DFTK: A Julian approach for simulating electrons in solids

Michael F. Herbst, Antoine Levitt, Eric Cancès

CERMICS, Inria Paris and École des Ponts ParisTech

29th July 2020

Contents

- Density-functional theory
- 2 FDTK— The density-functional toolkit
- Tackling selected challenges in DFT
 - Lowering the entrance barrier for researchers
 - High-throughput screening
 - A posteriori error analysis
 - Reliable SCF algorithms

Contents

- Density-functional theory
- 2 FTK— The density-functional toolkit
- 3 Tackling selected challenges in DFT
 - Lowering the entrance barrier for researchers
 - High-throughput screening
 - A posteriori error analysis
 - Reliable SCF algorithms

Why care about electrons?

- Electrons glue the world together
- Electrons keep the world apart

A & Q

Why care about electrons?

- Electrons glue the world together
- Electrons keep the world apart

Materials and semiconductors

CC-by-3.0 https://en.wikipedia.org/ wiki/File:Silicon.jpg

Chemical and pharmaceutical industry

CC-by-1.0 https://en.wikipedia.org/
wiki/File:Lab_bench.jpg

Aren't experiments good enough?

- Experiments are expensive (money, people, time)
- 1 droplet water¹: $1.7 \cdot 10^{21}$ particles
- Experiments only measure averages
- Sometimes hard to link to physical laws
- ⇒ Cooperative research of experiment and theory
- ⇒ Standard practice in industry and research

¹Assume 0.05 ml.

Electronic structure theory

- Goal: Electronic properties (conductivity, photoactivity, ...)
 - Construct physically sound models
 - Validate / help to interpret experiment
- Sketching the approach:
 - Regime of quantum mechanics
 - System: Hamiltonian $\hat{\mathcal{H}}$, differential operator
 - ullet Minimisation problem: Ground state Ψ with energy

$$E = \min_{\Psi} \int_{\mathbb{R}^{3N}} \Psi\left(\underline{\boldsymbol{r}}_{1}, \underline{\boldsymbol{r}}_{2}, \dots, \underline{\boldsymbol{r}}_{N}\right) \hat{\mathcal{H}} \Psi\left(\underline{\boldsymbol{r}}_{1}, \underline{\boldsymbol{r}}_{2}, \dots, \underline{\boldsymbol{r}}_{N}\right) d\underline{\boldsymbol{r}}_{1} \cdots d\underline{\boldsymbol{r}}_{N}$$

• Properties: Derivatives of the energy

Density-functional theory

$$E = \min_{\Psi} \int_{\mathbb{R}^{3N}} \Psi\left(\underline{\boldsymbol{r}}_{1}, \underline{\boldsymbol{r}}_{2}, \dots, \underline{\boldsymbol{r}}_{N}\right) \hat{\mathcal{H}} \Psi\left(\underline{\boldsymbol{r}}_{1}, \underline{\boldsymbol{r}}_{2}, \dots, \underline{\boldsymbol{r}}_{N}\right) d\underline{\boldsymbol{r}}_{1} \cdots d\underline{\boldsymbol{r}}_{N}$$

- ullet Challenge: Size of N
- 2 Silicon atoms: $N=28\Rightarrow {\bf 2}^{84}\approx 2\cdot 10^{25}$ quadrature points
- ⇒ Finished in 1 year:
- ⇒ Density-functional theory (DFT) approximation
 - Effective one-particle model (N=1)
 - May construct DFT model for specific context
 - Discretisation basis: Build known physics into model
 - But: Non-convex, non-linear minimisation

Density-functional theory

$$E = \min_{\Psi} \int_{\mathbb{R}^{3N}} \Psi\left(\underline{\boldsymbol{r}}_{1}, \underline{\boldsymbol{r}}_{2}, \dots, \underline{\boldsymbol{r}}_{N}\right) \hat{\mathcal{H}} \Psi\left(\underline{\boldsymbol{r}}_{1}, \underline{\boldsymbol{r}}_{2}, \dots, \underline{\boldsymbol{r}}_{N}\right) d\underline{\boldsymbol{r}}_{1} \cdots d\underline{\boldsymbol{r}}_{N}$$

- ullet Challenge: Size of N
- 2 Silicon atoms: $N=28\Rightarrow {\bf 2}^{84}\approx 2\cdot 10^{25}$ quadrature points
- \Rightarrow Finished in 1 year: pprox 1.5 attoseconds per quadrature point
- ⇒ Density-functional theory (DFT) approximation
 - Effective one-particle model (N=1)
 - May construct DFT model for specific context
 - Discretisation basis: Build known physics into model
 - But: Non-convex, non-linear minimisation

