
Introduction to awk programming
(block course)

Michael F. Herbst
michael.herbst@iwr.uni-heidelberg.de

http://blog.mfhs.eu

Interdisziplinäres Zentrum für wissenschaftliches Rechnen

Ruprecht-Karls-Universität Heidelberg

15th – 17th August 2016

michael.herbst@iwr.uni-heidelberg.de
http://blog.mfhs.eu

Contents

Contents i

List of Tables iv

Course description v
Learning targets and objectives . v
Prerequisites . vi

Compatibility of the exercises vi

Errors and feedback vi

Licensing and redistribution vi

1 A first look at awk 1
1.1 Design principles of awk . 1
1.2 awk versions and implementations . 2
1.3 awk programs . 2

1.3.1 Running awk programs . 2
1.4 Getting help and further reading . 5

2 Regular expressions 6
2.1 Matching regular expressions in awk patterns 6
2.2 Regular expression operators . 7
2.3 A shorthand syntax for bracket expansions 10
2.4 POSIX character classes . 10
2.5 Getting help with regexes . 11

3 Basic features of awk 13
3.1 Overview: How awk parses input . 13
3.2 Working with default awk input parsing 14
3.3 Strings . 16
3.4 Multiple actions per pattern . 17
3.5 Variables . 18

3.5.1 Operators . 22
3.5.2 Arithmetic operators . 23
3.5.3 Conditional operators . 25
3.5.4 Conditional operators in patterns 27

i

CONTENTS ii

3.6 Standalone awk scripts . 29
3.7 What we can do with awk so far . 31

4 Influencing input parsing 33
4.1 Changing how files are split into records 33
4.2 Changing how records are split into fields 34

4.2.1 Using regular expressions to separate fields 35
4.2.2 Special field separator values . 36

4.3 Defining fields by their content . 38
4.4 Other ways to get input . 39

5 Printing output 40
5.1 The print statement . 40

5.1.1 Influencing the formatting of printed data 41
5.2 Fancier printing: printf . 43

5.2.1 Format specifiers for printf . 43
5.3 Redirection and piping from awk . 47

6 Patterns, variables and control statements 49
6.1 Controlling program flow with rules and patterns 49

6.1.1 Range patterns . 50
6.2 Control statements . 52

6.2.1 exit statement . 52
6.2.2 next statement . 53
6.2.3 if-else statement . 55
6.2.4 while statement . 55
6.2.5 for statement . 57
6.2.6 break statement . 59
6.2.7 continue statement . 60

6.3 Builtin and special variables in awk . 60

7 Arrays 62
7.1 Statements and control structures for arrays 64
7.2 Multidimensional arrays . 67

8 Functions 68
8.1 Important built-in functions . 69

8.1.1 Numeric functions . 69
8.1.2 String functions . 70

8.2 User-defined functions . 74

9 Writing practical awk programs 77
9.1 When and how to use awk . 77
9.2 Re-coding Unix tools using awk . 78
9.3 Example programs . 79

A Obtaining the files 85

B Supplementary information 86
B.1 The mtx file format . 86

CONTENTS iii

Bibliography 88

Index 89

List of Tables

2.1 Some POSIX character classes . 11

4.1 awk’s input parsing behaviour for different values of the field separator FS. 37

iv

Course description

Dealing with large numbers of plain text files is quite frequent when making scientific
calculations or simulations. For example, one wants to read a part of a file, do some
processing on it and send the result off to another program for plotting. Often these
tasks are very similar, but at the same time highly specific to the particular application
or problem in mind, such that writing a single-use program in high-level language like
C++ or Java hardly ever makes much sense: The development time is just too high. On
the other end of the scale are simple shell scripts. But with them sometimes even simple
data manipulation becomes extremely complicated or the script simply does not scale
up and takes forever to work on bigger data sets.

Data-driven languages like awk sit on a middle ground here: awk scripts are as easy
to code as plain shell scripts, but are well-suited for processing textual data in all kinds
of ways. One should note, however, that awk is not extremely general. Following the
UNIX philosophy it can do only one thing, but this it can do right. To make proper use
of awk one hence needs to consider it in the context of a UNIX-like operating system.

In the first part of the course we will thus start with revising some concepts, which
are common to many UNIX programs and also prominent in awk, like regular expressions.
Afterwards we will discuss the basic structure of awk scripts and core awk features like

� ways to define how data sits in the input file

� extracting and printing data

� control statements (if, for, while, . . .)

� awk functions

� awk arrays

This course is a subsidiary to the bash course which was offered in August 2015. See http:
//blog.mfhs.eu/teaching/advanced-bash-scripting-2015/ for further information.

Learning targets and objectives

After the course you will be able to

� enumerate different ways to define the structure of an input file in awk,

� parse an structured input file and access individual values for post-processing,

� use regular expressions to search for text in a file,

� find and extract a well-defined part of a large file without relying on the exact
position of this part,

� use awk to perform simple checks on text (like checking for repeated words) in less
than 5 lines of code.

v

http://blog.mfhs.eu/teaching/advanced-bash-scripting-2015/
http://blog.mfhs.eu/teaching/advanced-bash-scripting-2015/

Prerequisites

� Familiarity with a UNIX-like operating system like GNU/Linux and the terminal
is assumed.

� Basic knowledge of the UNIX command grep is assumed. You should for example
know how to use grep to search for a word in a file.

� It is not assumed, but highly recommended, that participants have had previous
experiences with programming or scripting in a UNIX-like operating system.

Compatibility of the exercises

All exercises and script samples have been tested on Debian 7 “Jessie” with GNU
gawk 4.1.1. Other operating systems and awk implementations may not work. Most
importantly your awk interpreter should understand the gawk dialect. See section 1.2 on
page 2 and appendix A on page 85 for details.

Errors and feedback

If you spot an error or have any suggestions for the further improvement of the material,
please do not hesitate to contact me under michael.herbst@iwr.uni-heidelberg.de.

Licensing and redistribution

Course Notes

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Inter-
national License. To view a copy of this license, visit http://creativecommons.org/

licenses/by-sa/4.0/.

An electronic version of this document is available from http://blog.mfhs.eu/teaching/

introduction-to-awk-programming-2016/. If you use any part of my work, please
include a reference to this URL along with my name and email address.

Script examples

All example scripts in the repository are published under the CC0 1.0 Universal Licence.
See the file LICENCE in the root of the repository for more details.

vi

michael.herbst@iwr.uni-heidelberg.de
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://blog.mfhs.eu/teaching/introduction-to-awk-programming-2016/
http://blog.mfhs.eu/teaching/introduction-to-awk-programming-2016/

Chapter 1

A first look at awk

Just like most other programming languages and computer programs, awk does not sit
separate from the environment in which it is used. Much rather it is embedded into a
larger context of other utilities and programs. Before we start discussing “proper” awk

in chapter 3 on page 13 we will therefore quickly review the design principles of awk and
how it is intertwined with other UNIX concepts.

1.1 Design principles of awk

awk was designed by Alfred Aho, Peter Weinberger, and Brian Kernighan in the 1970s
at Bell Labs1. Their idea was to create a programming language for processing text files
that was as easy to write as plain shell scripts, but which was more data-driven, i.e.
where the structure of the data itself determines how the program is actually executed.
As we will see in chapter 4 on page 33 this leads to a slightly unusual way of coding, but
this will turn out to be very effective when reading files and extracting data. Often only
a couple lines of code are enough to perform a rather intricate job2.

Historically awk was influenced by shell scripting and the UNIX tools sed and grep,
which can in fact be seen as a subset of awk. Right from the start it was distributed
inside the UNIX operating system and even nowadays awk is a mandatory utility for
every UNIX or Linux operating system3.

