
printed by echo. Try to achieve this without changing the order in which the
strings line 1, line 2 or line 3 appear.

• Use your above findings with the while read line paradigm to build a simple
bash version of the tac command, where all input on stdin is printed to stdout in
reverse order.

• Note: The final solution takes just 5 lines of bash.
Exercise 4.17. Recall that read can take more than one argument to read into multiple
variables at once.

• Assume you will get some data on stdin, which consists of a few columns separated
by one ore more <space> or <tab> characters. Write a script mtx_third.sh that
prints the third column of everything you get on stdin.

• Try your script on some of the files in resources/matrices. E.g.
1 < resources/matrices/lund_b.mtx ./ mtx_third.sh

• How does it deal with multiple spaces compared to cut?
Exercise 4.18. (optional) find is a really handy program to search for files and di-
rectories with uncountable options (see man find). You can find the most important

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 55

option description
-name "STRING" The name of the file is string
-name "*STRING*" The name of the file contains string
-iname "*STRING*" Same as above, but ignore case
-type f file is a normal file
-type d file is actually a directory

Table 4.3: The most important options of find

options in table 4.3. find per default searches through all directories and subdirectories
and prints the relative paths of all files satisfying the conditions to stdout. All options
you provide are connected using a logical and. This can of course all be changed (see
documentation). If you have never used find before, try the following:

• find -name "*.sh"

• find -type f -name "*.sh"

• find $HOME -type d -name "*bash*"

In this exercise you should build a grep_all script:
• The script should search for all files in or below the working directory (using find)
• In all files found, the script should grep for the pattern provided on $1 and it

should print to stdout in which files and on which line the match occurred.
• The simplest way to achieve this is to pipe the output of find to while read line

4.8 Influencing word splitting: The variable IFS

In table 3.1 on page 25 we already mentioned the variable IFS.
• IFS is short for “internal field separator”
• This variable is considered in the word splitting whenever the shell performs word

splitting (see appendix B.3.1 on page 130), i.e. especially after parameter expansion
and command substitution have happened.

• Its value specifies the characters at which commandline is split into individual
words during word splitting.

• Default value: <space><tab><newline>

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 56

Two important use cases, which alter the IFS variable temporarily:
• Manipulation of the way for loops iterate:

1 #!/bin/bash
2 # Store the original field separator
3 # and change to + for the next for loop
4 OIFS=$IFS
5 IFS="+"
6 for number in 4+5+6+7; do
7 echo $number
8 done
9

10 # it is good practice to change IFS back to the
11 # original after you used the trick , otherwise
12 # all sorts of crazy errors can occur at a later
13 # point during the script
14 IFS=$OIFS
15 for val in 1 2 3; do
16 echo $val;
17 done

4_control_io/IFS_for.sh

1 first␣loop
2 4
3 5
4 6
5 7
6

7 second␣loop
8 1
9 2

10 3
11 4

• Influencing read:
1 #!/bin/bash
2 # In this script we want to parse the /etc/passwd
3 # file where the columns of information are
4 # separated by : in each line.
5 OIFS="$IFS"
6 IFS=":"
7 echo "------------------"
8 while read user pw uid gid gecos home shell; do
9 echo "Username:␣␣␣␣␣␣$user"

10 echo "User␣id:␣␣␣␣␣␣␣$uid"
11 echo "Group␣id:␣␣␣␣␣␣$gid"
12 echo "Home␣dir:␣␣␣␣␣␣$home"
13 echo "Default␣shell:␣$shell"
14 echo "------------------"
15 done < /etc/passwd
16 IFS=$OIFS

4_control_io/IFSread.sh

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 57

1 ------------------
2 Username:␣␣␣␣␣␣root
3 User␣id:␣␣␣␣␣␣␣0
4 Group␣id:␣␣␣␣␣␣0
5 Home␣dir:␣␣␣␣␣␣/root
6 Default␣shell:␣/bin/bash
7 ------------------
8 Username:␣␣␣␣␣␣daemon
9 User␣id:␣␣␣␣␣␣␣1

10 Group␣id:␣␣␣␣␣␣1
11 Home␣dir:␣␣␣␣␣␣/usr/sbin
12 Default␣shell:␣/usr/sbin/nologin
13 ------------------
14

15 ...

Exercise 4.19. The shell uses the following procedure to lookup the path of the com-
mands to be executed7:

• In a commandline the first word is always considered to be the command.
• If this word is a path (contains a “/”), execute this very file.
• Else go through all existing directories in the variable PATH. The directories are

separated using the character “:”. If there exists a file named like the command
in a directory, which is executable as well, execute this file.

• Else keep searching in the next directory in PATH

Example: The commandline
1 vim testfile

has the first word/command vim. Assume
1 PATH="/usr/local/bin:/usr/bin:/bin"

Then a lookup reveals that the file /usr/bin/vim exists and is executable. So this file
is executed with testfile as the argument.

There exists a commandline tool, called which, that does exactly this lookup when
provided with a command as its first argument. See man which for more details. We
want to rebuild the which command as a script.

• Take the name of a command on $1

• Go through all existing directories in PATH and try to find an executable file called
$1 in these.

• If it exists print the full path and return 0
• Else return 1

7This is a slight simplification since e.g. commandlines can be far more complex.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 58

Hints:
• Try to go through all directories in PATH first. There is an easy way to do this with

one of the loops we discussed and IFS-manipulation.
• Read the documentation of test in order to find ouf how to test if a file is exe-

cutable.

4.9 Conventions when scripting

To conclude this chapter I have collected a few notes about conventions that I use when
writing shell scripts. Some rules are loosely based on the Unix philosophy [1], but most
of it comes from my personal experience. Some things I mention here seem tedious, but
I can assure you these things pay back at some point. Either because you need less time
to look stuff up or because you spot errors more quickly or because they make it easier
to reuse scripts at a later point in time.

There are as usually many exceptions to each of the guidelines below. In practice try
to follow each guideline, unless you have a good reason not to.

4.9.1 Script structure

• Always use a shebang as the first line of your script.
• A block of code doing a task should have a comment explaining what goes in

and what the expected result should be. This is especially true for functions (see
section 6.2 on page 79).

• Whenever funny bashisms8 are used that could make code unclear, explain what
happens and why. Think about the future you ;).

• One script should only do one job and no more. Split complicated tasks into many
scripts. This makes it easier to code and easier to reuse.

• Try to design scripts as filters, i.e. better read from stdin and write to stdout rather
than to/from files. This simplifies code reuse, too. Think about the core Unix
tools: The utilities you use most often are very likely just some kind of elaborate
filter from stdin to stdout.

• Use shell functions (see section 6.2 on page 79) to structure your script. Have a
comment what each function does.

8Chain of special characters which look like magic to someone new to shell scripting

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 59

4.9.2 Input and output

• Reserve stdin for data: Do not use the read command to ask the user for data or
parameters, much rather use argument parsing for this. The reason is that using
read interferes with reading data from stdin (cf. section 4.7.2 on page 51).

• Use helpful error messages with as much info as possible. Print them to stderr
• Reserve stderr for errors, stdout for regular output. If you need to output two

separate things, have the more important one printed to stdout, the other into a
file. Even better: Allow the user to choose what goes into the file and what to
stdout.

⇒ Again all of this can be summarised as “design each script as a filter”

4.9.3 Parsing arguments

• Each script should support the arguments -h or --help. If these arguments are
provided, explain what the script does and explain at least the most important
commandline arguments it supports.

• For each argument there should be a descriptive “long option” preceded by two
“--”. There may be short options (preceded by one “-”).

• Do not worry about the long argument names. You can code tab completion (see
section B.1.2 on page 130) for your script.

Chapter 5

Arithmetic expressions and
advanced parameter
expansions

In this chapter we will expand on two topics we already briefly touched: Arithmetic
expansion and parameter expansion (in section 3.2 on page 24).

5.1 Arithmetic expansion

The arithmetic expansion is a simple, yet extremely convenient way to perform calcula-
tions directly in the bash. Arithmetic expressions have the syntax

1 ((expression))

Everything within the brackets is subject to arithmetic evaluation1:
• The expression may be split into subexpressions using the comma ,

1 ((1+2 ,4 -4))

• The full range of parameter expansion expressions is available (see section 5.3 on
page 67). One may, however, also access or assign variables without the leading $

1 VAR=4
2 OTHER =3
3 LAST=2
4 ((LAST=VAR+$OTHER))
5 echo $LAST

1 7

• Exception: Positional parameters are not available
1The precise rules with regards to operator precedence and evaluation order are more or less identical

to those of the C programming language

60

CHAPTER 5. ARITHMETIC EXPR.NS AND ADV. PARAMETER EXPANS.NS 61

• All common operators are available:
• + - addition, subtraction
• * / % multiplication, (integer) division2 , remainder
• ** exponentiation
• name++ ++name name-- --name increment and decrement operators
• += -= *= /= %= Infix assignment

1 #!/bin/bash
2 ((
3 C=1,
4 D=2,
5

6 SUM=C+D,
7 DIV=C/D,
8 MOD=C%D,
9 EXP=D**4

10))
11 echo "C:␣␣␣␣␣␣␣␣$C"
12 echo "D:␣␣␣␣␣␣␣␣$D"
13 echo
14 echo "SUM=C+D:␣␣$SUM"
15 echo "DIV=C/D:␣␣$DIV"
16 echo "MOD=C%D:␣␣$MOD"
17 echo "EXP=D**4:␣$EXP"
18

19 ((
20 CAFTER=C++,
21 DAFTER=--D
22))
23 echo "C:␣␣␣␣␣␣␣␣$C"
24 echo "D:␣␣␣␣␣␣␣␣$D"
25 echo "CAFTER:␣␣␣$CAFTER"
26 echo "DAFTER:␣␣␣$DAFTER"

5_variables/arith_operator_ex.sh

1 C:␣␣␣␣␣␣␣␣1
2 D:␣␣␣␣␣␣␣␣2
3

4 SUM=C+D:␣␣3
5 DIV=C/D:␣␣0
6 MOD=C%D:␣␣1
7 EXP=D**4:␣16
8 C:␣␣␣␣␣␣␣␣2
9 D:␣␣␣␣␣␣␣␣1

10 CAFTER:␣␣␣1
11 DAFTER:␣␣␣1

• Brackets (and) can be used with their usual meaning
2This is meant to say that the bash cannot return floating point results and instead will truncate all

non-integer results to the next integer in the direction towards zero. We will go into this further down.

CHAPTER 5. ARITHMETIC EXPR.NS AND ADV. PARAMETER EXPANS.NS 62

• Comparison and logic operators are available as well:
• == != equality, inequality
• <= >= < > se, ge, smaller, greater
• && || logical AND and logical OR

Internally “true” is represented by 1 and “false” by 0 (like in C)
1 #!/bin/bash
2 ((4==4)); echo $?
3 ((4!=4)); echo $?
4 ((3<4 && 4!=4)); echo $?
5 ((A= 4==4+4)); echo $A

5_variables/arith_logic_ex.sh

1 0
2 1
3 1
4 0

• Expressions evaluating to 0 are considered to be false, i.e. their return code is 1.
1 ((0)) ; echo $?

1 1

• Expressions evaluating to another value are true, i.e. return with 0.
1 ((-15)) ; echo $?

1 0

Especially the last two points seem a little strange at first, but they assure that arithmetic
expressions can be used as a replacement for test in while or if constructs

1 #!/bin/bash
2

3 C=1
4 while ((++C < 40)); do
5 if ((C % 3 == 0));then
6 echo "divisible␣by␣3:␣$C"
7 fi
8 done

5_variables/arith_replacement.sh

1 divisible␣by␣3:␣3
2 divisible␣by␣3:␣6
3 divisible␣by␣3:␣9
4

5 ...
6

7 divisible␣by␣3:␣33
8 divisible␣by␣3:␣36
9 divisible␣by␣3:␣39

CHAPTER 5. ARITHMETIC EXPR.NS AND ADV. PARAMETER EXPANS.NS 63

By the means of the arithmetic evaluation the bash also supports a C-like for loop with
the syntax

1 for ((expr1 ; expr2 ; expr3)) ; do list ; done

• expr1, expr2 and expr3 all have to be arithmetic expressions.
• First expr1 is evaluated
• Then expr2 is repeatedly evaluated until it gives zero (“C-false”)
• For each successful evaluation both the list is executed as well as expr3.

1 #!/bin/bash
2 MAX=4
3 for((I=0; I<MAX; ++I)); do
4 echo $I
5 done
6 echo
7 for((I=MAX -1; I>=0; --I));do
8 echo $I
9 done

5_variables/arith_for_cloop.sh

1 0
2 1
3 2
4 3
5

6 3
7 2
8 1
9 0

Finally arithmetic expansion is invoked by a syntax like
1 $((expression))

• expression is subject to arithmetic evaluation as described above.
• This implies that the last arithmetic subexpression inside the ((...)) gives the

value of the arithmetic expansion. In other words the value of $((expr1, expr2))
is solely determined by expr2.

• The whole construct is replaced by the final value the expression results in.
• The return code of (()) is not available.
• The expression may be used just like a parameter expansion ${VAR}

1 #!/bin/bash
2 N=$1
3 echo "You␣kindly␣supplied:␣␣␣␣$N"
4 echo "The␣square␣is:␣␣␣␣␣␣␣␣␣␣$((N*N))"
5 echo "I␣can␣add␣some␣stuff:␣␣␣$((1+1 ,2+N,N+3))"

5_variables/arith_expansion.sh

CHAPTER 5. ARITHMETIC EXPR.NS AND ADV. PARAMETER EXPANS.NS 64

1 You␣kindly␣supplied:␣␣␣␣5
2 The␣square␣is:␣␣␣␣␣␣␣␣␣␣25
3 I␣can␣add␣some␣stuff:␣␣␣8

A big drawback on all these paradigms is that the bash only supports integer arithmetic.
Even intermediate values are only stored as integers, e.g.

1 #!/bin/bash
2 echo $((100*13/50))
3 echo $((13/50*100))

5_variables/arith_intermediate_floats.sh

1 26
2 0

Hence the order in which expressions are entered can sometimes become very important.
Whenever floating point arithmetic is needed one needs to use one of the tricks

discussed in section 5.2 on the next page.
Exercise 5.1. What is the return code of each line in the following code example and
why?