Density-functional theory

$$E = \min_{\Psi} \int_{\mathbb{R}^{3N}} \Psi\left(\underline{\boldsymbol{r}}_{1}, \underline{\boldsymbol{r}}_{2}, \dots, \underline{\boldsymbol{r}}_{N}\right) \hat{\mathcal{H}} \Psi\left(\underline{\boldsymbol{r}}_{1}, \underline{\boldsymbol{r}}_{2}, \dots, \underline{\boldsymbol{r}}_{N}\right) d\underline{\boldsymbol{r}}_{1} \cdots d\underline{\boldsymbol{r}}_{N}$$

- ullet Challenge: Size of N
- 2 Silicon atoms: $N=28\Rightarrow {\bf 2}^{84}\approx 2\cdot 10^{25}$ quadrature points
- \Rightarrow Finished in 1 year: ≈ 1.5 attoseconds per quadrature point
- ⇒ Density-functional theory (DFT) approximation
 - Effective one-particle model (N=1)
 - May construct DFT model for specific context
 - Discretisation basis: Build known physics into model
 - But: Non-convex, non-linear minimisation

Self-consistent field procedure

• Euler-Lagrange equations (DFT):

$$\begin{cases} \hat{\mathcal{F}}_{\rho} = -\frac{1}{2}\Delta + V_{\rho} \\ \rho(\underline{r}) = \sum_{i} f_{\varepsilon_{F}}(\varepsilon_{i}) \left| \psi_{i}(\underline{r}) \right|^{2} & \text{with } \hat{\mathcal{F}}_{\rho}\psi_{i} = \varepsilon_{i}\psi_{i}, \\ \varepsilon_{F} \text{ chosen such that } \int \rho \, \mathrm{d}\underline{r} = N, \\ & \text{and } f_{\varepsilon_{F}}(x) = \left[1 + \exp\left(\frac{x - \varepsilon_{F}}{T}\right)\right]^{-1} \end{cases}$$

- Self-consistent field procedure (SCF):
 - (1) Guess initial density ρ
 - (2) Build Kohn-Sham operator $\hat{\mathcal{F}}_{o}$
 - (3) Diagonalise it to get new $\{\psi_i\}_i$
 - (4) Build new ρ go to (2).

Contents

- DFTK The density-functional toolkit
- - Lowering the entrance barrier for researchers

🔐 DFTK

- High-throughput screening
- A posteriori error analysis
- Reliable SCF algorithms

Landscape of DFT codes

- https://www.vasp.at
- https://www.abinit.org
- http://www.castep.org
- https://wiki.fysik.dtu.dk/gpaw
- https://www.quantum-espresso.org
- https://crd-legacy.lbl.gov/~chao/KSSOLV
-
- Represents hundreds of man-years of coding!
- ⇒ Why bother with TFTK?

Interdisciplinary research field

- Mathematicians: Toy models and unphysical edge cases
- Scientist: Wants to focus on science, not numerics
- High-performance person: Exploit hardware specialities
- Practitioner: Reliable, black-box, high-level interface
- Typical obstacles:
 - Difficult problem \Rightarrow Often complex codes
 - Hard-coded: Workflow / algorithms / hardware optimisations
 - Huge code bases (1M lines and beyond)
 - Non-standard input syntax and API
 - Unusual systems frequently require hand-tuning
 - Two-language problem: Where to cut?

Selected challenges

Density-functional theory (DFT)

DFTK— https://dftk.org

- 14 months of development, ≈ 5000 lines
- iulia code (modulo required Python and C libraries)
- Sizeable feature list:
 - Multi-level threading
 - 1D / 2D / 3D systems
 - Compose your own model
 - Integration with materials-related Python modules
 - $\bullet > 500$ electrons
- Performance: Within factor 2ish of established codes.
- Platform for multidisciplinary collaboration
- Documentation and examples: https://docs.dftk.org

14 months and 5000 lines

- How did we manage . . .
- ...well, there's the awesome julia community & ecosystem

14 months and 5000 lines

- How did we manage . . .
- ... most we needed was there:
 - Fourier transforms (FFTW)
 - Linear solvers (IterativeSolvers)
 - Non-linear solvers (Optim, NLsolve)
 - High-level data (PeriodicTable, Primes)
 - Building blocks (Roots, LineSearches, LinearMaps, ...)
 - Interfacing (PyCall)

- How did we manage . . .
- ... most we needed was there:
 - Fourier transforms (FFTW)
 - Linear solvers (IterativeSolvers)
 - Non-linear solvers (Optim, NLsolve)
 - High-level data (PeriodicTable, Primes)
 - Building blocks (Roots, LineSearches, LinearMaps, ...)
 - Interfacing (PyCall)
- Thank you!