As such it employs a lot of techniques which are very common to other UNIX tools as
well. Regular expressions (see chapter 2 on page 6) for example are not only important
to influence for awk’s data parsing (see chapter 4 on page 33), but also play a prominent
role in searching or editing text with grep, sed, vim, perl, python, . . . Furthermore
most standard awk programs act more or less like a filter to the data which is passed
through them. This implies that they can be easily used inside shell scripts in order to
perform some processing which is required. We will only talk very briefly about this
interplay of shell scripts (or other scripts) and awk in chapter 4 on page 33 and chapter 9
on page 77, but more details can be found in chapter 8 of the Advanced bash scripting

1That’s the place where C, sh and a whole lot of other UNIX-related innovations comes from.
2 Take a look at the examples at the end of the script (chapter 9 on page 77).
3See http://www.unix.org/version3/apis/cu.html and LSB 4.0

1

http://www.unix.org/version3/apis/cu.html

CHAPTER 1. A FIRST LOOK AT AWK 2

course [1].

1.2 awk versions and implementations

There exist three variants of the awk language:

� Old awk or oawk: The original version of the language by Aho, Weinberger and
Kernighan from 1977.

� New awk or nawk: An extended awk language published in 1985.

� GNU awk or gawk: A yet extended version by the Free Software Foundation.

We will discuss only the dialect gawk here, since it is most common and has a couple of
nice features the other versions lack.

Unfortunately by default most Linux distribution ship a program called mawk as their
awk interpreter. So if some of the things explained in this script do not work as intended,
one should make sure that the gawk program is installed.

1.3 awk programs

Similar to sed and grep an input file given to awk is automatically split up into larger
chunks called records. Usually this is done at the newline character, i.e. a record is in
most cases equivalent to a line in the input file4.

Each record is subsequently compared against a list of patterns and if a pattern
is satisfied a corresponding action is applied to the record. As such awk programs are
listings similar to

1 pattern { action }

2 pattern { action }

3 ...

Each line consisting of pattern and action is called a rule. It is important to note that
for each record in a file all rules are executed. So the program itself contains an implicit
loop over all records/lines of the input file.

As we will see in chapter 6 on page 49 quite some different types of patterns and
actions are supported.

1.3.1 Running awk programs

There are multiple ways to run awk programs. If the program is short it is easiest to
include it on the commandline itself:

$ awk 'program ' inputfile

This will read the file inputfile line-by-line and execute the awk code program on it.

4See section 4.1 on page 33 for cases where this is different

CHAPTER 1. A FIRST LOOK AT AWK 3

If programs become larger it is advantageous to store them in a file and read them
from there. awk supports this using the flag -f. I.e.

$ awk -f programfile inputfile

will read the program code from the file programfile instead. awk scripts are usually
given the extension awk.

Example 1.1. Consider the text files5

1 some words

2 any data

3 some further words

4 somer morer things

5 more other thing

6 even more data

resources/testfile

and

1 words

2 any data

3 more words

4 somer morer things

5 more other thing

6 even more data

1 first look/smallerfile

� If we run the awk onelinear program

1 /some/ { print }

1 first look/printo.awk

i.e.

$ awk -f 1_first_look/printo.awk resources/testfile

we get the output

1 some words

2 some further words

3 somer morer things

since the pattern /some/ will only be satisfied if the line of text6 under consideration
contains the character sequence some. Of course one could have equally executed

$ awk '/some/ { print }' resources/testfile

to obtain the output above.

5All paths and resources of this script will be given relative to the top level directory of the git
repository of this course (see appendix A on page 85). This is the directory which contains this very
pdf file.

6Recall that by default a record is a line of text

CHAPTER 1. A FIRST LOOK AT AWK 4

� On the other hand we could run the same program on the input file
1_first_look/smallerfile, i.e.

$ awk -f 1_first_look/printo.awk 1_first_look/smallerfile

to obtain

1 somer morer things

In this case only a single line matches the pattern /some/, so only a single line of
output is printed.

Someone new to the concept of data-driven programming might find the output of
the script 1_first_look/printo.awk somewhat strange. Even though only a single line
of code was written multiple lines of output were produced. As previously mentioned
this is due to the implicit loop over records, i.e. the fact that for each record/line
of the input file all rules of the awk program are executed. So with the input file
resources/testfile where many lines satisfy the pattern, many lines are printed, but
with the file 1_first_look/smallerfile only one is printed.

Example 1.2. Printing the whole line is the default action of awk and the action block
{print} may therefore be left out. Consider for example the output of

$ awk '/more/' resources/testfile

where the action-block is missing. We get the output

1 somer morer things

2 more other thing

3 even more data

Exercise 1.3. We want to find all the lines of the Project Gutenberg7 books pg74 and
pg76, which contain the word “hunger”.

� Write a simple awk programs to achieve your goal. If you proceeded with the setup
of the repository as described in appendix A on page 85, you should find the books
in the folder resources/gutenberg.

� (optional) Now write a small awk program file called first.awk, which finds lines
which either contain the word “hunger” or “year”. Execute your script on pg74

like this

$ awk -f first.awk resources/gutenberg/pg74.txt

Exercise 1.4. If a rule has no pattern, then all records match, i.e. the action is executed
for all records. This explains why the commandline

$ awk '{print}' resources/testfile

prints the full content of resources/testfile, i.e.

1 some words

2 any data

7https://www.gutenberg.org/

https://www.gutenberg.org/

CHAPTER 1. A FIRST LOOK AT AWK 5

3 some further words

4 somer morer things

5 more other thing

6 even more data

Now we want to understand the term data-driven programming language a little better.

� Explain the behaviour of

$ awk -f 1_first_look/printprint.awk resources/testfile

where the content of the awk script is

1 {print}

2 {print}

1 first look/printprint.awk

� What happens if the input file is empty? Create yourself an empty file using
touch empty and execute

$ awk -f 1_first_look/printprint.awk empty

Why is this?

1.4 Getting help and further reading

For core utilities like awk there exist a vast number of potential sources for getting help.
I personally very rarely use the internet, much rather I use the gawk manual: “GAWK:
Effective AWK programming” [2]. It is in my opinion by far the best available awk

resource. This course follows the structure of this book quite closely and for almost
every aspect covered here further details can be found in [2]. I will refer to chapters and
sections of this book for further reading at many places in this script.

For quickly checking an option or a some tiny detail, I can also recommend the gawk

manpage, available from the terminal via the usual man awk.

Chapter 2

Regular expressions

Regular expressions are a key tool in order to find or describe strings in a text. As awk is
all about processing text files we will need very often. For example they are used all the
time to define the patterns, i.e. they play an important role to define when our actions
are executed. The use of regular expressions is, however, not limited to awk. They are
very important for a number of other UNIX utils like grep, sed, . . . as well. For more
information about regular expressions in this latter context, see chapter 7 of [1].

2.1 Matching regular expressions in awk patterns

We will introduce regular expressions in a second, but in order to show some examples,
we need a way to try them inside awk code. The /word/ pattern we met in the previous
chapter (see e.g. example 1.1 on page 3), is not just valid for searching for a string1 in a
record. Much rather it allows us to specify a regular expressions between the / characters.
We will see later that regular expressions are just a generalisation to searching for plain
string and therefore why we could use the /regex/ pattern in order to search for strings
in words as well.

Long story short: A simple awk program like

1 /regex/ {print}

already does the trick: It will check for each record/line of the input file whether at least
a part of the record can be successfully described by the regular expression regex — one
also says it checks whether at least a part of the line is matched by the regex. If this is
the case the action block {print} will be executed, i.e. the line will be printed to the
output. Otherwise nothing happens for this line.

Example 2.1. The regex r.t matches all lines which contain an r and two characters
later an t. So if we run

$ awk '/r.t/ {print}' resources/testfile

we get

1character sequence

6

CHAPTER 2. REGULAR EXPRESSIONS 7

1 somer morer things

2 more other thing

since the strings morer things and other thing are matched by r.t. Of course a word
like rotten would have been matched as well. It is important to note here that really
the full record/line is matched irrespective of the individual words.

To quickly check whether a string string is matched by a regex it is pretty tedious
to first put the string into an inputfile and then execute

$ awk '/regex/ {print}' inputfile

Luckily awk reads from the standard input if no inputfile is given, i.e. the commandline

$ echo "string" | awk '/regex/ {print}'

can also be used2 Of course we could also drop the action block {print} entirely since
it is the default action executed anyway (see example 1.2 on page 4):

$ echo "string" | awk '/regex/'

2.2 Regular expression operators

It is best to think of regular expressions as a “search” string where some characters have
a special meaning. All non-special characters just stand for themselves, e.g. the regex
“a” just matches the string “a”3.