1 ((B=0))
2 echo $((B=0))
3 echo $((B=0)) | grep 0
4 ((3 - 4))
5 ((0*4, 0))
6 ((0*4, 3))
7 for((C=100,A=99 ; C%A-3 ; C++,A--)); do ((B=(B+1)%2)) ;done; ((B))
8 ((B=1001%10)) | grep 4 || ((C=$(echo "0"|grep 2)+4, 2%3)) && ↙

↪→echo $((4-5 && C-3+B)) | grep 2

Last two are (optional).
Exercise 5.2. For the arithmetic expansion an empty variable or a string that cannot
be converted to an integer counts as zero (“C-false”)

• Try this in a shell or in a script, e.g. execute the following:
1 A="string"
2 echo $((A+0))
3 A="4"
4 echo $((A+0))

contrast this with
1 A="string"
2 echo $A
3 A="4"
4 echo $A

• How could this behaviour (together with the [program) be exploited to test
whether an input parameter can be properly converted to an integer?

CHAPTER 5. ARITHMETIC EXPR.NS AND ADV. PARAMETER EXPANS.NS 65

• Write a script that calculates the cube of N, where N is an integer supplied as the
first argument to your script. Of cause you should check that N is a sensible integer
before entering the routine.

Exercise 5.3. (optional) Use bash arithmetic expressions to calculate all primes between
1 and N, where N is a number supplied as the first argument to your script.

5.2 Non-integer arithmetic

Non-integer arithmetic, i.e floating point computations, cannot be done in plain bash.
The most common method is to use the bc terminal calculator, like so

1 # echo expression | bc -l
2 echo "13/50*100" | bc -l

1 26.00000000000000000000

The syntax is more or less identical to the arithmetic expansion, including the C-like
interpretation of true and false.

1 echo "3<4" | bc -l # gives true
2 echo "1␣==␣42" | bc -l # gives false

1 1
2 0

A minor difference is that ^ is used instead of ** in order to denote exponentiation.
1 echo "3^3" | bc -l

1 27

The format of the output can be changed using a few flags (see manpage of bc).
• For example one can influence the base (2, 8, 10 and 16 are supported)

1 echo "obase =2;␣2+4" | bc -l

1 110

• or the number of decimal figures
1 echo "scale =4;␣5/6" | bc -l

1 .8333

Next to bc one can in principle also use any other floating-point aware program like
awk (see chapter 8 on page 104) or python. Most of the time it is, however, still sensible
to use bc, since it is extremely small, i.e. quick to start up.

CHAPTER 5. ARITHMETIC EXPR.NS AND ADV. PARAMETER EXPANS.NS 66

Exercise 5.4. Now we want to extend our project to recommend books from Project
Gutenberg. Recall that your script from exercise 4.6 on page 46 gives output of the form

1 pg74.txt 45 1045
2 pg345.txt 60 965

where the columns were separated by tabs. The second column was the number of
matches and the third column was the number of actual lines in the file. Write a script
that

• takes one pattern as an argument, which is then used to call the script from
exercise 4.6 on page 46, e.g.

1 RESULT=$(./4 _control_io/book_parse.sh "$PATTERN")

• parses the respective script output in the variable RESULT.
• calculates for each book the relative importance given as

ξ = Number of matches
Number of actual lines

and writes this ξ-value and the book name to a temporary file. To make the next
steps easier you should separate the value and the book name by a <tab> and have
the ξ-value in the first and the book name in the second column.

• (optional) sorts the temporary file according to the relative importance
• (optional) suggests the 3 best-scoring books for the user and gives their score.
• (optional) One can entirely omit writing to a temporary file. Try this in your

script.
Try a few patterns, e.g. “Baker”, “wonder”, “the”, “virgin”, “Missouri, Kentucky”. Any
observations?
Exercise 5.5. Write a script that takes either the argument -m or -s, followed by as
many numbers as the user wishes. The script should

• Calculate the sum of all numbers if -s is provided
• (optional) The mean if -m is provided
• (optional) Give an error if neither -m nor -s are given.

Some ideas:
• In both cases you will need to calculate the sum, so try to get that working first.
• As you know bc evaluates expressions given to it on stdin, so try to built an

appropriate sum expression from all commandline arguments using a loop. This
you echo to bc in order to get the sum.

• You may assume that users are nice and will only provide valid strings as the
number arguments to your script.

Exercise 5.6. (optional) Read about the mtx format in appendix C.1 on page 132.
• Write a script that takes an mtx file on stdin and a number on $1.
• The output should be again a valid mtx file where all entries are multiplied with

said number.

CHAPTER 5. ARITHMETIC EXPR.NS AND ADV. PARAMETER EXPANS.NS 67

• The comment in the first line (but not necessarily any other) should be preserved
• You can assume that both the data you get on stdin as well as the number on $1

are sensible.
Try your script on resources/matrices/3.mtx and resources/matrices/3 b.mtx,
since unfortunately not all mtx files will work with this method.

5.3 A second look at parameter expansion

Parameter expansion is much more powerful than just returning the value of a parameter.
An overview:

• assign-default
1 ${parameter :=word}

If parameter is unset or null, set parameter to word. Then substitute the value of
parameter. Does not work with positional parameters

1 #!/bin/bash
2 A="value"
3 echo 1 ${A:="new␣value"}
4 echo 2 $A
5

6 unset A
7 echo 3 ${A:="newer␣value"}
8 echo 4 $A

5_variables/pexp_assign_default.sh

1 1␣value
2 2␣value
3 3␣newer␣value
4 4␣newer␣value

• use-default
1 ${parameter:-word}

If parameter is unset or null, substitute word, else the value of parameter
1 #!/bin/bash
2 DEFAULT="default"
3 A="value"
4 echo 1 ${A:-${DEFAULT }}
5 echo 2 $A
6

7 unset A
8 echo 3 ${A:-${DEFAULT }}
9 echo 4 $A

5_variables/pexp_use_default.sh

CHAPTER 5. ARITHMETIC EXPR.NS AND ADV. PARAMETER EXPANS.NS 68

1 1␣value
2 2␣value
3 3␣default
4 4

• use-alternate
1 ${parameter :+word}

If parameter is unset or null, nothing is substituted, else word is substituted.
1 #!/bin/bash
2 ALTERNATE="alternate"
3 A="value"
4 echo 1 ${A:+${ALTERNATE }}
5 echo 2 $A
6

7 unset A
8 echo 3 ${A:+${ALTERNATE }}
9 echo 4 $A

5_variables/pexp_use_alternate.sh

1 1␣alternate
2 2␣value
3 3
4 4

• parameter length
1 ${# parameter}

Expands into the number of characters parameter currently has.
1 #!/bin/bash
2 STRING="1234567"
3 ABC="thirteen"
4 echo ${#STRING}
5 echo ${#ABC}

5_variables/pexp_length.sh

1 7
2 8

• substring expansion
1 ${parameter:offset}
2 ${parameter:offset:length}

Expands into up to length characters from parameter, starting from character
number offset (0-based). If length is omitted, all characters starting from offset
are printed. Both length and offset are arithmetic expressions.

CHAPTER 5. ARITHMETIC EXPR.NS AND ADV. PARAMETER EXPANS.NS 69

1 #!/bin/bash
2 VAR="some␣super␣long␣string"
3 LEN=${#VAR}
4

5 # remove first and last word:
6 echo ${VAR :4:LEN -10}
7

8 # since parameter expansion is allowed
9 # in arithmetic expressions

10 echo ${VAR :2+2:${#VAR}-10}
5_variables/pexp_substr.sh

1 super␣long
2 super␣long

• pattern substitution
1 ${parameter/pattern/string} # one occurrence
2 ${parameter // pattern/string} # global

parameter is expanded and the longest match of pattern3 is replaced by string.
Normally only the first match is replaced. If the second — global — version is
used, however, all occurrences of pattern are replaced by string.

1 #!/bin/bash
2 VAR="some␣super␣long␣string"
3 SE_PAT="s*e"
4 R_PAT="?r"
5 REPLACEMENT="FOOOO"
6

7 # the longest match is replaced:
8 echo ${VAR/$SE_PAT/$REPLACEMENT}
9 echo ${VAR/$R_PAT/$REPLACEMENT}

10

11 # all matches are replaced
12 echo ${VAR// $R_PAT/$REPLACEMENT}

5_variables/pexp_subst.sh

1 FOOOOr␣long␣string
2 some␣supFOOOO␣long␣string
3 some␣supFOOOO␣long␣sFOOOOing

3Again a pattern in the sense of a glob expression like for pathname expansion.

CHAPTER 5. ARITHMETIC EXPR.NS AND ADV. PARAMETER EXPANS.NS 70

Exercise 5.7. Implement the rev command in bash:
• Read input provided on stdin line by line.
• For each line reverse the characters, i.e.

test → tset abcdef → fedcba

• Print the reversed string to stdout
Hints:

• The string reversal can be easily achieved using the substring expansion: By using
a length of 1 we can design an inner loop to extract one character after another
from the string.

• The new reverted string can than be built from these characters.

Chapter 6

Subshells and functions

This chapter is concerned with useful features the bash provides in order to give scripts
a better structure and make code more reusable.

6.1 Explicit and implicit subshells

6.1.1 Grouping commands

Multiple commands can be grouped using the syntax
1 { list; }

• Both the space in the beginning as well as the ; in the end are crucial.
• The ; may — as usual — be replaced by a line break, however.
• All commands in the list share the same stdin, stdout and stderr.
• The return code is the return code of the last command in list.

The syntax is e.g. useful for
• unpacking data

1 #!/bin/bash
2 < resources/matrices /3. mtx grep -v "%" | {
3 read ROW COL ENTRIES
4 echo "Number␣of␣rows:␣␣␣␣␣␣$ROW"
5 echo "Number␣of␣cols:␣␣␣␣␣␣$COL"
6 echo "Number␣of␣entries:␣␣␣$ENTRIES"
7 echo "List␣of␣all␣entries:"
8 while read ROW COL VAL; do
9 echo "␣␣␣M($ROW ,$COL)␣=␣$VAL"

10 done
11 }

6_functions_subshells/group_unpack.sh

71

CHAPTER 6. SUBSHELLS AND FUNCTIONS 72

1 Number␣of␣rows:␣␣␣␣␣␣3
2 Number␣of␣cols:␣␣␣␣␣␣3
3 Number␣of␣entries:␣␣␣9
4 List␣of␣all␣entries:
5 ␣␣␣M(1,1)␣=␣1
6 ␣␣␣M(1,2)␣=␣1
7 ␣␣␣M(1,3)␣=␣1
8 ␣␣␣M(2,1)␣=␣2
9 ␣␣␣M(2,2)␣=␣2

10 ␣␣␣M(2,3)␣=␣2
11 ␣␣␣M(3,1)␣=␣3
12 ␣␣␣M(3,2)␣=␣3
13 ␣␣␣M(3,3)␣=␣3

• sending data to a file
1 #!/bin/bash
2

3 {
4 echo "A␣first␣message␣to␣stderr" >&2
5 echo "Grepping␣for␣fish" | grep -w fish
6 echo "Hello␣to␣stdout"
7 echo "Again␣to␣to␣stderr" >&2
8 } > /tmp/file -stdout 2> /tmp/file -stderr
9

10 # print content
11 echo "Everything␣in␣/tmp/file -stdout:"
12 echo -----------
13 cat /tmp/file -stdout
14 echo -----------
15 echo
16 echo "Everything␣in␣/tmp/file -stderr:"
17 echo -----------
18 cat /tmp/file -stderr
19 echo -----------
20

21 # cleanup
22 rm /tmp/file -stdout /tmp/file -stderr

6_functions_subshells/group_write_file.sh

1 Everything␣in␣/tmp/file -stdout:
2 -----------
3 Grepping␣for␣fish
4 Hello␣to␣stdout
5 -----------
6

7 Everything␣in␣/tmp/file -stderr:
8 -----------
9 A␣first␣message␣to␣stderr

10 Again␣to␣to␣stderr
11 -----------

CHAPTER 6. SUBSHELLS AND FUNCTIONS 73

• There surely are alternative ways in order to write many lines of data to a file. For
example instead of

1 {
2 echo line1
3 echo line2
4 echo line3
5 } > /tmp/file

we could also use
1 echo line1 > /tmp/file
2 echo line2 >> /tmp/file
3 echo line3 >> /tmp/file

The latter method has a few disadvantages, however:
• One easily forgets one of the >> or > operators at the end.
• One easily mixes up > and >> when writing the code, such that some of the

stuff gets accidentally overwritten.
• If we want to rearrange the order in which the data gets written at any later

point, we need to be careful to change the > and >> redirects in a consistent
manor as well. One easily forgets this.

6.1.2 Making use of subshells

Subshells are special environments within the current executing shell, which work very
similar to command grouping. Their special property is that all changes to the so-called
execution environment are only temporary. The execution environment includes

• The current working directory
• The list of defined variables and their values

Once the subshell exits all these changes are undone, i.e. the main shell’s execution
environment is restored. Invocation syntax:

1 (list)

• All commands in the list share the same stdin, stdout and stderr.
• The return code is the return code of the last command in list.
• All changes the subshell makes to the execution environment are only temporary

and are discarded once the subshell exits.

CHAPTER 6. SUBSHELLS AND FUNCTIONS 74

Example 6.1.
1 #!/bin/bash
2 A=3
3 B=6
4 pwd
5 (
6 A=5 #locally change varible
7 echo "Hello␣from␣subshell:␣A:␣$A␣␣␣B:␣$B"
8 cd .. #locally change directory
9 pwd

10)
11 echo "Hello␣from␣main␣shell:␣A:␣$A␣␣␣B:␣$B"
12 pwd

6_functions_subshells/subshell_example.sh

1 /export/home/abs/abs001/bash -course
2 Hello␣from␣subshell:␣A:␣5␣␣␣B:␣6
3 /export/home/abs/abs001
4 Hello␣from␣main␣shell:␣A:␣3␣␣␣B:␣6
5 /export/home/abs/abs001/bash -course

Subshells are particularly useful whenever one wants to change the environment and
knows per se that this change is only intended to last for a small part of a script. This
way cleanup cannot be forgotten.