Contents

- Density-functional theory
- 2 FTK— The density-functional toolkit
- Tackling selected challenges in DFT
 - Lowering the entrance barrier for researchers
 - High-throughput screening
 - A posteriori error analysis
 - Reliable SCF algorithms

Lowering the entrance barrier for researchers

- Money: Always tight
- Time: 3-ish years for a PhD, master even less
- State of the art:
 - Some codes require software licences O(5k€)

😽 DFTK

- Usage: Input format and interface
- Development: Scarce tests, comments, documentation
- 1M lines of hardly uniform code conventions
- Original developers have left (PhD is over)

A & Q

Attempts to lower the barriers in FTK

- julia: Zero cost and great learning resources
- Design goal: Code follows mathematical structure of DFT
- Aim for best agreement between code and equations (Unicode)
- Comments: Hint derivation or point to original articles
- https://docs.dftk.org with plenty of usage example
- Example projects:
 - Publication following master project
 - 8-week student project to toy with GPUs in DFT
 - ⇒ Both cases: No familiarity with DFT or julia
 - Error estimates: 10 weeks to publication

High-throughput screening

- In silico design of novel materials
- Challenging classifiers: Band gap, excitation energies, ...
- Narrow down 10k candidates to $\mathcal{O}(10)$
- Requirements:
 - Tunable parameters: Accuracy versus speed
 - Ideally: Target accuracy drives black-box workflow
 - Reliability: Breakdown of SCF not acceptable
 - Scriptability and interfacing to data science tools
 - Exploit whatever hardware exists (GPU, accelerators) ...

Screening and state of the art

- State of the art:
 - Plenty accuracy-related parameters
 - Chosen by experience: Too tight *versus* too optimistic
 - API decided a priori (two-language problem)
 - ⇒ Decisions hard-coded (e.g. floating-point type)
 - ⇒ Little freedom to tweak algorithms
 - ⇒ Basically hard fork for every accelerator / architecture
- ⇒ One long-term driving force behind PTK

A posteriori error analysis in DFT

- A posteriori error: Upper bound how far solution is off
- Mathematical answer for: Has target accuracy been reached?
- Sources of error in DFT:
 - Model error
 - Discretisation error
 - Algorithm error
 - Arithmetic error
- A posterior bound on error ⇒ Automatic error balancing
- For DFT: Full picture not yet understood

A posteriori error analysis with Topic DFTK

- Requirements:
 - Mathematical theory can only treat reduced models
 - Step-by-step expansion
 - Ingredients not yet clear (e.g. form of integrals, derivatives)
 - ⇒ Need accessible toolbox for experimentation
 - Arithmetic error: Interval arithmetic, elevated precision
- FTK offers:
 - Fully customisable model
 - Support for arbitrary floating-point types
 - Use julia ecosystem on TFTK datastructures:
 - Numerical quadrature, forward-mode AD, . . .
 - ⇒ Rapid prototyping in numerical linear algebra

Selected challenges

00000000000

Density-functional theory (DFT)

A posteriori error analysis: First results¹

- Reduced model: Non-self-consistent Kohn-Sham
- Estimation of arithmetic error (IntervalArithmetic.jl)
- Used elevated floating-point type (DoubleFloats.jl)
- Time to submission: 10 weeks

¹M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. In press. (2020)

Reliable SCF algorithms

- Convergence of SCF depends on dielectric properties
- ⇒ Different SCF needed for metals, insulators, semiconductors
 - Current schemes based on results for bulk materials
- ⇒ What to do e.g. for surfaces?
 - Requirements:
 - 1D / 2D / 3D: Analyse spectral properties
 - Rapid prototyping to mix and match ideas
 - ⇒ High-level code inside key algorithms
 - Testing requires realistic systems, but first version never works
 - ⇒ Scalup should not imply a rewrite of toy code

A & Q

Proposing SCF algorithms with 🌄 DFTK (WIP)

- Initial developments on 1D and 2D systems
- Compute spectral properties with KrylovKit.jl

😽 DFTK

- Tested identical implementation on systems > 500 electron
- Currently 4th refinement iteration:

Aluminium (10 repeats)

Silicon (10 repeats)

Summary and outlook

- FTK: Interdisciplinary software development
 - Closely integrated with julia ecosystem
 - Mix and match to build new algorithms
 - Rapid prototyping and toy problems
 - Scale-up for realistic testing and applications
- Near-future steps
 - SCF schemes for challenging systems (e.g. spin)
 - Error estimates and black-box workflows for DFT
 - Mixed precision and multigrid methods
 - Methods beyond DFT and SCF
 - Full GPU integration

Acknowledgements

Antoine Levitt

Eric Cancès

Other DFTK contributors:

@gkemlin, @ssirajdine, @louisponet

julia & package developers

- DoubleFloats.jl
- IntervalArithmetic.jl
- NLsolve.jl
- Optim.jl
- Plots.jl
- PyCall.jlRoots.jl
- Roots.ji
- StaticArrays.jl
- \$THOSE_I_FORGOT

Questions?

- The property of the property o
 - mfherbst
 - ♦ https://michael-herbst.com/blog
 - michael.herbst@inria.fr

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.