Without further ado a non-exhaustive list of regular expression operators4:

\ The escape character: Disables the special meaning of the next character
that follows.

^ matches the beginning of a string, ie. “^word” matches “wordblub” but
not “blubword”. It is important to note for later, that ^ does not match
the beginning of a line, but much rather the beginning of a record.

$ echo "wordblubb" | awk '/^word/'

gives

1 wordblubb

2Recall that a pipe “|” can be used to redirect the output of one program to be the input of another.
In this case echo prints the string as its output, which is redirected to be the input of awk. For more
details about this see section 2.3 of [1].

3This is why in example 1.1 on page 3 we could just use the /regex/ pattern to search for strings
in the text without really knowing anything about regexes.

4More can be found e.g. in section 3.3 of the awk manual [2]

CHAPTER 2. REGULAR EXPRESSIONS 8

whilst

$ echo "blubbword" | awk '/^word/'

yields no output.

$ matches the end of a string or record in a similar way.

. matches any single character, including <newline>, e.g. P.P matches PAP

or PLP but not PLLP

[...] bracket expansion: Matches one of the characters enclosed in square
brackets.

$ echo "o" | awk '/^[oale]$/' # match

1 o

$ echo "a" | awk '/^[oale]$/' # match

1 a

$ echo "oo" | awk '/^[oale]$/' # no match

Note: Inside the bracket expansion only the characters], - and ^ are not
interpreted as literals. E.g.

$ echo '$' | awk '/^[$]$/' # match

1 $

[^...] complemented bracket expansion: Matches all characters except the
ones in square brackets

$ echo "o" | awk '/[^eulr]/' # match

1 o

$ echo "e" | awk '/[^eulr]/' # no match

$ echo "a" | awk '/[o^ale]/' # match , since this is ↙
↪→no cbe!

1 a

CHAPTER 2. REGULAR EXPRESSIONS 9

| alternation operator: Specifies alternatives: Either the regex to the right
or the one to the left has to match. Note: Alternation applies to the largest
possible regexes on either side

$ echo "word" | awk '/^wo|rrd$/' # match , since ^wo

1 word

(...) Grouping regular expressions, often used in combination with |, to make
the alternation clear, e.g.

$ echo "word" | awk '/^(wo|rrd)$/ # no match '

* The preceding regular expression should be repeated as many times as
necessary to find a match, e.g. “ico*’ matches “ic”, “ico” or “icooooo”,
but not “icco”. The “*” applies to the smallest possible expression only.

1 echo "wo (rd" | awk '/wo* \(/' # match

2 echo "woo (rd" | awk '/wo* \(/' # match

3 echo "oo (rd" | awk '/wo* \(/' # no match

4 echo "oo (rd" | awk '/(wo)* \(/' # match

5 echo "wowo (rd" | awk '/(wo)* \(/' # match

2 regular expressions/regex star.sh

1 wo (rd

2 woo (rd

3 oo (rd

4 wowo (rd

+ Similar to “*”: The preceding expression must occur at least once

1 echo "woo (rd" | awk '/wo+ \(/' # matches

2 echo "oo (rd" | awk '/(wo)+ \(/' # no match

3 echo "wo (rd" | awk '/(wo)+ \(/' # matches

2 regular expressions/regex plus.sh

1 woo (rd

2 wo (rd

? Similar to “*”: The preceding expression must be matched once or not at
all. E.g. “ca?r” matches “car” or “cr”, but nothing else.

There are a few things to note

� awk will try to match as much of a record as possible.

� Regexes are case-sensitive

� Unless ^ or $ are specified, the matched substring may start and end anywhere.

� As soon as a single matching substring exists in the record, the record is considered
to match the pattern, i.e. the action will be executed for this record.

CHAPTER 2. REGULAR EXPRESSIONS 10

2.3 A shorthand syntax for bracket expansions

Both bracket expansion and complemented bracket expansion allow for a shorthand
syntax, which can be used for ranges of characters or ranges of numbers, e.g

short form equivalent long form
[a-e] [abcde]

[aA-F] [aABCDEF]

[^a-z4-9A-G] [^abcdefgh ... xyz456789ABCDEFG]

Exercise 2.2. Consider these strings

“ab” “67” “7b7”
“g” “67777” “o7x7g7”

“77777” “7777” “” (empty)

For each of the following regexes, decide which of the above strings are matched:

� ..

� ^..$

� [a-e]

� ^.7*$

� ^(.7)*$

2.4 POSIX character classes

There are also some special, named bracket expansions, called POSIX character
classes. See table 2.1 on the following page for some examples and [2] for more details.
POSIX character classes can only be used within bracket expansions, e.g.

1 # ^[[: space :]]*[0[: alpha :]]+ matches arbitrarily many spaces

2 # followed by at least one 0 or letter

3

4 echo " a" | awk '/^[[: space :]]*[0[: alpha :]]+/' # Match

5 echo " 00" | awk '/^[[: space :]]*[0[: alpha :]]+/' # Match

6 echo "1" | awk '/^[[: space :]]*[0[: alpha :]]+/' # No match

7 echo " 1" | awk '/^[[: space :]]*[0[: alpha :]]+/' # No match

2 regular expressions/regex posixclass.sh

which gives the output

1 a

2 00

CHAPTER 2. REGULAR EXPRESSIONS 11

short form equivalent long form description
[:alnum:] a-zA-Z0-9 alphanumeric chars
[:alpha:] A-Za-z alphabetic chars
[:blank:] \t space and tab
[:digit:] 0-9 digits
[:print:] printable characters
[:punct:] punctuation chars
[:space:] \t\r\n\v\f space characters
[:upper:] A-Z uppercase chars
[:xdigit:] a-fA-F0-9 hexadecimal digits

Table 2.1: Some POSIX character classes

2.5 Getting help with regexes

Writing regular expressions takes certainly a little practice, but is extremely powerful
once mastered.

� https://www.debuggex.com is extremely helpful in analysing and understanding
regular expressions. The website graphically analyses a regex and tells you why a
string does/does not match.

� Practice is everything: See http://regexcrossword.com/ or try the Android app
ReGeX.

Exercise 2.3. Fill the following regex crossword. The strings you fill in have to match
both the pattern in their row as well as the pattern in their column.

a?[3[:space:]]+b? b[^21eaf0]

[a-f][0-3]

[[:xdigit:]]b+

Exercise 2.4. Give regular expressions that satisfy the following

matches does not match chars
a) abbbc, abbc, abc, ac aba 2
b) abbbc, abbc, abc bac, ab 3
c) ac, abashc, a123c cbluba, aefg 2
d) qome, qol , qde eqo, efeq 3
e) arrp, whee bla, kee 4

Note: The art of writing regular expressions is to use the smallest number of characters
possible to achieve your goal. The number in the last column gives the number of
characters necessary to achieve a possible solution.

Exercise 2.5. (optional) Take a look at the file resources/digitfile. This file con-
tains both lines which contain only text as well as lines which contain numbers. The
aim of this exercise is to design a regular expression which matches only those lines that
contain numbers in proper scientific format, i.e. a number of the form

sign prefactor e sign exponent

e.g.

0.123e-4 0.45e1 -0.4e9

https://www.debuggex.com
http://regexcrossword.com/

CHAPTER 2. REGULAR EXPRESSIONS 12

These numbers follow the rules

� The sign may be + or - or absent

� The prefactor has to be in the range between 0. and 1. In other words it will
always contain a . as the second digit and the first character will always be a 0 or
1. The number of characters after the . may, however, vary.

� The exponent may be any integer number, i.e. it may not contain a ., but otherwise
any number. It may have leading zeros.

In order to design the regular expression, proceed as follows:

� First design regexes to match the individual parts: sign, prefactor and exponent.