1 #!/bin/bash
2 # Here want to do some stuff in the PWD
3 echo "The␣list␣of␣files␣in␣the␣PWD:"
4 ls | head -n 4
5 (
6 # Alter the environment:
7 # different working directory and IFS separator
8 cd resources/matrices
9 IFS=":"

10

11 echo
12 echo "The␣list␣of␣files␣in␣resources/matrices"
13 ls | head -n4
14

15 echo
16 echo "Some␣paths:"
17 for path in $PATH; do
18 echo $path
19 done | head -n4
20)
21

22 # and we are back to the original
23 echo
24 for i in word1:word2; do
25 echo $i
26 done

6_functions_subshells/subshell_cdifs.sh

CHAPTER 6. SUBSHELLS AND FUNCTIONS 75

1 The␣list␣of␣files␣in␣the␣PWD:
2 1_intro_Unix
3 2_intro_bash
4 3_simple_scripts
5 4_control_io
6

7 The␣list␣of␣files␣in␣resources/matrices
8 3a.mtx
9 3␣b.mtx

10 3.mtx
11 bcsstm01.mtx
12

13 Some␣paths:
14 /usr/local/bin
15 /usr/bin
16 /bin
17 /usr/local/games
18

19 word1:word2

6.1.3 Implicit subshells

Apart from the explicit syntax discussed above, the following situations also start a
subshell implicitly

• Pipes: This is done for performance reasons by the bash. Forgetting about this is
a very common mistake:

1 #!/bin/bash
2 C=0 # initialise counter
3 < resources/testfile grep "e" | while read line; do
4 # subshell here!
5 ((C++))
6 done
7 # Postprocessing not in subshell any more:
8 echo "We␣found␣$C␣matches␣for␣\"e\"."

6_functions_subshells/subshell_pipes.sh

1 We␣found␣0␣matches␣for␣"e".

A workaround for this problem is to run everything that needs to access the variable
C as a group and cache the output using a command substitution:

1 #!/bin/bash
2 COUNT=$(< resources/testfile grep "e" | {
3 C=0
4 while read line; do
5 ((C++))
6 done
7 echo $C
8 })

CHAPTER 6. SUBSHELLS AND FUNCTIONS 76

9

10 # Do postprocessing on COUNT , e.g. print
11 echo "We␣found␣$COUNT␣matches␣for␣\"e\"."

6_functions_subshells/subshell_pipes_correct.sh

1 We␣found␣4␣matches␣for␣"e".

If the post-processing can be done inside the command group as well, like in this
simple case, we could alternatively do

1 #!/bin/bash
2 < resources/testfile grep "e" | {
3 C=0
4 while read line; do
5 ((C++))
6 done
7 echo "We␣found␣$C␣matches␣for␣\"e\"."
8 }

6_functions_subshells/subshell_pipes_correct2.sh

• Command substitutions: Usually less of a problem
1 #!/bin/bash
2 A=-1
3 # everything between $(and) in the next
4 # line is a subshell. The increment is lost.
5 echo $(((A++)); echo $A)
6 echo $A

6_functions_subshells/subshell_commandsubst.sh

1 0
2 -1

• Since command substitutions starts a subshell, one might wonder how we could
extract multiple results calculated in a single command substitution. Unfortunately
there is no simple way to do this, since all changes we make to variables inside the
$(...) are lost. We only have stdout, which we can use to retrieve data in the
main shell from the executed commands. The solution to this problem is to pack
the data inside the subshell and to unpack it later, e.g.

1 #!/bin/bash
2 # Some input state inside the main shell
3 N=15
4 RES=$(
5 # Do calculations in the subshell
6 SUM=$((N+13))
7 SQUARE=$((N*N))
8

9 # Pack the results with a :
10 # i.e. echo them separated by a :
11 echo "$SUM:$SQUARE"
12)

CHAPTER 6. SUBSHELLS AND FUNCTIONS 77

13

14 # now use cut to unpack them and recover
15 # the individual values
16 SUM=$(echo "$RES" | cut -d: -f1)
17 SQUARE=$(echo "$RES" | cut -d: -f2)
18

19 # Echo the results:
20 echo "sum:␣$SUM"
21 echo "square:␣$SQUARE"

6_functions_subshells/subshell_pack.sh

1 sum:␣28
2 square:␣225

Exercise 6.2. The fact that subshells forget certain things once they are left, is not
only a pain, but can be really useful as well. A typically example is if one wants to do a
particular task for all subdirectories of a particular directory.

In this exercise, we want to design a script, which prints the name of the largest file
for each subdirectory of the resources directory of the bash course.

There are many ways to do this. For the sake of the exercise do not use an external
program like find to traverse the directory tree, but instead really cd into a directory
first, before finding the largest file in it.
A few hints:

• For now there is no need to recurse, i.e. just go into all immediate subdirectories
of resources, find the largest file and print it. No need to look at subdirectories
of subdirectories . . .

• If multiple files have the same size, just print one of them for simplicity.
• The result could look something like:

1 Directory:␣␣␣␣␣␣␣␣␣␣␣␣␣largest␣file
2 -----------------------------------
3 resources/chem_output:␣␣␣␣qchem.out
4 resources/directories:
5 resources/gutenberg:␣␣␣␣pg135.txt
6 resources/matrices:␣␣␣␣lund_b.mtx
7 resources/Project␣Gutenberg␣selection:␣␣␣␣The␣Count␣of␣Monte␣↙

↪→Cristo.txt

• A very helpful commands for this exercise is wc. You may use ls as well, but if
you think the wrong way, the exercise can become complicated.

CHAPTER 6. SUBSHELLS AND FUNCTIONS 78

Exercise 6.3. This script does not produce the results the author expected. Spot the
errors and correct them. You should find roughly 3 problems.

1 #!/bin/bash
2 # initial note:
3 # this script is deliberately made cumbersome
4 # this script is bad style. DO NOT COPY
5 KEYWORD=$1
6

7 ERROR =0 # Error flag
8 [! -f "bash_course.pdf"] && (
9 echo "Please␣run␣at␣the␣top␣of␣the␣bash_course␣repository" >&2

10 ERROR =1
11)
12

13 # Change to the resources directory
14 if ! cd resources /; then
15 echo "Could␣not␣change␣to␣resources␣directory" >&2
16 echo "Are␣we␣in␣the␣right␣directory?"
17 ERROR =1
18 fi
19

20 [$ERROR -eq 1] && (
21 echo "A␣fatal␣error␣occurred"
22 exit 1
23)
24

25 # List of all matching files
26 MATCHING=
27

28 # Add files to list
29 ls matrices /*. mtx gutenberg /*. txt | while read line; do
30 if < "$line" grep -q "$KEYWORD"; then
31 MATCHING=$(
32 echo "$MATCHING"
33 echo $line
34)
35 fi
36 done
37

38 # count the number of matches:
39 COUNT=$(echo "$MATCHING" | wc -l)
40

41 if [$COUNT -gt 0]; then
42 echo "We␣found␣$COUNT␣matches!"
43 exit 0
44 else
45 echo "No␣match" >&2
46 exit 1
47 fi

6_functions_subshells/subshell_exercise.sh

1 We␣found␣1␣matches!

CHAPTER 6. SUBSHELLS AND FUNCTIONS 79

6.2 bash functions

The best way to structure shell code by far are bash functions. Functions are defined1

like
1 name() { list; } # list executed in the current shell environment

or
1 name() (list) # list executed in subshell

and essentially define an alias to execute list by the name of name. Basic facts:
• Functions work like user-defined commands. We can redirect and/or pipe stuff

from/to them. As with scripts or grouped commands, the whole list shares stdin,
stdout and stderr.

1 #!/bin/bash
2 # Typically functions defined at the top and
3 # global code at the bottom
4

5 readfct () {
6 # Read two lines from stdin
7 read test
8 read test2
9

10 # Write them to stdout
11 echo "Your␣input:"
12 echo $test2 $test
13 }
14

15 log_error () {
16 # Write to stderr only
17 echo "ERROR:␣Something␣bad␣happened!" >&2
18 }
19

20 # Still see the error , since only stdout redirected
21 log_error >/dev/null
22

23 # Pipe to/from a function
24 {
25 echo line1
26 echo line 2
27 } | readfct | grep 2

6_functions_subshells/fun_pipe.sh

1 ERROR:␣Something␣bad␣happened!
2 line␣2␣line1

• We can pass arguments to functions, which are available by the positional parame-
ters

1There are more ways to define functions. See the bash manual [2] for the others

CHAPTER 6. SUBSHELLS AND FUNCTIONS 80

1 #!/bin/bash
2

3 argument_analysis () {
4 echo $1
5 echo $2
6 echo $@
7 echo $#
8 }
9

10 # call function
11 argument_analysis 1 "2␣3" 4 5

6_functions_subshells/fun_arguments.sh

1 1
2 2␣3
3 1␣2␣3␣4␣5
4 4

• Inside a function the return command is available, which allows to exit a function
prematurely and provide an exit code to the caller.

• If no return is used, the last command in list determines the exit code.
1 #!/bin/bash
2

3 comment_on_letter () {
4 if ["$1" != "a"]; then
5 echo "Gwk␣...␣I␣only␣like␣a,␣not␣$1"
6 return 1
7 fi
8 echo "Ah␣...␣a␣is␣my␣favorite␣letter"
9 }

10

11 is_letter_b () {
12 ["$1" == "b"]
13 }
14

15 VAR=b
16 if is_letter_b "$VAR"; then
17 comment_on_letter "$VAR"
18 echo "RC␣of␣comment_on_letter:␣$?"
19 fi
20

21 comment_on_letter "a"
22 echo "RC␣of␣comment_on_letter:␣$?"

6_functions_subshells/fun_return.sh

1 Gwk␣...␣I␣only␣like␣a,␣not␣b
2 RC␣of␣comment_on_letter:␣1
3 Ah␣...␣a␣is␣my␣favorite␣letter
4 RC␣of␣comment_on_letter:␣0

CHAPTER 6. SUBSHELLS AND FUNCTIONS 81

• All variables of the calling shell are available inside the function. They may not only
be read, but also modified. If the version fun() { ... } is used, this modification
is global, i.e. effects the shell variables of the caller as well.

• To circumvent this issue a variable inside a function may be defined as local. In
this case they are only available to the function and all its children, i.e. other
functions which may be called by directly or indirectly2 by said function. The
global state of the caller is not effected.

1 #!/bin/bash
2 # Global variables:
3 VAR1=vvv
4 VAR3=lll
5

6 variable_test () {
7 local FOO=bar
8 echo $VAR1
9 VAR3=$FOO

10 }
11

12 echo "--$VAR1 --$FOO --$VAR3 --"
13 variable_test
14 echo "--$VAR1 --$FOO --$VAR3 --"

6_functions_subshells/fun_vars.sh

1 --vvv ----lll --
2 vvv
3 --vvv ----bar --

⇒ One can think of functions as small scripts within scripts.
Exercise 6.4. Rebuild the find -type f command (see exercise 4.18 on page 54) using
only the features of the bash shell. That is your script should list the relative path to
all files in all subdirectories and subsubdirs . . . of the current working dir. Some hints:

• Do not worry about the full task at first. Imagine your working directory is a
particular directory, resources say. In this directory you will find other directories
and of course files. Only deal with the files for now, i.e.: Write a bash function,
which lists all files within a directory.

• The for file in *; do-loop is your friend here.
• Extend the above function such that it calls itself to process the immediate subdi-

rectories as well. This strategy to solve this problem is called recursive processing.
• Now try to achieve the full goal. Use subshells to keep track of the current directory

level you are in and be careful to print really the full path to a particular file like
find -type f does it as well.

2i.e. by the means of other functions, which call functions, . . .

CHAPTER 6. SUBSHELLS AND FUNCTIONS 82

6.2.1 Good practice when using functions

A couple of helpful notes for writing functions, which are easy to understand and easy
to use.

• Give functions a sensible and descriptive name.
• Put a comment right at the top of the function definition, describing:

– what the function does
– what the expected argument are
– what the return code is

• Do not trust the caller: Check similar to a script that the parameters have the
expected values

• Do not modify global variables unless you absolutely have to. This greatly improves
the readability of your code.

• Use local variables by default inside functions.
• Have functions first, then “global code”
• Try to define functions in an abstract way. This makes is easier to reuse and

expand them later.
• It usually is a good idea to have functions only return error codes and print error

messages somewhere else depending on the context.
Compare the following two code snippets, which display some basic information of an
mtx file. Decide for yourself what is more readable3

1 #!/bin/bash
2 # a good example
3

4 mtr_read_head () {
5 #$1: file name of mtx file
6 # echos the first content line (including the matrix size) to ↙

↪→stdout
7 # returns 0 if all is well
8 # returns 1 if an error occurred (file could not be read)
9

10 # check we can read the file
11 [! -r "$1"] && return 1
12

13 # get the data
14 local DATA=$(< "$1" grep -v "%" | head -n1)
15

16 # did we get any data?
17 if ["$DATA"]; then
18 echo "$DATA"
19 return 0
20 else
21 return 1
22 fi

3By the way: 6_functions_subshells/fun_bad.sh contains an error. Good luck finding it.

CHAPTER 6. SUBSHELLS AND FUNCTIONS 83

23 }
24

25 gcut() {
26 # this a more general version of cut
27 # that can be tuned using the IFS
28 #
29 # $1: n -- the field to get from stdin
30 # return 1 on any error
31

32 local n=$1
33 if ((n<1)); then
34 return 1
35 elif ((n==1)); then
36 local FIELD BIN
37

38 # read two fields and return
39 # the first we care about
40 read FIELD BIN
41 echo "$FIELD"
42 else
43 local FIELD REST
44

45 # discard the first field
46 read FIELD REST
47

48 # and call myself
49 echo "$REST" | gcut $((n-1))
50 fi
51 }
52

53 mtx_get_rows () {
54 # get the number of rows in the matrix from an mtx file
55 # echo the result to stdout
56 # return 1 if there is an error
57

58 local DATA
59

60 # read the data and return when error
61 DATA=$(mtr_read_head "$1") #|| return $?
62 # parse the data -> row is the first field
63 echo "$DATA" | gcut 1
64

65 # implicit return of return code of gcut
66 }
67

68 mtx_get_cols () {
69 # get the number of columns in the matrix file
70 # return 1 on any error
71

72 local DATA
73 DATA=$(mtr_read_head "$1") || return $?
74 echo "$DATA" | gcut 2 #cols on field 2
75 }

CHAPTER 6. SUBSHELLS AND FUNCTIONS 84

76

77 mtx_get_nonzero () {
78 # get the number of nonzero entries in the matrix file
79 # return 1 on any error
80

81 local DATA
82 DATA=$(mtr_read_head "$1") || return $?
83 echo "$DATA" | gcut 3 #cols on field 2
84 }
85

86 mtx_get_comment () {
87 mtx_fill_cache "$1" && echo "$__MTX_INFO_CACHE_COMMENT"
88 }
89

90 ####################################
91 # the main script
92

93 if ["$1" == "-h" -o "$1" == "--help"];then
94 echo "Script␣to␣display␣basic␣information␣in␣an␣mtx␣file"
95 exit 0
96 fi
97

98 if [! -r "$1"]; then
99 echo "Please␣specify␣mtx␣file␣as␣first␣arg." >&2

100 exit 1
101 fi
102

103 echo "No␣rows:␣␣␣␣␣$(mtx_get_rows␣"$1")"
104 echo "No␣cols:␣␣␣␣␣$(mtx_get_cols␣"$1")"
105 echo "No␣nonzero:␣␣$(mtx_get_nonzero␣"$1")"
106