� Paste them together. Pay attention to which parts are required and which are
optional.

� (optional) Introduce some fault tolerance:

– Make your expression work if between prefactor and exponent one of the
characters E, D or d is used instead.

– Be less strict on the requirements of the prefactor. Allow prefactors outside
of the range 0 to 1.

Chapter 3

Basic features of awk

Now that we understand regular expressions we return our attention to awk itself. Our
ultimate goal when using awk is to parse data and work on it in some way. Whilst we
will look more closely into influencing the parsing process itself in the next chapter 4 on
page 33, this chapter will discuss the basics of awk. We will look at core features like
dealing with strings, variables and operators.

3.1 Overview: How awk parses input

Consider once again the basic structure of an awk program with a list of rules consisting
of patterns and actions:

1 pattern { action }

2 pattern { action }

3 ...

For any data awk gets to parse — either in form of an input file that we specify on the
commandline or piped on standard input — the following is underdone:

1. The whole input data is split into smaller chunks, called records. This done
whenever a record separator character is encountered. By default the record
separator is the <newline> character, which is sometimes also denoted as \n.

2. Each record is further split into fields whenever a field separator is found in the
record. By default newline and all members from the [:space:] POSIX character
class (see table 2.1 on page 11) are field separators.

3. For each record all rules are considered from top to bottom. If the pattern of a
rule matches for a given record, then the corresponding action is executed.

4. If the action block is absent, the whole record will be printed (default action).

5. If the pattern is absent (default pattern), the action is executed for each word.

In other words default awk input parsing will go through the file line by line (records)
and will assign to the individual fields the words1 it encounters in each line.

1In the sense that words are separated by [:space:] characters.

13

CHAPTER 3. BASIC FEATURES OF AWK 14

Of course the number of words in a line of input may differ, which demonstrates that
the number of fields available for a record does not need to be a constant number.

3.2 Working with default awk input parsing

Before any rule is executed for a particular record, the special variables $1, $2, . . . , $n
are assigned to the first, second, . . . n-th field of this record. For example consider a
record like

1 Das Pferd frisst keinen Gurkensalat.

Das will be assigned to $1, Pferd will be assigned to $2 and so on. These variables can
be easily used in an action block:

echo "Das Pferd frisst keinen Gurkensalat." | awk '{print $2}'

yields

1 Pferd

The whole record as it was read from the input is stored in the variable $0 as well, such
that

echo "Das Pferd frisst keinen Gurkensalat." | awk '/^Das/ {print ↙
↪→$0}'

gives us

1 Das Pferd frisst keinen Gurkensalat.

since the line starts with “Das”.

Exercise 3.1. Use an awk oneliner to extract the second word of each line of the book
resources/gutenberg/pg1232.txt, which starts with the string free.

Variables like the field variables are not static to awk. This means that we can change
them to a new value, e.g. a string like "Auto" (More on strings in section 3.3 on page 16):

$ echo "Das Pferd frisst keinen Gurkensalat." | awk '{$2 = "Auto"}

{print}'

1 Das Auto frisst keinen Gurkensalat.

We notice that awk takes changes to variables into account when the next rule is
processed (in this case a simple unconditional {print} action).

CHAPTER 3. BASIC FEATURES OF AWK 15

Example 3.2. Suppose we manage a list of telephone numbers like

1 Amelia 555 -5553 1

2 Anthony 555 -3412 2

3 Becky 555 -7685 1

4 Bill 555 -1675 4

5 Broderick 555 -0542 5

6 Camilla 555 -2912 2

7 Fabius 555 -1234 0

8 Julie 555 -6699 3

9 Martin 555 -6480 1

10 Samuel 555 -3430 2

11 Jean -Paul 555 -2127 3

resources/data/telephonelist

(For clarity we use the symbol to denote a tab and to denote a space character in
these kinds of outputs.)

Our job is to change the telephone number of all people starting with the letter “B” to
“not_available”. Since awk takes changes to the variables $1, $2 . . . into account when
processing all rules below the current one, this can be achieved using the awk program

1 # Match lines starting with B

2 # and change the second field

3 /^B/ { $2 = "not_available" }

4 # Print all records including the changed one

5 { print }

3 basics/change avail.awk

Running this on resources/data/telephonelist, i.e.

$ awk -f 3_basics/change_avail.awk resources/data/telephonelist

results in

1 Amelia 555 -5553 1

2 Anthony 555 -3412 2

3 Becky not_available 1

4 Bill not_available 4

5 Broderick not_available 5

6 Camilla 555 -2912 2

7 Fabius 555 -1234 0

8 Julie 555 -6699 3

9 Martin 555 -6480 1

10 Samuel 555 -3430 2

11 Jean -Paul 555 -2127 3

We note that the formatting of the output lines differs when printing unaltered records
and records where awk was asked to change the value of a field. This can be explained
as follows:

� awk removes repeated whitespace characters when splitting the record into fields,
no matter what the whitespace is (tabs, spaces, newlines, . . .), so the field variables
$1, $2, etc. only contain the plain words and no whitespace

CHAPTER 3. BASIC FEATURES OF AWK 16

� The unchanged record (exactly as it was read from input) is retained in $0.

� If the fields are not changed, then print $0 hence prints the original record as
read.

� If one field is changed, $0 is rebuilt from the individual fields. By default this
means the field values are concatenated together, separated by only a single space.
We will see in section 5.1.1 on page 41 how one can alter this behaviour.

Notice, that all the lines starting in the program code of the previous example, which
started with # were ignored by awk. This is because # is the comment character in
awk. Everything which is placed behind a # on the same line will be ignored.

3.3 Strings

Strings in awk all have to be enclosed by double quotes, e.g.

1 "This is a valid string"

Multiple strings may be concatenated, just by leaving white space between them

1 "This is a " " concatenated " "string"

This way we can concatenate the content of variables and some other text before printing:

$ echo "Das Pferd frisst keinen Gurkensalat" | awk '{ print "Der ↙
↪→" $5 " " $3 " kein " $2 }'

1 Der Gurkensalat frisst kein Pferd

Note that we had to include explicit spaces between $5 and $3 because the fields have
leading and trailing whitespace removed.

A nice feature of awk is that it per default honours special escape sequences like
“\t”(for a tab character) and “\n”(for a newline character) in strings. So we could
improve the output formatting in example 3.2 on the previous page by explicitly putting
two tabs between the fields, i.e.

1 # Match lines starting with B

2 # and change the second field

3 /^B/ { $2 = "not_available" }

4 # Print all records separated by two tabs

5 { print $1 "\t\t" $2 "\t\t" $3 }

3 basics/change avail tabs.awk

Running this on resources/data/telephonelist gives

1 Amelia 555 -5553 1

2 Anthony 555 -3412 2

3 Becky not_available 1

4 Bill not_available 4

5 Broderick not_available 5

6 Camilla 555 -2912 2

CHAPTER 3. BASIC FEATURES OF AWK 17

7 Fabius 555 -1234 0

8 Julie 555 -6699 3

9 Martin 555 -6480 1

10 Samuel 555 -3430 2

11 Jean -Paul 555 -2127 3

which is still not great, but certainly nicer to read. We will pick up on the output
formatting issue in chapter 5 on page 40.

Exercise 3.3. Use an awk oneliner to extract the first and the second column from the
file resources/matrices/lund_b.mtx.
(optional) Modify your code to prevent data from the comment lines (starting with the
character %) to be printed. This is easiest if you use a regular expression in the pattern.

3.4 Multiple actions per pattern

As awk programs become more complicated it is often desired to execute more than one
action per matching pattern. For example consider the program

1 # Match lines starting with B

2 # inform us about the unavailable phone and change the field.