107 exit 0
6_functions_subshells/fun_good.sh

1 #!/bin/bash
2 # a bad example
3

4 if ["$1" == "-h" -o "$1" == "--help"];then
5 echo "Script␣to␣display␣basic␣information␣in␣an␣mtx␣file"
6 exit 0
7 fi
8

9 foo() {
10 echo $NONZERO
11 }
12

13 DATA=""
14

15 check2 () {
16 if [-z "$DATA"]; then
17 echo "Can 't␣read␣file" >&2
18 return 1

CHAPTER 6. SUBSHELLS AND FUNCTIONS 85

19 fi
20 return 0
21 }
22

23 blubb () {
24 echo $ROW
25 }
26

27 check1 () {
28 if [! -r "$1"]; then
29 echo "Can 't␣read␣file" >&2
30 return 1
31 fi
32 return 0
33 }
34

35 check1 "$1" || exit 1
36

37 fun1() {
38 DATA=$(< "$1" grep -v "%" | head -n1)
39 }
40

41 fun1 "$1"
42 check2 || exit 1
43

44 reader () {
45 echo $DATA | {
46 read COL ROW NONZERO
47 }
48 }
49

50 reader
51 echo -n "No␣rows:␣␣␣␣␣"; blubb
52

53 tester () {
54 echo $COL
55 }
56 echo -n "No␣cols:␣␣␣␣␣"; tester
57 echo -n "No␣nonzero:␣␣"; foo
58

59 exit 0
6_functions_subshells/fun_bad.sh

Exercise 6.5. Take another look at your script from the second Project Gutenberg
exercise (exercise 5.4 on page 66). Split the script into a few sensible functions. Some
ideas:

• Have one function to parse read the tabular output of ex. 4.6 and compute the ξ
numbers. The results could be sent to stdout in another tabular form which shows
the ξ numbers and the file:

1 0.01␣pg74.txt
2 0.2␣pg345.txt

CHAPTER 6. SUBSHELLS AND FUNCTIONS 86

• One function to read the list produced above and print three recommended books
to stdout

• The main body should just call the example 4.6 script and use the functions defined
above to process what the ex-4.6-script yields.

Exercise 6.6. (demo) In this exercise we will try some abstract bash programming
using functions. First take a look at the following code:

1 map() {
2 COMMAND=$1 # read the command
3 shift # shift $1 away
4

5 # now for all remaining arguments execute
6 # the command with the argument:
7 for val in "$@"; do
8 $COMMAND $val
9 done

10 }
6_functions_subshells/map.lib.sh

It defines a so-called mapping function, which applies a command or a function name to
all arguments provided in turn. Copy the code to a fresh file and add the following lines
in order to understand map more closely:

1 map echo "some" "variables␣on␣the" "commandline"
2

3 cd ~/bash -course #replace by dir where you downloaded the git into
4 map head "resources/testfile" "resources/matrices /3.mtx"

What happens in each case?
Now try to write the following functions:

• A function add that expects 2 arguments. It adds them and echos the result.
• A function multiply that also expects 2 arguments. It multiplies them and echos

the result.
• A function operation that reads a global variable SEL and depending on its value

calls add or multiply. It should pass all arguments supplied to operation further
on to either add or multiply.

• A function calculate3 that takes a single argument and calls operation passing
on this single argument and also the number “3” as the second argument to
operation.

(optional) Write an encapsulating script that
• uses map to apply calculate3 all arguments on the commandline but the first.
• examines the first argument in order to set the variable SEL (e.g. the argument
--add3 selects addition, the argument --multiply3 multiplication)

How much effort does it take to add a third option that allows to subtracts 3 from all
input parameters?

CHAPTER 6. SUBSHELLS AND FUNCTIONS 87

6.2.2 Overwriting commands

At the stage of execution the bash gives preference to user-defined functions over builtin
commands or commands from the operating system. This implies that care must be
taken when naming your functions, since these can “overwrite” commands4, which may
lead to very surprising results:

1 #!/bin/bash
2 test() {
3 echo "Hi␣from␣the␣test␣function"
4 }
5 test 1 -gt 2 && echo "1␣is␣greater␣than␣2"

6_functions_subshells/overwrite_fail.sh

1 Hi␣from␣the␣test␣function
2 1␣is␣greater␣than␣2

Since commands within a function are of course subject to the same evaluation strategy
by the bash as “free” commands in the script, accidental overwriting of commands can
lead to very subtle infinite loops:

1 #!/bin/bash
2 C=0
3 [() { # overwrite the [builtin
4

5 # Increase and print a counter
6 ((C++))
7 echo $C
8

9 # this gives an infinite loop:
10 if [$C -gt 100] ; then
11 echo "never␣printed"
12 exit 1
13 fi
14 }
15

16 if ["$VAR"]; then
17 echo "VAR␣is␣not␣empty" #never reached
18 fi

6_functions_subshells/overwrite_loop.sh

1 1
2 2
3 3
4

5 ...

In scripts it is best to avoid this for overwriting builtins or system commands, since it can
make code very cumbersome and hard to understand. For customising your interactive
bash, however, this can become very handy (see appendix B.1.1 on page 130).

4Overwriting is a concept from object-oriented programming where functions of the same name are
called depending on the context of the call

CHAPTER 6. SUBSHELLS AND FUNCTIONS 88

Another very handy use case for this is to dynamically change the meaning of a
function during the execution of a script. This works, since the bash only remembers the
most recently defined body for a particular function name. A good example for using
this is logging:

1 #!/bin/bash
2 # Default logging function
3 log() { echo "$@"; }
4

5 if ["$1" == "--quiet"]; then
6 # Empty logging function:
7 # Works since ":" is the idle command doing exactly nothing
8 log() { :; }
9 fi

10

11 # Log something ... or not
12 log Hello and welcome to this script!

6_functions_subshells/overwrite_mostrecent.sh

Without “--quiet” the script prints

1 Hello␣and␣welcome␣to␣this␣script!

With “--quiet” all log calls are essentially ignored.

6.3 Cleanup routines

Using subshells it becomes easy to temporarily alter variables or the working directory
and have these changes “automatically” changed back to the original — no matter where
and how the subshell exited. Especially for larger scripts this helps to prevent many
errors.

Sometimes it would be nice to be able to do more than that in case a script exits
or gets interrupted. Consider for example the following program, where we need a
temporary file to store some intermediate results:

1 #!/bin/bash
2 TMP=$(mktemp) # create temporary file
3

4 # add some stuff to it
5 echo "data" >> "$TMP"
6

7 ##
8 # many lines of code
9 ##

10

11 # and now we forgot about the teporary file
12 if ["$CONDITION" != "true"]; then
13 exit 0
14 fi
15

16 ##

CHAPTER 6. SUBSHELLS AND FUNCTIONS 89

17 # many more lines of code
18 ##
19

20 #cleanup
21 rm $TMP

6_functions_subshells/cleanup_notrap.sh

Especially when programs get very long (and there are many exit conditions) one easily
forgets about a proper cleanup in all cases. For such purposes we can define a routine
that gets executed whenever the shell exits, e.g.

1 #!/bin/bash
2 TMP=$(mktemp) # create temporary file
3

4 # define the cleanup routine
5 cleanup () {
6 echo cleanup called
7 rm $TMP
8 }
9 # make cleanup be called WHENEVER the shell exits

10 trap cleanup EXIT
11

12 # add some stuff to it
13 echo "data" >> "$TMP"
14

15 ##
16 # many lines of code
17 ##
18

19 # and now we forgot about the teporary file
20 if ["$CONDITION" != "true"]; then
21 exit 0
22 fi
23

24 ##
25 # many more lines of code
26 ##
27

28 #no need to do explicit cleanup
6_functions_subshells/cleanup_trap.sh

1 cleanup␣called

CHAPTER 6. SUBSHELLS AND FUNCTIONS 90

6.4 Making script code more reusable

Ideally one wants to write code once and reuse it as much as possible. This way when
new features or a better algorithm is implemented, one needs to change the code at only
a single place (see ex. 6.6 on page 86). For this purpose the bash provides a feature
called sourcing. Using the syntax

1 . otherscript

a file otherscript can be executed in the environment of the current shell, i.e. just like
copying the full content of otherscript at precisely the location of the call. This implies
of course that all variables and functions defined in otherscript are also available to the
shell afterwards. An example:

1 testfunction () {
2 echo "Hey␣I␣exist"
3 }
4 VAR=foo

6_functions_subshells/sourcing.lib.sh

1 #!/bin/bash
2

3 # Extend path such that the bash can find the script
4 # to be sourced.
5 PATH="$PATH:6 _functions_subshells"
6 . sourcing.lib.sh # lookup of sourcing.lib.sh performed using PATH
7

8 echo $VAR
9 testfunction

6_functions_subshells/sourcing.script.sh

1 foo
2 Hey␣I␣exist

In order to find otherscript the bash honours the environment variable PATH.5 As the
example suggests this way libraries defining common or important functionality may be
stored in a particular library directory and used from many other scripts located in very
different places by adding this library directory to the PATH environment variable.

On top of that there exists a dirty trick to make each script sourcable by default,
such that functions or global values inside the script may be used by other scripts at a
later point in time.

The trick relies on the fact that the return statement is only allowed in files, which
are sourced, but not in scripts which are executed normally That way one can distinguish
inside the script and separate function definitions and “global code” — to be executed
in all cases — and code, which should only be touched if a script is not just sourced, but
properly executed. For the script fun_good.sh presented in section 6.2.1 on page 82, we
just add a

1 return 0 &> /dev/null

5See exercise 4.19 on page 57 for more details on the path lookup.

CHAPTER 6. SUBSHELLS AND FUNCTIONS 91

after the function definitions:
85 mtx_get_comment () {
86 mtx_fill_cache "$1" && echo "$__MTX_INFO_CACHE_COMMENT"
87 }
88

89 #if we have been sourced this exits execution here:
90 # so by sourcing we can use gcut , mtx_get_rows , ...
91 return 0 &> /dev/null
92

93 ####################################
94

95 if ["$1" == "-h" -o "$1" == "--help"];then
6_functions_subshells/source_sourcability.sh

Exercise 6.7. Make your script from exercise 6.6 on page 86 sourcable and amend the
following script in order to get the functionality described in the comments:

1 #!/bin/bash
2

3 # do something in order to get the functions
4 # add and multiply from the exercise we had before
5

6 # add 4 and 5 and print result to stdout:
7 add 4 5
8

9 # multiply 6 and 7 and print result to stdout:
10 multiply 6 7

6_functions_subshells/source_exercise.sh

Chapter 7

Regular expressions

In the previous chapters we have introduced the most important features of the bash
shell1. We will now turn our attention to a few very handy programs, which are typically
key in solving the tasks of everyday scripting, namely grep, sed and — in the next
chapter 8 — awk.

All of these use so-called regular expressions, which are a key tool in the Unix word
to find or describe strings in a text. We will introduce regular expressions in this chapter
first in a general setting and then specifically in the context of grep and sed.

7.1 Regular expression syntax

7.1.1 Matching regular expressions in plain bash

We will introduce regular expressions in a second, but beforehand we need a tool with
which we can try them out with. The bash already provides us with a syntax which
understands regular expressions or regexes:

1 [["string" =~ regex]]

• This command returns with exit code 0 when there exists a substring in string
which can be described by the regular expression regex. Else it returns 1.

• If such a substring exists one calls string a match for regex and says that regex
matches string.

Actually the [[command can do a lot more things than just matching regular expressions,
which we will not discuss here. Just note that it is an extended version of [, so in fact
everything you know for [can be done with [[...]] in exactly the same syntax. Just
it offers a few extras as well.
Long story short: A simple bash command line like

$ [["string" =~ regex]]; echo $?

1A list of things we left out can be found in appendix B.4 on page 131

92

CHAPTER 7. REGULAR EXPRESSIONS 93

will aid us with exploring regular expressions. It will print 0 whenever string is matched
by regex and 1 otherwise.
Example 7.1. The regex r.t matches all lines which contain an r and two characters
later an t as we will see in a second. So if we run

$ [["somer␣morer␣things" =~ r.t]]; echo $?

we get

1 0

as expected, since the string matches at morer things. For

$ [["more␣other␣thing" =~ r.t]]; echo $?

we get

1 0

as well because of other thing. On the other hand

$ [["more␣otherthing" =~ r.t]]; echo $?

gives

1 1

It is important to note here that really the full string which is specified on the left is
matched to the expression on the right.

One final note before we dive into the matter: The [[construct has the subtlety that
it gives rise to really surprising and weird results if the regex itself is quoted using " as
well. So always specify the regex unquoted on the rhs of the =~ operator.

7.1.2 Regular expression operators

It is best to think of regular expressions as a “search” string where some characters have
a special meaning. All non-special characters just stand for themselves, e.g. the regex
“a” just matches the string “a”2.
Without further ado a non-exhaustive list of regular expression operators3:
\ The escape character: Disables the special meaning of a character that

follows.
2This is why for grep — which in fact also uses substrings by default — we could just grep for a

word not even knowing anything about regexes
3More can be found e.g. in the awk manual [3]

CHAPTER 7. REGULAR EXPRESSIONS 94

ˆ matches the beginning of a string, ie. “^word” matches “wordblub” but
not “blubword”. Note that ^ does not match the beginning of a line:

1 [[$(echo -e "test\nword") =~ ^test]]; echo $? #0=true
2 [[$(echo -e "word\ntest") =~ ^test]]; echo $? #1= false

7_regular_expressions/regex_anchor.sh

$ matches the end of a string in a similar way
1 [[$(echo -e "word\ntest") =~ test$]]; echo $? #0=true
2 [[$(echo -e "test\nword") =~ test$]]; echo $? #1= false

7_regular_expressions/regex_anchorend.sh

. matches any single character, including <newline>, e.g. P.P matches PAP
or PLP but not PLLP

[...] bracket expansion: Matches one of the characters enclosed in square
brackets.

1 [["o" =~ ^[oale]$]]; echo $? #0=true
2 [["a" =~ ^[oale]$]]; echo $? #0=true
3 [["oo" =~ ^[oale]$]]; echo $? #1= false
4 [["\$" =~ ^[$]$]]; echo $? #0=true

7_regular_expressions/regex_bracket.sh

Note: Inside a bracket expansion only the characters], - and ^ are not
interpreted as literals.

[ˆ...] complemented bracket expansion: Matches all characters except the
ones in square brackets

1 [["o" =~ [^eulr]]]; echo $? #0=true
2 [["e" =~ [^eulr]]]; echo $? #1= false
3

4 #ATTENTION: this is not a cbe
5 [["a" =~ [o^ale]]]; echo $? #0=true

7_regular_expressions/regex_compbracket.sh

| alternation operator Specifies alternatives: Either the regex to the right
or the one to the left has to match. Note: Alternation is greedy: It applies
to the largest possible regexes on either side.

1 #gives true , since ^wo
2 [["word" =~ ^wo|rrd$]]; echo $?

7_regular_expressions/regex_alternation.sh

(...) Grouping regular expressions, often used in combination with |, to make
the alternation clear, e.g.

1 [["word" =~ ^(wo|rrd)$]]; echo $? #1= false
7_regular_expressions/regex_grouping.sh

CHAPTER 7. REGULAR EXPRESSIONS 95

* The preceding regular expression operator (or operator group) should be
repeated as many times as necessary to find a match, e.g. “ico*’ matches
“ic”, “ico” or “icooooo”, but not “icco”. The “*” applies only to a single
character by default. If you want it to apply to more than one preceeding
character, you need to use a grouping statement (...).

1 [["wo␣(rd" =~ wo* \(]]; echo $? #0=true
2 [["woo␣(rd" =~ wo* \(]]; echo $? #0=true
3 [["oo␣(rd" =~ wo* \(]]; echo $? #1= false
4 [["oo␣(rd" =~ (wo)* \(]]; echo $? #0=true
5 [["wowo␣(rd" =~ (wo)* \(]]; echo $? #0=true

7_regular_expressions/regex_star.sh

+ Similar to “*”: The preceding expression must occur at least once
1 [["woo␣(rd" =~ wo+ \(]]; echo $? #0=true
2 [["oo␣(rd" =~ (wo)+ \(]]; echo $? #1= false
3 [["wo␣(rd" =~ (wo)+ \(]]; echo $? #0=true

7_regular_expressions/regex_plus.sh

? Similar to “*”: The preceding expression must be matched once or not at
all. E.g. “ca?r” matches “car” or “cr”, but nothing else.

There are a few things to note
• Programs will generally try to match as much of the input string as possible.
• Regexes are case-sensitive.
• Unless ^ or $ are specified, the matched substring may start and end anywhere.
• As soon as a single matching substring exists in the input string, the string is

considered a match and the [[statement returns 0.

7.1.3 A shorthand syntax for bracket expansions

Both bracket expansion and complemented bracket expansion allow for a shorthand
syntax, which can be used for ranges of characters or ranges of numbers, e.g

short form equivalent long form
[a-e] [abcde]
[aA-F] [aABCDEF]
[^a-z4-9A-G] [^abcdefgh ... xyz456789ABCDEFG]

CHAPTER 7. REGULAR EXPRESSIONS 96

short form equivalent long form description
[:alnum:] a-zA-Z0-9 alphanumeric chars
[:alpha:] A-Za-z alphabetic chars
[:blank:] ␣\t space and tab
[:digit:] 0-9 digits
[:print:] printable characters
[:punct:] punctuation chars
[:space:] ␣\t\r\n\v\f space characters
[:upper:] A-Z uppercase chars
[:xdigit:] a-fA-F0-9 hexadecimal digits

Table 7.1: Some POSIX character classes

Exercise 7.2. Consider these strings
“ab” “67” “7b7”
“g” “67777” “o7x7g7”

“77777” “7777” “” (empty)
For each of the following regexes, decide which of the above strings are matched:

• ..

• ^..$

• [a-e]

• ^.7*$

• ^(.7)*$

7.1.4 POSIX character classes

There are also some special, named bracket expansions, called POSIX character
classes. See table 7.1 for some examples and [3] for more details. POSIX character
classes can only be used within bracket expansions, e.g.

1 if [[$1 =~ ^[[: space :]]*[0[: alpha :]]+]]; then
2 # $1 starts arbitrarily many spaces
3 # following by at least one 0 or letter
4 echo Match
5 exit 0
6 fi
7 echo "No␣match"
8 exit 1

7_regular_expressions/regex_posixclass.sh

which gives the output

1 No␣match

and returns 1.

CHAPTER 7. REGULAR EXPRESSIONS 97

7.1.5 Getting help with regexes

Writing regular expressions takes certainly a little practice, but is extremely powerful
once mastered.

• https://www.debuggex.com is extremely helpful in analysing and understanding
regular expressions. The website graphically analyses a regex and tells you why a
string does/does not match.

• Practice is everything: See http://regexcrossword.com/ or try the Android app
ReGeX.

Exercise 7.3. Fill the following regex crossword. The strings you fill in have to match
both the pattern in their row as well as the pattern in their column.

a?[3[:space:]]+b? b[^21eaf0]

[a-f][0-3]

[[:xdigit:]]b+
Exercise 7.4. Give regular expressions that satisfy the following

matches does not match chars
a) abbbc, abbc, abc, ac aba 2
b) abbbc, abbc, abc bac, ab 3
c) ac, abashc, a123c cbluba, aefg 2
d) ␣␣qome, ␣qol , qde eqo, efeq 3
e) arrp, whee bla, kee 4

Note: The art of writing regular expressions is to use the smallest number of characters
possible to achieve your goal. The number in the last column gives the number of
characters necessary to achieve a possible solution.

7.2 Using regexes with grep

grep uses regular expressions by default, so instead of providing it with a word to search
for, we can equally supply it with a regular expression as well. Instead of filtering those
lines of input data which contain the word provided, the regular expression will matched
to the whole line, i.e. grep will only show those lines which are matched by the regex.

Care has to be taken to properly quote or escape those characters in the regex which
are special characters to the shell. Otherwise the shell tries to interpret them by itself
and they are thus not actually passed on to grep at all. In most cases surrounding the
search pattern by single quotes deals with this issue well.

1 # find lines containing foo!bar:
2 < file grep 'foo!bar '

Exceptions to this rule of thumb are
• A literal “'” is needed in the search pattern.
• Building the search pattern requires the expansion of shell variables.

In the latter cases one should use double quotes instead and escape all necessary things

https://www.debuggex.com
http://regexcrossword.com/

CHAPTER 7. REGULAR EXPRESSIONS 98

manually. This can, however, lead to very nasty constructs like
1 # find the string \'
2 echo "tet\'ter" | grep "\\\'"

where a lot of backslashes are needed.
Especially the -o-flag is extremely useful when used together with regular expressions.

It’s purpose is to have grep print only the part of the line, which actually matches the
regex. E.g. running

1 #!/bin/bash
2

3 echo "Plain␣grep␣gives:"
4 < resources/testfile grep ".[a-f]$"
5

6 echo "grep␣-o␣gives:"
7 < resources/testfile grep -o ".[a-f]$"

7_regular_expressions/grep_only_matching.sh

gives
1 Plain grep gives:
2 some
3 data
4 some
5 date
6 grep -o gives:
7 me
8 ta
9 me

10 te

There are quite a few cases where plainly using grep with a regular expression does
not lead to the expected result. Examples are when the regex contains the (...),
|, ? or + operators. If this happens (or when in doubt) one should pass the additional
argument -E to grep.

The orgin for this behaviour is that grep actually implements two different kinds of
regular expression languages. Once the so-called basic regular expression or BRE,
which has a reduced feature set and is hence faster to process and the more feature-rich
extended regular expression syntax or ERE. For our purposes it suffices to know that
ERE is pretty much a superset of BRE4 and that some of the operators we mentioned
in the previous sections do not work in the BRE syntax. Since grep by default only
uses BREs for performance reasons, we occasionally need the -E to switch to ERE-mode.
Since using EREs really does have a performance impact, we should only use -E in cases
where plain grep fails.

Without going into too much detail on the matter of the different regular expression
dialects, we should note at this point, that BREs and EREs are not the only ones around.
Most notably there also exist PCREs, perl-compatible regular expressions and for
example the scripting language Python has its regular expression version, too. The

4See the grep manpage for details.

CHAPTER 7. REGULAR EXPRESSIONS 99

reasons for this are out of scope of this course, just note that in almost all cases, the
syntax we present in this chapter will just work5. For more details consider the relevant
manpages and help pages.
Exercise 7.5. This exercise tries to show you how much more powerful grep becomes
when used with regular expressions:

• Design a regular expression to match a single digit. In other words if the string
contains the number “456”, the regex should match “4”, “5” and “6” separately
and not “456” as a whole.

• Use grep -o together with this expression on the file resources/digitfile. You
should get a list of single digits.

• Look at the file. What does this list have to do with the input?
• Now pipe this result in some appropriate Unix tools in order to find out how many

times each digit is contained in the file. The output should be some sort of a table
telling you that there are e.g. 2 fours, 3 twos, . . .

Exercise 7.6. Take a look at the file resources/digitfile. This file contains both
lines which contain only text as well as lines which contain numbers. The aim of this
exercise is to design a regular expression which matches only those lines that contain
numbers in proper scientific format, i.e. a number of the form

sign prefactor e sign exponent

e.g.
0.123e-4 0.45e1 -0.4e9

These numbers follow the rules
• The sign may be + or - or absent
• The prefactor has to be in the range between 0. and 1. In other words it will

always contain a . as the second character and the first character will always be a
0 or 1. The number of characters after the . may, however, vary.

• The exponentmay be any integer number, i.e. it may not contain a ., but otherwise
any number. It may have leading zeros.

In order to design the regular expression, proceed as follows:
• First design regexes to match the individual parts: sign, prefactor and exponent.
• Paste the indivdual expression parts together. Pay attention to which parts are

required and which are optional.
• You will most certainly need EREs for some of them, so do not forget the -E flag

for grep.
• grep has some issues if the regular expression itself starts with a - sign, because

then it sometimes has trouble to distinguish its commandline options (which all
start with a dash as well) from the actual regex. Depending on how you design
your regexes you might run into this problem or not. In either case the grep flag
-e is your friend here. Consult the manpage for more information.

5To make matters worse sometimes even the implementation matters: For example what precisely is
understood as BREs and EREs in the GNU version of grep and the BSD version of grep is not fully
identical.

CHAPTER 7. REGULAR EXPRESSIONS 100

• (optional) Introduce some fault tolerance:
– Make your expression work if between prefactor and exponent one of the

characters E, D or d is used instead.
– Be less strict on the requirements of the prefactor. Allow prefactors outside

of the range 0 to 1.
Exercise 7.7. (optional) Here we try to extract a little more structured information from
the file resources/matrices/bcsstm01.mtx. More information about the mtx-format
can be found in appendix C.1 on page 132 if necessary.

• Use the final regular expression from the previous exercise including the fault
tolerance as well as grep -o to extract all the values of the 3rd column from
resources/matrices/bcsstm01.mtx.

• Use this and some standard unix tools to find the largest matrix value of
resources/matrices/bcsstm01.mtx.

7.3 Using regexes with sed

sed — the stream editor — is a program program to filter or change textual data. We
will not cover the full features of sed, but merely introduce a few basic commands which
allow to add, delete or change lines on stdin. The invocation of sed is almost exactly
like grep. Either one filters a stream:

1 echo "data␣stream" | sed 'sed_commands '

or reads a file, filters it and prints it to stdout
1 sed 'sed_commands ' file

Again, if a literal “'” or e.g. parameter expansions are needed in sed_commands, we are
better off using double quotes instead. Be warned, that doube quotes can lead to an
accumulation of escapes for both sed as well as the shell:

1 # compare
2 echo '\$a ' | sed "s/\\\\\ $a/bbb/g"
3

4 # with the single -quote example
5 echo '\$a ' | sed 's/\\$a/bbb/g'

7_regular_expressions/sed_double_quotes.sh

Overview of basic sed commands6:
cmd; cmd2 Run two sed commands on the same stream sequentially: First cmd1

is executed and on the resulting line cmd2. Can also be achieved by
having the two commands separated by a line break.

/regex/atext Add a new line containing text after each line which is matched by
regex.

6see e.g. the sed manual [4] for more details.

CHAPTER 7. REGULAR EXPRESSIONS 101

/regex/itext Similar to above, but add the line with text before the matched lines.
1 #!/bin/bash
2

3 {
4 echo blub
5 echo blbl
6 } | sed '/bl/a11111 '
7

8 echo ------
9

10 {
11 echo blub
12 echo blbl
13 } | sed '/bl/i11111 '

7_regular_expressions/sed_insertion.sh

1 blub
2 11111
3 blbl
4 11111
5 ------
6 11111
7 blub
8 11111
9 blbl

/regex/d Delete matching lines.
1 #!/bin/bash
2 {
3 echo line1
4 echo line2
5 echo line3
6 } | sed '/2$/d'

7_regular_expressions/sed_delete.sh

1 line1
2 line3

s/regex/text/ Substitute the first match of regex in each line by text. We can use
the special character & in text to refer back to the precise part of the
current line that was matched by regex (so the thing grep -o would
extract). Note that text may contain special escape sequences like
“\n” or “\t”.

CHAPTER 7. REGULAR EXPRESSIONS 102

s/regex/text/g Works like the above command except that it substitutes all matches
of regex in each line by text.

1 #!/bin/bash
2

3 generator () {
4 echo "line1"
5 echo "␣␣␣␣␣␣line␣␣2␣␣"
6 echo "LiNE3"
7 echo
8 }
9

10 generator | sed 's/in/blablabla/'
11 echo "-----"
12 generator | sed 's/i.*[1 -3]/...&.../ '
13 echo "-----"
14

15 # a very common sequence to normalise input
16 generator | sed '
17 s/[[: space :]][[: space :]]*/ /g
18 s/^[[: space :]]//
19 s/[[: space :]]$//
20 /^$/d
21 '

7_regular_expressions/sed_substitute.sh

1 lblablablae1
2 ␣␣␣␣␣␣lblablablae␣␣2
3 LiNE3
4

5 -----
6 l... ine1 ...
7 ␣␣␣␣␣␣l...ine␣␣2...
8 L... iNE3 ...
9

10 -----
11 line1
12 line␣2
13 LiNE3

Similar to grep it may be necessary to with to extended regular expressions for some
things to work. For sed this is done by specifying the argument -r before passing the
sed commands.

CHAPTER 7. REGULAR EXPRESSIONS 103

7.3.1 Alternative matching syntax

Sometimes it is desirable to use the / character inside a regular expression for a sed
command as well. E.g. consider replacing specific parts of an absolute path by others.
For such cases a more general matching syntax exists:

• In front of a command, /regex/ can also be expressed as \c regex c, where c is an
arbitrary character.