3 /^B/ { print $1 "'s phone has become unavailable"

4 $2 = "not_available" }

5 # Print all records separated by two tabs

6 { print $1 "\t\t" $2 "\t\t" $3 }

3 basics/change avail message.awk

here we not only want to change the field if the phone of a person has become unavailable,
but we also want to print a statement about this to the screen. This can be achieved by
putting the two actions

1 print $1 "'s phone has become unavailable"

and

1 $2 = "not_available"

into different lines of code. The resulting output is

1 Amelia 555 -5553 1

2 Anthony 555 -3412 2

3 Becky 's phone has become unavailable

4 Becky not_available 1

5 Bill 's phone has become unavailable

6 Bill not_available 4

7 Broderick 's phone has become unavailable

8 Broderick not_available 5

9 Camilla 555 -2912 2

10 Fabius 555 -1234 0

11 Julie 555 -6699 3

12 Martin 555 -6480 1

13 Samuel 555 -3430 2

14 Jean -Paul 555 -2127 3

CHAPTER 3. BASIC FEATURES OF AWK 18

Since empty lines in action blocks or empty lines between different rules are ignored by
awk we could equivalently write the program code as

1 # Match lines starting with B

2 # inform us about the unavailable phone and change the field.

3 /^B/ {

4 print $1 "'s phone has become unavailable"

5 $2 = "not_available"

6 }

7

8 # Print all records separated by two tabs

9 { print $1 "\t\t" $2 "\t\t" $3 }

3 basics/change avail message2.awk

which is easier to read.

awk also allows to replace line breaks between actions or rules by ; (semicolon)
characters. This is especially helpful for small commandline awk programs, e.g.

$ echo "awk is twice not cool." | awk '{$4="as"

print}

{print}'

and

$ echo "awk is twice not cool." | awk '{$4="as";print };{ print}'

both produce

1 awk is twice as cool.

2 awk is twice as cool.

3.5 Variables

The handling of variables and arithmetic in awk are very similar to other scripting
languages like bash or python. Most things should be pretty self-explanatory and this
section is therefore kept rather short. More details about variables and operators in awk

can be found in section 6.1 of the gawk manual [2].

� Variables are assigned using a single equals (“=”). There may well be space between
the name and the value.

1 var="value"

2 # or

3 var = "value"

4 # are identical to awk

� The value of a variable can just be accessed by its name:

1 print "var is " var # => will print "var is value"

CHAPTER 3. BASIC FEATURES OF AWK 19

� Variables do not need to hold string values:

1 integer =1 # an integer

2 float =3.4 # a floating point number

3 float2 =1.3e7 # another floating point number

� awk performs sensible conversion between strings that describe numbers and other
variables/strings

1 {

2 var1 = "1.23"

3 var2 = 1.1

4

5 print "With $1=" $1 ": " $1 + var1

6 print var1 "+" var2 "=" var1+var2

7 }

3 basics/vars conversion.awk

$ echo "111" | awk -f 3_basics/vars_conversion.awk

1 With $1=111: 112.23

2 1.23+1.1=2.33

� Strings that cannot be interpreted as a number are considered to be 0.

$ echo "blubber" | awk -f 3_basics/vars_conversion.awk

1 With $1=blubber: 1.23

2 1.23+1.1=2.33

� Undefined variables are 0 or the empty string.

� All variables are global and can be accessed and modified from all action blocks
(or condition statements as we will see later)

1 # $0 is always defined to be the current record ,

2 # but A is undefined at this point

3 {

4 print "$0 is " $0 " but A is " A

5 N = 15

6 }

7

8 # print N and define A

9 { print N; A = $1 }

10

11 # print A

12 { print "String " A " has length " length(A) }

3 basics/vars global.awk

CHAPTER 3. BASIC FEATURES OF AWK 20

$ echo "blubber" | awk -f 3_basics/vars_global.awk

1 $0 is blubber but A is

2 15

3 String blubber has length 7

Note that the state of awk is not reset between processing different records. In other
words a variable, which is set once, can be used when processing a different record as
well2 This can be a little confusing at first, but is actually one of the reasons, why awk

is so effective in processing text files.

Example 3.4. To make this point more clear, let us consider an example:

1 {

2 print "current: " $1 " " $2

3 print prev " with buffer " buffer

4 }

5

6 # set the buffer if there is an i in the name

7 # and the 12 occurs on the line as well (e.g. in the phone number)

8 /i.*12/ { buffer = $2 }

9

10 {

11 prev = $1 " " $2 # store the current record in prev

12 print "" # print an empty line

13 }

3 basics/vars rule global.awk

$ awk -f 3_basics/vars_rule_global.awk resources/data/telephonelist

1 current: Amelia 555 -5553

2 with buffer

3

4 current: Anthony 555 -3412

5 Amelia 555 -5553 with buffer

6

7 current: Becky 555 -7685

8 Anthony 555 -3412 with buffer

9

10 current: Bill 555 -1675

11 Becky 555 -7685 with buffer

12

13 current: Broderick 555 -0542

14 Bill 555 -1675 with buffer

15

16 current: Camilla 555 -2912

17 Broderick 555 -0542 with buffer

18

19 current: Fabius 555 -1234

2In some sense awk is pretty much a state machine, where parsing records can induce transitions
between different internal states.

CHAPTER 3. BASIC FEATURES OF AWK 21

20 Camilla 555 -2912 with buffer 555 -2912

21

22 current: Julie 555 -6699

23 Fabius 555 -1234 with buffer 555 -1234

24

25 current: Martin 555 -6480

26 Julie 555 -6699 with buffer 555 -1234

27

28 current: Samuel 555 -3430

29 Martin 555 -6480 with buffer 555 -1234

30

31 current: Jean -Paul 555 -2127

32 Samuel 555 -3430 with buffer 555 -1234

� The program runs over our list of phone numbers. It stores some phone number in
a buffer, called buffer. Furthermore line 12 achieves that the first and the second
field of the current record is stored inside the variable prev. Then processing ends
with printing an empty line.

� The behaviour of line 3 of the awk code differs when processing the first record
compared to the remaining ones.

For the first record the variable prev is not yet defined. For all others this line
causes the first two fields from the previous line to be printed. This happens because
prev has just been set to this value when the previous record was processed.

� In other words line 12 of the program influences the behaviour in line 3, i.e.

Code at the end can have an effect on code at the beginning!

Whether such a bottom-to-top influence really happens, depends on the input
data (data-driven programming) and what rules match for each of the records.

⇒ When writing an awk program one does not only need to think sequentially from
top to bottom, but sometimes the other way round as well. E.g. when a one needs
to cache a part of a record for consumption when processing a later record.

Exercise 3.5. Write an awk program, which prints an ever-growing concatenation of
all previous lines. In other words the input data

1 awk

2 is

3 a

4 data -driven

5 programming

6 language

3 basics/input.data

should give rise to

1 awk

2 awk is

3 awk is a

4 awk is a data -driven

5 awk is a data -driven programming

CHAPTER 3. BASIC FEATURES OF AWK 22

6 awk is a data -driven programming language

The extra space in the beginning is a little annoying, but we do not know a way to avoid
it at the moment.

Exercise 3.6. Explain why the script

1 { print a }

2 { num = "false"; a = a + 1 }

3 /[0 -9]/ { num="true"; a = a - 1 }

4 { print "num: " num }

3 basics/exscript.awk

yields the output

1

2 num: true

3 0

4 num: true

5 0

6 num: false

7 1

8 num: false

9 2

10 num: true

11 2

12 num: true

13 2

14 num: true

3 basics/exscript.awk.out

when executed with the input file

1 4

2 5

3 word

4 no more

5 3 little

6 wild 5animals

7 11

3 basics/exscript.awk.in

3.5.1 Operators

awk allows all sorts of operations between variables and objects. Some of these operations
(like the string concatenation we mentioned in section 3.3 on page 16 do not even require
an explicit operator to be present). Amongst the operators we distinguish between two
major categories — arithmetic operators (section 3.5.2 on the following page), which act
solely on numbers, and conditional operators (section 3.5.3 on page 25), which compare
objects of various kinds.