• For the command s: s c regex c text c is equivalent to s/regex/text/.
1 #!/bin/bash
2 VAR="/some"
3 echo "/some/crazy/some/path" | sed "s#$VAR#/mORe#g"
4 echo "--"
5 echo "/some/crazy/path" | sed "\# crazy#d"
6 echo "--"

7_regular_expressions/sed_altmatch.sh

1 /mORe/crazy/mORe/path
2 --
3 --

Exercise 7.8. (demo) Consider the first 48 lines of the file resources/chem_output/
qchem.out.

• First use head to only generate a derived file containing just the first 48 lines
Write a bash one-liner using sed and grep that generates a sorted list of the surnames
of all Q-Chem authors:

• Exclude all lines containing the word Q-Chem.
• Remove all initials and bothering “.” or “-” symbols. Be careful, however, to not

remove the “-” on compound surnames.
• Replace all , by \n, the escape sequence for a line break.
• Do cleanup: Remove unnecessary leading or tailing spaces as well as empty lines
• Pipe the result to sort

(optional) This whole exercise can also be done without using grep.

Chapter 8

A concise introduction to awk
programming

In this chapter we will take a brief look at the awk programming language designed
by Alfred Aho, Peter Weinberger, and Brian Kernighan in order to process text files.
Everything we have done in the previous chapters using grep, sed or any of the other
Unix tools can be done in awk as well and much much more In fact often it only takes
a few lines of awk to re-code the functionality of one of the aforementioned programs.

This chapter really only serves as a short introduction. Further information can be
found in the Introduction to awk programming course [5, 6], which was taught in 2016
specifically as an addendum to this course. Another very noteworthy resource is the
gawk manual “GAWK: Effective AWK programming” [3].

8.1 Structure of an awk program

All input given to an awk program is automatically split up into larger chunks called
records. Typically this is equivalent to a single line of the input data. Each record is
then further split into smaller chunks called fields, which is usually just a single word.
In other words records are separated by <newline> and fields by any character from
[:space:].

awk programs are a list of instructions like
1 condition { action }
2 condition { action }
3 ...

During execution awk goes from record to record and checks for each of the conditions
whether they are satisfied. If this is the casse the corresponding action is executed. Each
pair of condition and action is called a rule. Rules are always processed top to bottom
and the action is immediately executed if the corresponding condition is satisfied.

Both the condition as well as the action block { action } may be missing from an
awk rule. If the condition is missing, the action is executed for each input record. If

104

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 105

the action block is missing the default action is executed, which is just printing the full
record (i.e. line of text) to stdout.

Similar to the shell the # starts a comment in awk programs and <newline> and “;”
may be both be used interchangeably. Note that each rule line has to be ended with
either <newline> or “;”.

8.2 Running awk programs

There multiple ways to run awk programs and provide them with input data. For example
we could place all awk source code into a file called name and then use it like

1 awk -f name

to parse data from stdin. For our use case, where awk will just be a helper language to
perform small tasks in surrounding bash scripts, it is more convenient to use awk just
inline:

1 awk '
2 ...
3 awk_source
4 ...
5 '

Note, that once again we could use double quotes here and escape whatever is necessary
by hand. As it turns out awk has a few very handy features, however, for passing data
between the calling script and the inner awk program such that we get away with single
quotes in almost all cases.
Example 8.1. To give you an example for what we discussed in this section, just a very
simple shell script to pipe some data through an inline awk program1. The code makes
use of the awk action command print (see 8.8 on page 120 below for details), which is
essentially awk’s version of echo.

1 #!/bin/bash
2 {
3 echo "awk␣input"
4 } | awk '
5 # missing condition => always done
6 { print "Hi␣user.␣This␣is␣what␣you␣gave␣me:" }
7

8 # condition which is true and no action
9 # => default print action

10 1 == 1
11

12 # another message which is always printed
13 { print "Thank␣you" }
14 '

8_awk/basic_example.sh

1I will use syntax highlighting adapted for awk code for all example code in this chapter.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 106

1 Hi␣user.␣This␣is␣what␣you␣gave␣me:
2 awk␣input
3 Thank␣you

So far so easy. We give awk some input. It runs through each rule and since all conditions
(including the trivial 1 == 1 are satisfied, it executes all the actions top to bottom. For
the second rule, the default action, i.e. printing the input, is executed, since no other
action is given.

Now what happens if we give the awk snippet two lines of input?
1 #!/bin/bash
2 {
3 echo "awk␣input␣1"
4 echo "awk␣input␣2"
5 } | awk '
6 # missing condition => always done
7 { print "Hi␣user.␣This␣is␣what␣you␣gave␣me:" }
8

9 # condition which is true and no action
10 # => default print action
11 1 == 1
12

13 # another message which is always printed
14 { print "Thank␣you" }
15 '

8_awk/less_basic_example.sh

1 Hi␣user.␣This␣is␣what␣you␣gave␣me:
2 awk␣input␣1
3 Thank␣you
4 Hi␣user.␣This␣is␣what␣you␣gave␣me:
5 awk␣input␣2
6 Thank␣you

This result might seem surprising at first, but can be easily explained by the fact that
awk executes the full program for each record, i.e. each line of input!

Even though most people find this speciality of awk a little odd at first, the great
power of awk also truely originates from this very fact. A good reason to look into this
a little more in the next section.

8.3 awk programs have an implicit loop

As we said in section 8.1 on page 104, all rules of an awk program are executed for each
record of the input data. Usually a record is equal to a line, such that we can consider
the whole awk program to be enwrapped in an implicit loop over all lines of the input.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 107

Consider the examples:
1 #!/bin/bash
2

3 # function generating the output
4 output () {
5 echo "line␣1"
6 }
7

8 echo "Program1:"
9 # a small awk program which just prints the output

10 # line -by-line as it is
11 # we use a condition which is always true and the
12 # default action here (implicit print of the whole
13 # record , i.e. line)
14 output | awk '1==1'
15

16 echo
17 echo "Program2:"
18 # a program with two rules:
19 # one which does the default printing
20 # and a second one which prints an extra line
21 # unconditionally
22 output | awk '
23 1==1 #default print action
24 { print "some␣stuff" }
25 '

8_awk/each_line_example.sh

Here only a single line of input is specified and hence all rules of the two awk programs
are run only once: For exactly the single line of input. We get the output

1 Program1:
2 line␣1
3

4 Program2:
5 line␣1
6 some␣stuff

We note, that for programs, which contain multiple rules (like Program2), it may well
happen that more than one action gets executed. Here for Program2 both the default
action to print the line/record as well as the extra action to print “extra stuff” are
executed, since of course both actions are associated to conditions which are either
trivially true or not present (and hence implicitly true).

Now let us try the same thing but pass two or three lines of input
1 #!/bin/bash
2

3 # function generating the output
4 output () {
5 echo "line␣1"
6 echo "line␣2"
7 }

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 108

8

9 echo "Program1:"
10 output | awk '1==1'
11

12 echo
13 echo "Program2:"
14 output | awk '
15 1==1 #default print action
16 { print "some␣stuff" }
17 '

8_awk/each_line_example2.sh

1 Program1:
2 line␣1
3 line␣2
4

5 Program2:
6 line␣1
7 some␣stuff
8 line␣2
9 some␣stuff

and
1 #!/bin/bash
2

3 # function generating the output
4 output () {
5 echo "line␣1"
6 echo "line␣2"
7 echo "line␣3"
8 }
9

10 echo "Program1:"
11 output | awk '1==1'
12

13 echo
14 echo "Program2:"
15 output | awk '
16 1==1 #default print action
17 { print "some␣stuff" }
18 '

8_awk/each_line_example3.sh

1 Program1:
2 line␣1
3 line␣2
4 line␣3
5

6 Program2:
7 line␣1
8 some␣stuff

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 109

9 line␣2
10 some␣stuff
11 line␣3
12 some␣stuff

In these two examples the implicit loop over all records of input shows up. The source
code of the awk programs has not changed, still we get different output:

• Program1 prints each record/line of input as is, since the default action is executed
for each record of the input.

• Program2 prints first each record of the input, but then the second rule is also
executed for each record as well since the conditions for both rules are missing or
true. So overall we get two lines of output for each line of input: First the record
itself, then the extra output “extra stuff” from the second rule.

This behaviour is surely a little strange and counter-intuitive for people, who have
experience with other programming languages: The awk code is not just executed once,
from top to bottom, but in fact N times if there are N records in the input.

8.4 awk statements and line breaks

Not only individual rules but also individual actions within an action block need to be
separately by a line break or equivalently a “;”2. Other line breaks are (usually) ignored.
This means that e.g.3

1 # the echo is just here to make awk do anything -> see footnote
2 echo | awk '
3 {
4 print "some␣message"
5 print "other␣message"
6 }
7 {
8 print "third␣message"
9 }

10 '

and
1 echo | awk '{ print "some␣message"; print "other␣message" }
2 { print "third␣message" }'

and
1 echo | awk '{ print "some␣message"; print "other␣message" }; { ↙

↪→print "third␣message" }'

are all equivalent.
2This is not entirely correct, see section 1.6 of the gawk manual [3] for details
3We already said that the awk rules are are executed N times if there are N records in the input. This

means that they are not touched at all if there is no input. So in many examples in this chapter we will
have a leading echo | in front of the inline awk code, just to have the code execute once at all.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 110

8.5 Strings in awk

Strings in awk all have to be enclosed by double quotes, e.g.4

1 # inside awk action block -> see footnote
2 print "This␣is␣a␣valid␣string"

Multiple strings may be concatenated, just by leaving white space between them
1 #!/bin/bash
2 echo | awk '{ print "string1" "␣" "string2" }'

8_awk/vars_stringconcat.sh

1 string1␣string2

awk per default honours special sequences like “\t”(Tab) and “\n”(Newline) if used
within strings:

1 #!/bin/bash
2 echo | awk '
3 { print "test\ttest2\ntest3" }
4 '

8_awk/vars_stringspecial.sh

1 test test2
2 test3

8.6 Variables and arithmetic in awk

Variables and arithmetic in awk are both very similar to the respective constructs in
bash. A few notes and examples:

• Variables are assigned using a single equals “=”. Note that there can be space
between the name and the value.

1 var="value"
2 # or
3 var = "value"

• Such a statement counts as an action, so we need multiple of these to be separated
by a line break or “;”:

1 varone="1"; vartwo="2"

• In order to use the value of a variable no $ is required:
1 print var # => will print "value"

4For some examples in this chapter the enclosing script is left out for simplicity. They will just
contain plain awk code, which could be written inside an awk action block. You will recognise these
examples by the fact that they don’t start with a shebang.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 111

• awk is aware of floating point numbers and can deal with them properly
1 #!/bin/bash
2 echo | awk '{
3 var="4.5"
4 var2 =2.4
5 print var "+" var2 "=" var+var2
6 }'

8_awk/vars_fpaware.sh

1 4.5+2.4=6.9

• Undefined variables are 0 or the empty string (like in bash)
• Variables are converted between strings and numbers automatically. Strings that

cannot be interpreted as a number are considered to be 0.
1 #!/bin/bash
2 echo | awk '{
3 floatvar =3.2
4 stringvar="abra" #cannot be converted to number
5 floatstring="1e-2" #can be converted to number
6

7 # calculation
8 res1 = floatvar+floatstring
9 res2 = floatvar + stringvar

10

11 print res1 "␣" res2
12 }'

8_awk/vars_fpconvert.sh

1 3.21␣3.2

• All variables are global and can be accessed and modified from all action blocks
(or condition statements as we will see later)

1 #!/bin/bash
2 echo | awk '
3 { N=4; A="blub" }
4 { print N }
5 { print "String␣" A "␣has␣the␣length␣" length(A) }
6 '

8_awk/vars_global.sh

1 4
2 String␣blub␣has␣the␣length␣4

• Arithmetic and comparison operators follow very similar conventions as discussed
in the bash arithmetic expansion section 5.1 on page 60. This includes the C-like
convention of 0 being “false” and 1 being “true”:

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 112

1 #!/bin/bash
2 echo | awk '{
3 v=3
4 u=4
5

6 print v "-" u "=" v-u
7

8 v+=2
9 u*=0.5

10

11 print v "%" u "=" v%u
12

13

14 # exponentiation is ^
15 print v "^" u "=" v^u
16

17 # need to enforce that comparison operatiors are
18 # executed before concatenation of the resulting
19 # strings. Not quite sure why.
20 print v "==" u ":␣" (v==u)
21 print v "!=" u ":␣" (v!=u)
22 print v "!=" u "||" v "==" u ":␣" (v!=u||v==u)
23 print v "!=" u "&&" v "==" u ":␣" (v!=u&&v==u)
24 }'

8_awk/vars_arithlogic.sh

1 3-4=-1
2 5%2=1
3 5^2=25
4 0
5 1
6 1
7 0

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 113

8.6.1 Some special variables

Some variables in awk have special meaning:
$0 contains the content of the current record (i.e. usually the current line).

Note, that the $ is part of the name of the variable.
$1, $2, ... Variables holding the fields of the current record. $1 refers to the first

field, $2 to the second and so on. There is no limit on the number of fields,
i.e. $125 refers to the 125th field. If a field does not exist, the variable
contains an empty string. Note, that these variables may be changed as
well!

1 #!/bin/bash
2 echo -e "some␣7␣words\tfor␣awk␣to␣process" | awk '
3 {
4 print "arithmetic:␣" 2*$2
5 print $4 "␣" $1
6 }
7

8 {
9 print "You␣gave␣me:␣␣" $0

10 }
11 '

8_awk/vars_fields.sh

1 arithmetic:␣14
2 for␣some
3 You␣gave␣me:␣␣some␣7␣words for␣awk␣to␣process

This lookup also works indirectly:
1 #!/bin/bash
2 echo -e "some␣words␣for\tawk␣to␣process" | awk '
3 {
4 v=5
5 print $v
6 }'

8_awk/vars_fields_indirect.sh

1 to

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 114

NF contains the number of fields in the current record. So the last field in a
record can always be examined using $NF

1 #!/bin/bash
2 echo "some␣words␣for␣awk␣to␣process" | awk '
3 {
4 print "There␣are␣" NF "␣fields␣and␣the␣last␣is␣" $NF
5 }'

8_awk/vars_fields_nf.sh

1 There␣are␣6␣fields␣and␣the␣last␣is␣process

FS field separator : regular expression giving the characters where the record is
split into fields. It can become extremely handy to manipulate this variable.
For examples see section 8.9 on page 122.

RS record separator : Similar thing to FS: Whenever a match against this regex
occurs a new record is started. In practice it is hardly ever needed to modify
this.5

8.6.2 Variables in the awk code vs. variables in the shell script

The inline awk code, which we write between the “'”, is entirely independent of the
surrounding shell script. This implies that all variables which are defined on the shell are
not available to awk and that changes made to the environment within the awk program
are not known the surrounding shell script either. Consider the example:

1 #!/bin/bash
2

3 # define a shell variable:
4 A=laber
5

6 echo | awk '
7 # define an awk variable and print it:
8 { N=4; print N }
9

10 # print something using the non -present shell variable A:
11 { print "We␣have␣no␣clue␣about␣string␣A:␣\"" A "\"" }
12 '
13

14 # show that the shell knows A, but has no clue about N:
15 echo --$A --$N --

8_awk/awk_vs_shell_vars.sh

1 4
2 We␣have␣no␣clue␣about␣string␣A:␣""
3 --laber ----

So the question arises how we might be able to access computations of the awk program
from the shell later on. The answer is exactly the same as in section 6.1.3 on page 75,

5Be aware that some awk implementations like mawk furthermore have no support for changing RS.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 115

where we wanted to extract multiple results from a single command substitution: We
need to pack the results together in the awk program and unpack them later in the shell
script. For example:

1 #!/bin/bash
2

3 # some data we have available on the shell
4 VAR="3.4"
5 OTHER="6.7"
6

7 # do calculation in awk and return packed data
8 RES=$(echo "$VAR␣$OTHER" | awk '{
9 sum=$1 + $2

10 product=$1*$2
11 print sum "+" product
12 }')
13

14 # unpack the data on the shell again:
15 SUM=$(echo "$RES" | cut -f1 -d+)
16 PRODUCT=$(echo "$RES" | cut -f2 -d+)
17

18 # use it in an echo
19 echo "The␣sum␣is:␣$SUM"
20 echo "The␣product␣is:␣$PRODUCT"

8_awk/awk_vs_shell_getdata.sh

1 The␣sum␣is:␣10.1
2 The␣product␣is:␣22.78

Exercise 8.2. Write a script which uses awk in order to process some data, which is
available to the script on stdin:

• Print the second and third column as well as the sum of both for each line of input
data. Assume that the columns are separated by one or more characters from the
[:space:] class.

• You will only need a single line of awk.
Try to execute your script, passing it data from resources/matrices/3.mtx or
resources/matrices/lund_b.mtx. Compare the results on the screen with the data in
these files. Does your script deal with the multiple column separator characters in the
file resources/matrices/lund_b.mtx properly?

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 116

8.6.3 Setting awk variables from the shell

awk has a commandline flag -v which allows to set variables before the actual inline awk
program code is touched. A common paradigm is:

1 awk -v "name=value" ' awk_source '

This is very useful in order to transfer bash variables to the awk program, e.g.
1 #!/bin/bash
2

3 VAR="abc"
4 NUMBER="5.4"
5 OTHER="3"
6

7 # ...
8

9 echo "data␣1␣2␣3" | awk -v "var=$VAR" -v "num=$NUMBER" -v ↙
↪→"other=$OTHER" '

10 {
11 print $1 "␣and␣" var
12

13 sum = $2 + $3
14 print num*sum
15 print $4 "␣" other
16 }
17 '

8_awk/vars_from_shell.sh

1 data␣and␣abc
2 16.2
3 3␣3

Exercise 8.3. Take another look at your script from exercise 6.6 on page 86. Use awk
to make it work for floating-point input as well.

8.7 awk conditions

Each action block may be preceded by a condition expression. awk evaluates the con-
dition and checks whether the result is nonzero (“C-false”). Only if this is the case the
corresponding action block is executed. Possible conditions include

• Comparison expressions, which may access or modify variables.
1 #!/bin/bash
2 VAR="print"
3 echo "some␣test␣data␣5.3" | awk -v "var=$VAR" '
4 var == "print" { print $2 }
5 var == "noprint" { print "no" }
6 $4 > 2 { print "fulfilled" }
7 '

8_awk/cond_comp.sh

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 117

1 test
2 fulfilled

• Regular expressions matching the current record
1 #!/bin/bash
2

3 {
4 echo "not␣important"
5 echo "data␣begin:␣1␣2␣3"
6 echo "nodata:␣itanei␣taen␣end"
7 echo "other␣things"
8 } | awk '
9 # start printing if line starts with data begin

10 /^data begin/ { pr=1 }
11

12 # print current line
13 pr == 1
14

15 # stop printing if end encountered
16 /end$/ { pr=0 }
17 '

8_awk/cond_regex_record.sh

1 data␣begin:␣1␣2␣3
2 nodata:␣itanei␣taen␣end

• Regular expressions matching the content of a variable (including $0, $1, . . .)
1 #!/bin/bash
2 VAR="15"
3

4 echo "data␣data␣data" | awk -v "var=$VAR" '
5 # executed if var is a single -digit number:
6 var ~ /^[0 -9]$/ {
7 print "var␣is␣a␣single␣digit␣number"
8 }
9

10 # executed if var is NOT a single -digit
11 var !~ /^[0 -9]$/ {
12 print "var␣is␣not␣a␣single␣digit"
13 }
14

15 $2 ~ /^.a/ {
16 print "2nd␣field␣has␣a␣as␣second␣char"
17 }
18 '

8_awk/cond_regex_var.sh

1 var␣is␣not␣a␣single␣digit
2 2nd␣field␣has␣a␣as␣second␣char

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 118

• Combination of conditions using logical AND (&&) or OR (||)
1 #!/bin/bash
2 VAR="15"
3

4 echo "data␣data␣data" | awk -v "var=$VAR" '
5 var !~ /^[0 -9]$/ && $2 == "data" {
6 print "Both␣are␣true"
7 }
8 '

8_awk/cond_combination.sh

1 Both␣are␣true

• The special BEGIN and END conditions, that match the beginning and the end of
the execution. In other words BEGIN-blocks are executed before a the first line of
input is read and END-blocks are executed right before awk terminates.

1 #!/bin/bash
2

3 {
4 echo "data␣data␣data"
5 echo "data␣data␣data"
6 echo "data␣data␣data"
7 } | awk '
8 BEGIN { number =0 } # optional: all uninitialised
9 # variables are 0

10 { number += NF }
11 END { print number }
12 '

8_awk/cond_begin_end.sh

1 9

Usually BEGIN is a good place to give variables an initial value.
Note, that it is a common source of errors to use an assignment a=1 instead of a
comparison a==1 in condition expressions. Since the = operator returns the result of the
assignment (like in C), the resulting action block will be executed independent of the
value of a:

1 #!/bin/bash
2 {
3 echo "not␣important"
4 echo "data␣begin"
5 echo "1␣2␣3"
6 echo "end"
7 echo "other␣things"
8 } | awk '
9 BEGIN {

10 # initialise pr as 0
11 # printing should only be done if pr==1
12 pr=0

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 119

13 }
14

15 # start printing if line starts with data begin
16 /^data begin/ { pr=1 }
17

18 # stop printing if end encountered
19 /end$/ { pr=0 }
20

21 # print first two fields of current line
22 # error here
23 pr = 1 { print $1 "␣" $2 }
24 '

8_awk/cond_assign_error.sh

1 not␣important
2 data␣begin
3 1␣2
4 end
5 other␣things

Exercise 8.4. Write a script using inline awk code to rebuild the piped version of the
command wc -l, i.e. your script should count the number of lines of all data provided
on stdin.

• A good starting point is the backbone script
1 #!/bin/bash
2 awk '
3 #your code here
4 '

• You will only need to add awk code to the upper script.
• Your awk program will need three rules: One that initialises everything, one that

is run for each line unconditionally and one that runs at the end dealing with the
results.

• Decide where the printing should happen. When do you know the final number of
lines?

• Once you have a working version: One of the three rules can be omitted. Which
one and why?

Exercise 8.5. (optional) The file resources/chem_output/qchem.out contains the
logged output of a quantum-chemical calculation. During this calculation two so-called
Davidson diagonalisations have been performed. Say we wanted to extract how many
iterations steps were necessary to finish these diagonalisations.

Take a look at line 422 of this file. You should notice:
• Each Davidson iteration start is logged with the line

1 ␣␣Starting␣Davidson␣...

• A nice table is printed afterwards with the iteration index given in the first column

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 120

• The procedure is concluded with the lines

1 --
2 ␣␣Davidson␣Summary:

Use what we discussed so far about awk in order to extract the number of iterations
both Davidson diagonalisations took. A few hints:

• You will need a global variable to remember if the current record/line you are
examining with awk is inside the Davidson table or not

• Store/Calculate the iteration count while you are inside the Davidson table
• Print the iteration count when you leave the table and reset your global variable,

such that the second table is also found and processed properly.

8.8 Important awk action commands

length returns the number of characters a string has,
e.g. length("abra") would return 4, length("") zero.

next Quit processing this record and immediately start processing the next one.
This implies that neither the rest of this action block nor any of the rules
below the current one are touched for this record. The execution begins
with the next record again trying to match the first rule. In some sense
this statement is comparable to the continue in a bash loop.

1 #!/bin/bash
2

3 {
4 echo record1 word2
5 echo record2 word4
6 echo record3 word6
7 } | awk '
8 BEGIN { c=0 }
9 { c++ }

10 { print c ":␣first␣rule" }
11 /4$/ { next; print c "␣" $1 }
12 { print c ":␣" $2 }
13 '

8_awk/action_next.sh

1 1:␣first␣rule
2 1:␣word2
3 2:␣first␣rule
4 3:␣first␣rule
5 3:␣word6

exit Quit the awk program: Neither the current nor any further record are
processed. Just run the code given in the END-block and return to the
shell. Note, that we can provide the return code with which awk exits as
an argument to this command.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 121

1 #!/bin/bash
2

3 {
4 echo record1 word2
5 echo record2 word4
6 echo record3 word6
7 } | awk '
8 BEGIN { c=0 }
9 { c++ }

10 { print c ":␣first␣rule" }
11 /4$/ { exit 42; print c "␣" $1 }
12 { print c ":␣" $2 }
13 END { print "quitting␣..." }
14 '
15 echo "return␣code:␣$?"

8_awk/action_exit.sh

1 1:␣first␣rule
2 1:␣word2
3 2:␣first␣rule
4 quitting␣...
5 return␣code:␣42

print Print the strings supplied as arguments, followed by a newline character6.
Just print (without an argument) is identical to print $0.

printf Formatted print. Can be used to print something, but without a newline
in the end 7

1 #!/bin/bash
2 {
3 echo 1 2 3 4
4 echo 5 6 7 8
5 } | awk '
6 $1 < 4 { printf $3 "␣" }
7 $1 > 4 { printf $3 }
8 '

8_awk/action_printf.sh

1 3␣7

6Can be changed. See section 5.1.1 of the awk course notes [5] for details
7printf is much more powerful and allows fine-grained control of priting: See section 5.2 of [5] for

more details.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 122

8.8.1 Conditions inside action blocks: if

awk also has analogous control structures to the ones we discussed in chapter 4 on page 34
for bash. We don’t want to go through all of these here 8, just note that conditional
branching can also be achieved inside an action block using the if control structure:

1 if (condition) {
2 action_commands
3 } else {
4 action_commands
5 }

where condition may be any of the expressions discussed in section 8.7 on page 116. As
usual the else-block may be omitted.

8.9 Further examples

Example 8.6. This script defines a simple version of grep in just a single line:
1 #!/bin/bash
2

3 # here we use DOUBLE quotes to have the shell
4 # insert the search pattern where awk expects it
5 awk "/$1/"

8_awk/ex_grep.sh

Example 8.7. Process some data from the /etc/passwd, where “:” or , are the field
separators

1 #!/bin/bash
2 < /etc/passwd awk -v "user=$USER" '
3 # set field separator to be : or , or many of these chars
4 BEGIN {FS="[:,]+" }
5

6 # found the entry for the current user?
7 $1 == user {
8 # print some info:
9 print "Your␣username:␣␣␣␣␣␣␣" $1

10 print "Your␣uid:␣␣␣␣␣␣␣␣␣␣␣␣" $3
11 print "Your␣full␣name:␣␣␣␣␣␣" $5
12 print "Your␣home:␣␣␣␣␣␣␣␣␣␣␣" $6
13 print "Your␣default␣shell:␣␣" $7
14 }
15 '

8_awk/ex_passwd.sh

8See section 6.2. of the awk course notes [5] for all the remaining ones.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 123

Example 8.8. This program finds duplicated words in a document. If there are some,
they are printed and the program returns 1, else 0.9

1 #!/bin/bash
2 awk '
3 # change the record separator to anything
4 # which is not an alphanumeric (we consider
5 # a different word to start at each alphnum -
6 # eric character)
7 BEGIN { RS="[^[: alnum :]]+" }
8 # now each word is a separate record
9

10 $0 == prev { print prev; ret =1; next }
11 { prev = $0 }
12 END { exit ret }
13 '

8_awk/ex_duplicate.sh

Note, that this program considers two words to be different if they are just capitalised
differently.
Exercise 8.9. Use awk in order to rebuild the command uniq, i.e. discard duplicated
lines in sorted input. Some hints:

• Since input is sorted, the duplicated lines will appear as records right after another
in awk, i.e. on exactly subsequent executions of the rules.

• Note that whilst $0 changes from record to record, a usual awk variable is global
and hence does not.

• The solution takes not more than 2 lines of awk code.
(optional) Also try to implement uniq -c. It is easiest to do this in a separate script
which only has the functionality of uniq -c.
Exercise 8.10. (demo) This exercise deals with writing another script that aids with
the analysis of an output file like resources/chem_output/qchem.out. This time we
will try to extract information about the so-called excited states, which is stored in this
file.

• If one wants to achieve such a task with awk, it is important to find suitable
character sequences that surround our region of interest, such that we can switch
our main processing routine on and off.

• Take a look at lines 565 to 784. In this case we are interested in creating a list of
the 10 excited states, which contains their number, their term symbol (e.g. “1 (1)
A"” or “3 (1) A’”) and their excitation energy.

9If this program does not work on your computer, make sure that you are using the awk implementation
gawk in order to execute the inline awk code in this script. It will not work properly in mawk.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING 124

• For the processing of the first state we hence need only the five lines

1 ␣␣Excited␣state␣1␣(singlet ,␣A")␣␣␣␣␣␣␣␣␣␣␣␣[converged]
2 ␣␣--
3 ␣␣Term␣symbol:␣␣1␣(1)␣A"␣␣␣␣␣␣␣␣␣␣␣␣R^2␣=␣␣7.77227e-11
4

5 ␣␣Total␣energy:␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ -7502.1159223236␣a.u.
6 ␣␣Excitation␣energy:␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣3.612484␣eV

Similarly for the other excited states blocks.
Proceed to write the script:

• Decide for a good starting and a good ending sequence.
• How you would extract the data (state number, term symbol, excitation energy)

once awk parses the excited states block?
• Be careful when you extract the term symbol, because the data will sit in more

than one field.
• Cache the extracted data for an excited states block until you reach the ending

sequence. Then print it all at once in a nicely formatted table.