CHAPTER 3. BASIC FEATURES OF AWK 23

3.5.2 Arithmetic operators

awk supports the following arithmetic operators3:

x ^ y Exponentiation: x is raised to the power of y

-x Negation

+x Unary plus: x is converted to a number

x * y Multiplication

x / y Division: Since awk is floating-point aware the result is not always an integer.
E.g. 3/4 will be 0.75. If you want to enforce integer division, use the expression
int(3/4) which will yield 0 in this case.

x % y Modulo operation or remainder of integer division

x + y Addition

x - y Subtraction

For example

1 {

2 # calculate the square and print it

3 e = $1 ^ 2

4 print e

5

6 # Assign a string variable:

7 str="3.44444444444444444444"

8 # convert to a number and print it

9 print +str

10 # print it without conversion

11 print str

12

13 # print sum

14 print str+$2

15

16 # print integer and normal division

17 print int (5/3), 5/3

18

19 # show that operator precedence makes sense

20 print 5+3*2.5

21 }

3 basics/arith example.awk

$ echo "12.3 4" | awk -f 3_basics/arith_example.awk

1 151.29

2 3.44444

3 3.44444444444444444444

4 7.44444

5 1 1.66667

6 12.5

3See chapter 6.2 of [2] for more details

CHAPTER 3. BASIC FEATURES OF AWK 24

Similar to the C-like languages, there exist combined arithmetic assignment operators
like +=, -= or similar. Increment ++ and decrement -- are also supported in the usual
manor.

1 # Count number of lines with a as second character

2 /^.a/ { acount += 1 }

3

4 # Count the number of lines containing 2

5 /2/ { twocount ++ }

6

7 {

8 print "So far found " acount " 'a's as second character"

9 print "So far found " twocount " lines containing '2'"

10 print "--"

11 }

3 basics/arith incr example.awk

$ awk -f 3_basics/arith_incr_example.awk ↙
↪→resources/data/telephonelist

1 So far found 'a's as second character

2 So far found lines containing '2'

3 --

4 So far found 'a's as second character

5 So far found 1 lines containing '2'

6 --

7 So far found 'a's as second character

8 So far found 1 lines containing '2'

9 --

10 So far found 'a's as second character

11 So far found 1 lines containing '2'

12 --

13 So far found 'a's as second character

14 So far found 2 lines containing '2'

15 --

16 So far found 1 'a's as second character

17 So far found 3 lines containing '2'

18 --

19 So far found 2 'a's as second character

20 So far found 4 lines containing '2'

21 --

22 So far found 2 'a's as second character

23 So far found 4 lines containing '2'

24 --

25 So far found 3 'a's as second character

26 So far found 4 lines containing '2'

27 --

28 So far found 4 'a's as second character

29 So far found 5 lines containing '2'

30 --

31 So far found 4 'a's as second character

32 So far found 6 lines containing '2'

33 --

CHAPTER 3. BASIC FEATURES OF AWK 25

Of cause it is very annoying to get all the intermediate results if one is only interested
in the final count. For this reason the special pattern END exists, which is only matched
exactly once: After the processing of all records has been done. So if we use the program

1 # Count number of lines with a as second character

2 /^.a/ { acount += 1 }

3

4 # Count the number of lines containing 2

5 /2/ { twocount ++ }

6

7 END {

8 print "We found " acount " 'a's as second character"

9 print "We found " twocount " lines containing '2'"

10 }

3 basics/arith incr example end.awk

on resources/data/telephonelist we just get

1 We found 4 'a's as second character

2 We found 6 lines containing '2'

which much better. A similar BEGIN pattern, which matches before any record is read,
exists as well. It is most often used to initialise variables.

Exercise 3.7.

� Use awk to count how many lines of resources/digitfile contain some number.

� Use the END pattern to only print a final result.

� (optional) If you did exercise 2.5 on page 11: Find out how many lines contain
actual scientific numbers.

Exercise 3.8. Use awk to find the average value of the first, second and third columns
in resources/matrices/3.mtx. In other words compute one average for the first, one
for the second and one for the third column. Run your code on matrices/lund_b.mtx

and matrices/bcsstm01.mtx.

3.5.3 Conditional operators

� awk has the usual comparison operators4

x == y True if x and y are equal

x != y True if x and y are not equal

x < y True if x is smaller than y

x > y True if x is greater than y

x <= y True if x is smaller or equal to y

x >= y True if x is greater or equal to y

4See chapter 6.3 of [2] for more details

CHAPTER 3. BASIC FEATURES OF AWK 26

� The kind of comparison performed by these operators is determined by the types
of x and y. The precise rules are a bit involved and rarely of importance. They
can be found in section 6.3.2 of the [2]. A couple of examples:

1 1.5 <= 2.0 # numeric comparison (true)

2 "abc" >= "xyz" # string comparison (false)

3 1.5 != " +2" # string comparison (true)

4 "1e2" < "3" # string comparison (true)

5 a=2; b="2"

6 a==b # string comparison (true)

7 a=2; b="+2"

8 a==b # string comparison (false)

A good rule of thumb is that string comparison is performed unless the strings
originate from user input, i.e. are stored in field variables like $1, $2, . . .

� Similar to the C-like languages, “true” is equivalent to 1 and “false” is equivalent
to 0, e.g.

$ echo "1 2" | awk '{ print ($1 < $2); print ($1 > $2) }'

1 1

2 0

� awk further implements two special regex comparison operators, namely

x ~ y True if x matches the regex denoted by y

x !~ y True if x does not match y

In both of this cases y may either be a regex literal like /regex/ as well as a variable
or expression which makes up a regular expression. For example

1 {

2 var="Some words in a variable."

3

4 # use a regex literal

5 print "var matches /variable \\./ " (var ~ /variable \./)

6

7 # Use a regex variable

8 re="le\\.$"

9 print "var matches re? " (var ~ re)

10 # Note: In order to precisely match the "." at the end of

11 # var we need to escape the ".", i.e. use "\.".

12 # This however would be interpreted by awk when making the

13 # string variable re in line 8 before we reach the regex

14 # in line 9. So we need to escape the escape first ...

15 # Since this is not necessary for the regex literals

16 # (see line 5) Those are usually preferred.

17

18 # use an expression to build the regex

19 build=" -9]"

20 print "var does not match [0" build "? " (var !~ "[0" build)

21

22 # does $0 match?

CHAPTER 3. BASIC FEATURES OF AWK 27

23 print (var ~ $0)

24 }

3 basics/cond regex example.awk

$ echo "ds..n" | awk -f 3_basics/cond_regex_example.awk

1 var matches /variable \./ 1

2 var matches re? 1

3 var does not match [0-9]? 1

4 1

� Finally it is possible to logically connect conditions using || (logical or), && (logical
and) or ! (logical not), e.g.

echo "1" | awk '{print ($0 || (3 > 4)) && !("a" > "z")}'

1 1

echo "0" | awk '{print ($0 || (3 > 4)) && !("a" > "z")}'

1 0

3.5.4 Conditional operators in patterns

� All conditional operators we met in section 3.5.3 on page 25 may be used in the
pattern section of a rule. For example

$ echo "blub ber" | awk '$2 ~ /be/ { print "matches" }'

1 matches

or

$ echo "awk course" | awk '$2 == "course" { print ↙
↪→"blubber !!" }'

1 blubber !!

� Using the Boolean operators && or || many conditions may be may well be checked
in the pattern together.

$ echo "awk course" | awk '/^a.. / && $2 ~ /r.e/ { print ↙
↪→"more blubber !!" }'

1 more blubber !!

CHAPTER 3. BASIC FEATURES OF AWK 28

� As we saw above this way we can explicitly check for the values of variables before
executing an action.

Example 3.9. Suppose we want to print all entries of resources/data/telephonelist
which have a third column of 2 or higher. We want to do the printing in chunks of two,
such that after each two findings there is an empty line. The awk program

1 # if 3rd column is larger than 2 print it

2 # and increment counter c

3 $3 >= 2 { print; c++ }

4

5 # if we did some printing and the print count

6 # is divisible by 2 add an extra empty line

7 $3 >= 2 && c % 2 == 0 { print ""}

3 basics/chunk 2.awk

does exactly that:

1 Anthony 555 -3412 2

2 Bill 555 -1675 4

3

4 Broderick 555 -0542 5

5 Camilla 555 -2912 2

6

7 Julie 555 -6699 3

8 Samuel 555 -3430 2

9

10 Jean -Paul 555 -2127 3

Exercise 3.10. This exercise deals once again with the matrix files resources/matrices/3.mtx,
resources/matrices/bcsstm01.mtx and resources/matrices/lund_b.mtx. These
mtx files are representing matrices stored in the matrix market format. Take a look
at appendix B.1 on page 86 for some details about this format.