8.10 awk features not covered

This section is supposed to provide a quick overview of the features of awk we did not
touch upon. The references in brackets point to relevant chapters of the Introduction to
awk programming course notes [5] as well as the gawk manual [3] where more information
about these topics can be found.

• Formatted printing ([5, chapter 5], [3, §5.5]): Controlling the precision of floats
printed

• Control structures and statements ([5, chapter 6], [3, §7.4]) in awk:
Loops, case, . . .

• awk arrays ([5, chapter 7], [3, §8])
• awk string manipulation functions ([5, §8.1.2], [3, §9.1.3]): Substitutions, substrings,

sorting
• Writing custom awk functions ([5, §8.2], [3, §9.2])
• Reading records with fixed field length ([5, §4.3], [3, §4.6]): Fields separated by

the number of characters, not a regex.
• Reading or writing multiple files ([5, §5.3], [3, §4.9])
• Executing shell commands from within awk programs ([3, §4.9])
• Creating awk code libraries ([3, chapter 10])
• Arbitrary precision arithmetic using awk ([3, chapter 15]): Floating point compu-

tation and integer arithmetic with arbitrarily-high accuracy.

Chapter 9

A word about performance

Most of the time performance is not a key aspect when writing scripts. Compared to
programs implemented in a compilable high-level language like C++, Java, . . . , scripts
will almost always be manyfold slower. So the choice to use a scripting language is usually
made because writing scripts is easier and takes considerably less time. Nevertheless
badly-written scripts imply a worse performance. So even for bash scripts there are a
few things which should be considered when large amounts of data are to be processed:

• Use the shell for small things as much as possible. Calling external programs is by
far the most costly step in a script. So this should really only be done when the
external program does more than just adding a few integers.

• If you need an external program, choose the cheapest that does everything you
need. E.g. only use grep -E, where normal grep is not enough, only proceed to
use awk, when grep does not do the trick any more.

• Don’t pipe between external programs if you could just eradicate one of them. Just
use the more feature-rich for everything. See the section below for examples.

• Sometimes a plain bash script is not enough:
– Use a high-level language for the most costly parts of your algorithm.
– Or use python as a subsidiary language: A large portion of python is imple-

mented in C, which makes it quicker, especially for numerics. Nevertheless
many concepts are similar and allow a bash programmer to pick up some
python fairly quickly.

125

CHAPTER 9. A WORD ABOUT PERFORMANCE 126

9.1 Collection of bad style examples

This section gives a few examples of bad coding style one frequently encounters and is
loosely based on http://www.smallo.ruhr.de/award.html. Most things have already
been covered in much more detail in the previous chapters.

9.1.1 Useless use of cat

There is no need to use cat just to read a file
1 cat file | program

because of input redirection:
1 < file program

9.1.2 Useless use of ls *

We already said that
1 for file in $(ls *); do
2 program "$file"
3 # or worse without the quotes:
4 program $file
5 done

is a bad idea because of the word-splitting that happens after command substitution.
The better alternative is

1 for file in *; do
2 program "$file"
3 done

9.1.3 Ignoring the exit code

Many programs such as grep return a sensible exit code when things go wrong. So
instead of

1 RESULT=$(< file some_program)
2

3 # check if we got something
4 if ["$RESULT"];then
5 do_sth_else
6 fi

we can just write
1 if <file some_program;then
2 do_sth_else
3 fi

http://www.smallo.ruhr.de/award.html

CHAPTER 9. A WORD ABOUT PERFORMANCE 127

9.1.4 Underestimating the powers of grep

One occasionally sees chains of grep commands piped to another, each with just a single
word

1 grep word1 | grep word2 | grep word3

where the command
1 grep "word1.* word2.* word3"

is both more precise and faster, too.
Also grep already has numerous builtin flags such that e.g.

1 grep word | wc -l

are unnecessary, use e.g.
1 grep -c word

instead.

9.1.5 When grep is not enough . . .

. . . then do not use it!
1 grep regex | awk '{commands}'

can be replaced by
1 awk '/regex/ {commands}'

and similarly
1 grep regex | sed 's/word1/word2/'

can be replaced by
1 sed '/regex/s/word1/word2/'

9.1.6 testing for the exit code

It feels awkward to see
1 program
2 if ["$?" != "0"]; then
3 echo "big␣PHAT␣error" >&2
4 fi

where
1 if ! program; then
2 echo "big␣PHAT␣error" >&2
3 fi

is much nicer to read and feels more natural, too.

Appendix A

Setup for the course

This appendix summarises the required setup for working on the exercises and running
the example scripts.

A.1 Installing the required programs

All exercises and example scripts should run without any problem on all LinuX systems
that have a recent bash, sed and the GNU awk implementation (gawk) installed. On
non-Linux operating systems like Mac OS X it may still happen, that examples give
different output or produce errors, due to subtle differences in the precise interface of
the Unix utility programs.

A.1.1 Debian / Ubuntu / Linux Mint

1 # Install as root:
2 apt -get install bash sed gawk git bsdutils findutils coreutils

A.1.2 Mac OS X

For example using homebrew1

1 brew install bash gnu -sed gawk git findutils coreutils

1https://brew.sh

128

https://brew.sh

APPENDIX A. SETUP FOR THE COURSE 129

A.2 Files for the examples and exercises

In order to obtain the example scripts and the resource files, you will need for the
exercises, you should run the following commands:

1 # clone the git repository:
2 git clone https :// github.com/mfherbst/bash -course
3

4 # download the books from Project Gutenberg
5 cd bash -course/resources/gutenberg/
6 ./ download.sh

All paths in this script are given relative to the directory bash-course, which you cre-
ated using the first command in line 2 above.

Appendix B

Other bash features worth
mentioning

B.1 bash customisation

B.1.1 The .bashrc and related configuration files

Not yet written.

B.1.2 Tab completion for script arguments

Not yet written.

B.2 Making scripts locale-aware

Not yet written.

B.3 bash command-line parsing in detail

B.3.1 Overview of the parsing process

When a commandline is entered into an interactive shell or is encountered on a script
the bash deals with it in the following order

1. Word splitting on the line entered
2. Expansion

(a) brace expansion
(b) tilde expansion, parameter and variable expansion

130

APPENDIX B. OTHER BASH FEATURES WORTH MENTIONING 131

(c) arithmetic expansion, and command substitution (done in a left-to-right fash-
ion)

(d) word splitting
(e) pathname expansion

3. Execution

B.4 Notable bash features not covered

The following list gives some keywords for further exploration into scripting using the
bash shell. See the bash manual [2] or the advanced bash-scripting guide [7] for more
details.

• bash arrays
• Brace expansion
• Tilde expansion
• Coprocesses

Appendix C

Supplementary information

C.1 The mtx file format

The main idea of the mtx file format is to be able to store matrix data in a plain text
file without storing those matrix entries which are zero. This is achieved by only storing
a selection of the matrix components and defaulting all other component values to 0.

The mtx files we use in this course1 for demonstration purposes, follow a very simple
structure

• All lines starting with “%” are comments
• The first line is a comment line.
• The first non-comment line contains three values separated by one or more <space>

or <tab> characters:
– The number of rows
– The number of columns
– The number of entries, which are explicitly set in the file. We will refer to

this number as d.
• All following lines — the explicitly provided entries — have the structure

– Row index (starting at 1, i.e. 1-based)
– Column index (1-based)
– Value

where the individual columns are again separated by one or more <space> or <tab>
chars. The number of lines in this latter block and the number d provided on the
first non-comment line have to agree in a valid mtx file.

All matrix components, which are not listed in the latter block, default to a value 0.

1We will only use a subset of the full format, which can be found under http://math.nist.gov/
MatrixMarket/formats.html#mtx

132

http://math.nist.gov/MatrixMarket/formats.html#mtx
http://math.nist.gov/MatrixMarket/formats.html#mtx

APPENDIX C. SUPPLEMENTARY INFORMATION 133

Some examples
• Consider the file

1 %% MatrixMarket matrix coordinate real symmetric
2 3 3 9
3 1 1 1
4 1 2 1
5 1 3 1
6 2 1 2
7 2 2 2
8 2 3 2
9 3 1 3

10 3 2 3
11 3 3 3

resources/matrices/3.mtx

The first line is a comment line, which we can ignore. The second line tells us that
the matrix represented is a 3×3 matrix and that all nine entries are provided in the
Matrix Market file. Lines 3 to 11 then list the values. Overall this file represents
the matrix 1 1 1

2 2 2
3 3 3

 .

• The file
1 %% MatrixMarket matrix coordinate real
2 3 3 9
3 1 1 1
4 1 2 0
5 1 3 0
6 2 1 0
7 2 2 2
8 2 3 0
9 3 1 0

10 3 2 0
11 3 3 3

describes a 3× 3 matrix as well, namely the diagonal matrix1 0 0
0 2 0
0 0 3

 .

If we want to avoid storing the zeros, we can use the equally valid mtx file
1 %% MatrixMarket matrix coordinate real
2 3 3 3
3 1 1 1
4 2 2 2
5 3 3 3

Notice, how the last value in the first non-comment line has changed as well.

Bibliography

[1] Eric S. Raymond. The Art of Unix Programming, September 2003. URL http:
//www.faqs.org/docs/artu/.

[2] Bash manual. URL https://www.gnu.org/software/bash/manual/.
[3] Arnold D. Robbins. GAWK: Effective AWK Programming, April 2014. URL https:

//www.gnu.org/software/gawk/manual/.
[4] Sed manual. URL https://www.gnu.org/software/sed/manual/.
[5] Michael F. Herbst. Introduction to awk programming 2016, August 2016. URL

https://doi.org/10.5281/zenodo.1038522.
[6] Michael F. Herbst. Introduction to awk programming 2016 course

website, August 2016. URL https://michael-herbst.com/teaching/
introduction-to-awk-programming-2016/.

[7] Mendel Cooper. Advanced bash-scripting guide, March 2014. URL http://www.
tldp.org/LDP/abs/html/.

134

http://www.faqs.org/docs/artu/
http://www.faqs.org/docs/artu/
https://www.gnu.org/software/bash/manual/
https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/sed/manual/
https://doi.org/10.5281/zenodo.1038522
https://michael-herbst.com/teaching/introduction-to-awk-programming-2016/
https://michael-herbst.com/teaching/introduction-to-awk-programming-2016/
http://www.tldp.org/LDP/abs/html/
http://www.tldp.org/LDP/abs/html/

List of Commands

apropos Search in manpage summaries for keyword

cat Concatenate one or many files together

cd Change the current working directory

chmod Change file or directory permissions (see section 1.3 on page 7)

cut Extract columns from input

echo Print something to output

grep Filter input by pattern

help Access help for bash builtin commands

info Access the Texinfo manual for commands

less View input or a file in a convenient way

ls List the content of the current working directory

man Open manual page for a command

mkdir Create a directory

pwd Print the current working directory

return Quit processing a function (section 6.2 on page 79) or a sourced script (sec-
tion 6.4 on page 90).

rmdir Delete empty folders

rm Delete files

sort Sort input according to some parameters

tac Concatenate files and print lines in reverse order

tee Write input to file and output

touch Change the modification time or create a file

135

BIBLIOGRAPHY 136

uniq Take a sorted input and discard double lines

wc Count characters, lines or words on input

whatis Print a short summary describing a command

	Contents
	List of Tables
	Course description
	Compatibility of the exercises

	Errors and feedback
	Licensing and redistribution
	Introduction to Unix-like operating systems
	The Unix philosophy
	Impact for scripting

	The Unix utilities
	Accessing files or directories
	Modifying files or directories
	Getting or filtering file content
	Other
	Exercises

	The Unix file and permission system
	What are files?
	Unix paths
	Unix permissions

	A first look at the bash shell
	Historic overview
	What is a shell?
	The Bourne-again shell

	Handy features of the bash
	Tab completion
	Accessing the command history
	Running multiple commands on a single line

	Redirecting command input/output
	The return code of a command
	Logic based on exit codes: The operators &&, ||, !

	Tips on getting help

	Simple shell scripts
	What makes a shell script a shell script?
	Executing scripts
	Scripts and stdin

	Shell variables
	Special parameters
	Command substitution

	Escaping strings
	Word splitting and quoting

	Control structures and Input/Output
	Printing output with echo
	The test program
	Conditionals: if
	Loops: while
	Loops: for
	Common ``types'' of for loops

	Conditionals: case
	Parsing input using shell scripts
	The read command
	Scripts have shared stdin, stdout and stderr
	The while read line paradigm

	Influencing word splitting: The variable IFS
	Conventions when scripting
	Script structure
	Input and output
	Parsing arguments

	Arithmetic expressions and advanced parameter expansions
	Arithmetic expansion
	Non-integer arithmetic
	A second look at parameter expansion

	Subshells and functions
	Explicit and implicit subshells
	Grouping commands
	Making use of subshells
	Implicit subshells

	bash functions
	Good practice when using functions
	Overwriting commands

	Cleanup routines
	Making script code more reusable

	Regular expressions
	Regular expression syntax
	Matching regular expressions in plain bash
	Regular expression operators
	A shorthand syntax for bracket expansions
	POSIX character classes
	Getting help with regexes

	Using regexes with grep
	Using regexes with sed
	Alternative matching syntax

	A concise introduction to awk programming
	Structure of an awk program
	Running awk programs
	awk programs have an implicit loop
	awk statements and line breaks
	Strings in awk
	Variables and arithmetic in awk
	Some special variables
	Variables in the awk code vs. variables in the shell script
	Setting awk variables from the shell

	awk conditions
	Important awk action commands
	Conditions inside action blocks: if

	Further examples
	awk features not covered

	A word about performance
	Collection of bad style examples
	Useless use of cat
	Useless use of ls *
	Ignoring the exit code
	Underestimating the powers of grep
	When grep is not enough …
	testing for the exit code

	Setup for the course
	Installing the required programs
	Debian / Ubuntu / Linux Mint
	Mac OS X

	Files for the examples and exercises

	Other bash features worth mentioning
	bash customisation
	The .bashrc and related configuration files
	Tab completion for script arguments

	Making scripts locale-aware
	bash command-line parsing in detail
	Overview of the parsing process

	Notable bash features not covered

	Supplementary information
	The mtx file format

	Bibliography
	List of Commands