� Write an awk program that prints both the number of expected explictly provided
entries as well as the number of actual entries found in the last indices-value block
of the mtx file.

� Write an awk program that computes the sparsity ratio of the three matrix files.
The sparsity ratio of an n×m matrix is defined as

1− Number of entries, which are stored

n ·m
.

In the case of such an mtx file the “Number of entries, which are stored” is equiv-
alent to the number of explictly provided entries.
(optional) Modify your program such that it does not rely on the correctness of
the value d in the first non-comment line.

� (optional) Write awk code, which computes the elementwise square of a mtx file.
Your output should be a valid mtx file as well, so be careful not to operate on the
first non-comment line!

CHAPTER 3. BASIC FEATURES OF AWK 29

3.6 Standalone awk scripts

Up to now we know a couple of different ways to run awk programs. We can pipe some
input to the awk executable and provide the program code on the commandline, like

$ echo "2 3" | awk '{ print $1 + $2 }'

1 5

Or we can write our code to a file and let awk read it from there

1 { print $1+$2 }

3 basics/add.awk

$ echo "2 3" | awk -f 3_basics/add.awk

1 5

In both those cases we may also provide the input data as a file, e.g.

$ awk -f 3_basics/add.awk resources/matrices /3. mtx

1 0

2 6

3 2

4 3

5 4

6 3

7 4

8 5

9 4

10 5

11 6

There exists yet another option, namely writing awk scripts. Similar to other shell
scripts5 we need to do two things:

� Provide the shebang

1 #! /usr/bin/awk -f

on the very first line of our program, in order to tell the operating system that the
following code should be executed with awk.

� Make the script file executable by calling chmod +x on it.

In our case we need to modify 3_basics/add.awk to

1 #!/usr/bin/awk -f

2 { print $1+$2 }

3 basics/add script.awk

5See section 3.1 of [1]

CHAPTER 3. BASIC FEATURES OF AWK 30

and then execute

$ chmod +x 3_basics/add_script.awk

After this has been achieved, we can use it as a regular script. For example we can pipe
data to it

$ echo "2 3" | 3_basics/add.awk

1 5

or call it with an input file as first argument

$ 3_basics/add.awk resources/matrices /3.mtx

1 0

2 6

3 2

4 3

5 4

6 3

7 4

8 5

9 4

10 5

11 6

The advantage is that this script can be used like any other program of the operating
system once it is placed into the $HOME/bin folder. See chapter 3 of [1] for details.

CHAPTER 3. BASIC FEATURES OF AWK 31

3.7 What we can do with awk so far

Now we have covered enough awk to achieve the most basic tasks. A couple of examples:

� Print lines longer than 80 characters:

1 #!/usr/bin/awk -f

2 length($0) > 80

3 basics/ex longer.awk

� Print the length of the longest line

1 #!/usr/bin/awk -f

2 length($0) > max { max = length($0) }

3 END { print "The longest line has " max " characters." }

3 basics/ex longest line.awk

� Discard duplicated lines of input:

1 #!/usr/bin/awk -f

2 $0 != prev

3 { prev = $0 }

3 basics/ex unique.awk

� Print everything from the line containing heading until an empty line is reached

1 #!/usr/bin/awk -f

2 # if line is empty , quit

3 $0 == "" { exit }

4

5 # as soon as we hit a line called heading set pr=1

6 /heading/ { pr=1 }

7 # print if pr equals 1

8 pr == 1

3 basics/ex headingpart.awk

Here we used the action command exit which instructs awk to immediately quit.
See section 6.2.1 on page 52 for details.

Exercise 3.11. (demo) The file resources/chem_output/qchem.out contains the logged
output of a quantum-chemical calculation. A common problem when performing scien-
tific calculation is to extract the relevant data from such an output. This exercise will
deal with writing an awk script which aids with extraction of important information of
so-called excited states.

� If one wants to achieve such a task with awk, one usually first tries to find a suitable
character sequence, which surrounds our regions of interest. We will then use a
state variable like pr in the example program 3_basics/ex_headingpart.awk to
switch our main processing routine on and off6.

6awk has better ways to do this. See section 6.1.1 on page 50.

CHAPTER 3. BASIC FEATURES OF AWK 32

� Take a look at lines 565 to 784 of qchem.out. In this case we are interested in
creating a list of the 10 computed excited states. For each state the list should
contain the state’s number, its term symbol (e.g. “1 (1) A"” or “3 (1) A’”) and
its excitation energy.

� For the processing of the first state we hence need only the six lines

1 Excited state 1 (singlet , A") [converged]

2 --

3 Term symbol: 1 (1) A" R^2 = 7.77227e-11

4

5 Total energy: -7502.1159223236 a.u.

6 Excitation energy: 3.612484 eV

to extract the information

– Term symbol: 1 (1) A"

– State number: 1

– Excitation energy 3.612484 eV

Similarly for the other excited states blocks.

Now proceed to write the script:

� Decide for a good starting and a good ending sequence.

� How you would extract the data (state number, term symbol, excitation energy)
once awk parses the excited states block?

� Be careful when you extract the term symbol, because the data will sit in more
than one field.

� Cache the extracted data for an excited states block until you reach the ending
sequence. Then print it all at once in a nicely formatted table.

Chapter 4

Influencing input parsing

awk’s default input parsing (see section 3.1 on page 13) turns out to be very good for
most things. Still it is desirable to tell awk as precisely as possible in which format the
input data is to be expected. This way as much of the parsing work as possible is already
done in the background by awk and we can concentrate on working with the actual data
instead.

This chapter only gives a rough overview what we can do to influence the input
parsing. Some features and many subtleties are not covered here. See chapter 4 of [2]
for more details.

4.1 Changing how files are split into records

When awk reads input it splits it into records at each occurrence of the record separator,
by default the <newline> character. This behaviour can be changed by altering the
built-in variable RS.

Usually one uses the BEGIN special pattern (see 6.1 on page 49) change RS, because
the action block corresponding to the BEGIN pattern will be executed before any input
is read. For example1

$ echo -n "And he shouted: 'Ooh ya koo !'" | awk 'BEGIN { ↙
↪→RS="o"}; {print $0}'

produces

1 And he sh

2 uted: 'O

3 h ya k

4

5 !'

� Since the RS="o" changes the record separator to “o” a new record is started each
time the letter o is encountered.

1echo -n is used in order to suppress the extra <newline> echo usually prints

33

CHAPTER 4. INFLUENCING INPUT PARSING 34

� The second rule causes each record to be printed. Note that print adds a
<newline> after the string $0, regardless of the value of RS.

� If the record separator occurs multiple times just after itself, an empty record is
yielded.

Field splitting is not influenced by the altered value of RS2, e.g. we get

$ echo -n "And he shouted: 'Ooh ya koo !'" | awk 'BEGIN { ↙
↪→RS="o"}; {print $1 "--" $2 "--" $3}'

\end{lstinline}

\begin{lstlisting }[style=output]

And --he--sh

uted:--'O--

h--ya --k

!'----

where as usual repeated whitespace separates the fields.

Exercise 4.1. Write an awk program which finds duplicated words in a text and prints
the duplicated words it found, but produces no other output.
Hint: This is pretty much the same problem as removing duplicated lines in a file if you
alter RS properly.

awk does not only allow single characters as record separators, but also e.g. regular
expressions and many more. More details about this can be found in 4.8 of [2].

4.2 Changing how records are split into fields

The analogue to the special variable RS for influencing field splitting is the field separa-
tor FS. Whenever awk encounters the value of FS, a new field begins. Typical non-default
values for FS are “,”, “;” or “:”. Consider for example

$ echo "one ::1: :" | awk 'BEGIN { FS=":" }; { print $1 "--" $2 ↙
↪→"--" $3 "--" $4 "--" $5 }'

1 one ----1-- --

We notice:

� Altering the field separator implies that whitespace is no longer stripped off when
determining the fields content.

� Repeated occurrence of the field separator gives rise to empty fields (like $3 in this
case).

Exercise 4.2. A very common class of files are so-called comma-separated value
files. Many online-banking websites and almost all spreadsheet programs allow to
export their data as such files. Typically the individual data fields are separated by the
same character, usually a “,” (comma).

2This is not fully correct. See 4.8 of [2] for details.

CHAPTER 4. INFLUENCING INPUT PARSING 35

Consider the file resources/data/money.csv. This file contains a statement with a
bunch of transfers. The initial balance is given in the first line starting with a #. The
following lines (line 4 and onwards) contain the actual transfers, given by a description
and the respective change in balance.

� Write an awk program which prints the final balance to the screen.

� Write an awk program which appends a third column which gives the current
balance after each transfer has occurred.

Sometimes it is desirable to change the value of FS in the middle of an awk program.
This has, however, no effect on the current fields. Only the way subsequent records are
separated into fields is changed. E.g.

$ awk '/^B/ { FS="-" }; { print $1 }' resources/data/telephonelist

yields

1 Amelia

2 Anthony

3 Becky

4 Bill 555

5 Broderick 555

6 Camilla 555

7 Fabius 555

8 Julie 555

9 Martin 555

10 Samuel 555

11 Jean

Once the first record starting with B is read, FS is changed. But this only affects the
parsing of the second record starting with B and all subsequent records.

4.2.1 Using regular expressions to separate fields

A slightly more general way to split records into fields is to use a regular expression for FS.
Any assignment to FS which is more than one character long is interpreted as a regular
expression by awk. For example the assignment FS=",\t" causes “comma followed by
tab“ to be the new field separator:

$ echo "one , two , and three , four" | awk 'BEGIN { FS=",\t" }; { ↙
↪→print $1 "--" $2 "--" $3 "--" $4 }'

1 one --two , and three --four --

It is, however, more common to use regexes involving a repeated bracket expansion like
FS="[:,]+" for the field separator. In this case this would start a new field whenever
one ore more “:” or “,” are encountered.

CHAPTER 4. INFLUENCING INPUT PARSING 36

Example 4.3. A very important file for a UNIX operating system is /etc/passwd. This
file contains information about all users of the system and uses a combination of “:” and
“,” to separate fields. The script

1 #!/usr/bin/awk -f

2

3 # set field separator to be : or , or many of these chars

4 BEGIN { FS="[:,]+" }

5

6 # give a nice listing of the current entry

7 # for all uids >= 1000

8 $3 >= 1000 {

9 print $1

10 print " uid: " $3

11 print " full name: " $5

12 print " home dir: " $6

13 print " shell: " $7

14 }

4 parsing input/passwd summary.awk

prints a nice summary for the users with user id greater or equal than 1000.

4.2.2 Special field separator values

In section 4.2 on page 34 we discussed how FS could be changed to single character in
order to make this character the field separator. Whenever this character occurred a
repeated number of times in the record this resulted in empty fields.

This is in contrast to the behaviour, which one finds if FS is set to " ". This latter
case is the default value of FS in awk and triggers that records are split whenever a
single or repeated occurrence of any whitespace character is encountered. So it actually
behaves more or less as if FS was assigned to [\t\n]+3.

Example 4.4. Contrast the output of

$ echo "one ::1: 3:" | awk 'BEGIN { FS=":" }; { print $1 "--" $2 ↙
↪→"--" $3 "--" $4 "--" $5 }'

1 one ----1-- 3--

with

$ echo "one 1 3 " | awk 'BEGIN { FS=" " }; { print $1 "--" ↙
↪→$2 "--" $3 "--" $4 "--" $5 }'

where all : have been replaced by tab in the echo command. The result is this time

1 one --1--3----

since all fields but $1, $2 and $3 are empty.

3But unfortunately not exactly so . . . see 4.5.2 of [2] for details.

CHAPTER 4. INFLUENCING INPUT PARSING 37

FS=" " (default) Fields are separated by single or repeated occur-
rences of any whitespace character. Leading or trailing
whitespace is ignored.

FS="c" where c is any single character. Fields are separated at
each occurrence of c. Multiple successive occurrences give
rise to empty fields. Trailing occurrences are not ignored
and also lead to empty fields.

FS="regex" Fields are separated by occurrences of characters or char-
acter sequences which match the regex. Any string value
with more than one character, which is assigned to FS is
interpreted as a regex.

FS="" Each individual character in the record becomes a separate
field.

Table 4.1: awk’s input parsing behaviour for different values of the field separator FS.

If one wants to enforce that field splitting occurs exactly at space characters and
nowhere else and that repeated spaces trigger empty fields, one needs to set FS to the
regex “[]”. E.g.

$ echo "one 1 3 " | awk 'BEGIN { FS="[]" }; { print $1 "--" ↙
↪→$2 "--" $3 "--" $4 "--" $5 }'

1 one ----1----3

We see that now $1 is empty, whereas $2 is “1” and $5 is “3”.

Another special value for FS is "" (empty string). In this case each character is a
field on its own.

1 #!/usr/bin/awk -f

2 BEGIN { FS="" }

3 {

4 print "F1 ->" $1 "<-"

5 print "F2 ->" $2 "<-"

6 print "F3 ->" $3 "<-"

7 }

4 parsing input/ex each char field.awk

$ echo "a b" | 4_parsing_input/ex_each_char_field.awk

1 F1->a<-

2 F2-> <-

3 F3->b<-

A summary of the possible values for FS and how this alters the input parsing process
is summarised in table 4.1.

CHAPTER 4. INFLUENCING INPUT PARSING 38

4.3 Defining fields by their content

So far our approach to describe the input data was to provide awk with values for the
variables FS and RS. Both variables have in common that we specify the separator
characters — either directly or by the means of a regular expression. In other words we
describe what our data is not rather than to describe what our data actually is.

In principle specifying RS and FS has the advantage that one does not need to know
so well what the values of the fields in our data look like. This makes the resulting
programs very general and applicable for many files of a given type.

Sometimes it is, however, considerably easier to describe what kind of data sits in a
field rather than describing what separates the fields. E.g. consider the csv file

1 #dialect ,year ,authors

2 awk ,1977 ," Alfred Aho , Peter Weinberger , Brian Kernighan"

3 nawk ,1985 ," Brian Kernighan"

4 mawk ,1992 ," Mike Brennan"

5 gawk ,1988 ," Paul Rubin , Jay Fenlason , Richard Stallman"

resources/data/awk.csv

which contains three columns. The third column is a string which may itself contain
whitespace or commas. As a consequence the naive approach

$ awk 'BEGIN {FS=","}; { print $1 "," $3 "," $2 } ↙
↪→resources/data/awk.csv

does not get us very far4.

A solution to this problem offers the FPAT variable. Its value should be a regular
expression, which describes the contents of each field. It is greedy in order to determine
the value of each field, which means that it tries to match the regular expressions with
as much data as possible. Consequently one needs to make sure that the regex is not
too broad, because otherwise the whole record is a single field.

In the case of our csv file a good pattern to describe each field’s value is
([^,]+)|("[^"]+"), i.e. either anything but a comma or anything but double quotes.
When we assign this value to FPAT, we need to be careful to properly escape the double
quotes (since these also delimit strings in awk). Overall this yields the program

1 #!/usr/bin/awk -f

2 BEGIN { FPAT="([^ ,]+) |(\"[^\"]+\")" }

3 { print $1 "," $3 "," $2 }

4 parsing input/ex csv swap.awk

which applied to resources/data/awk.csv gives:

1 #dialect ,authors ,year

2 awk ," Alfred Aho , Peter Weinberger , Brian Kernighan ",1977

3 nawk ," Brian Kernighan ",1985

4 mawk ,"Mike Brennan ",1992

5 gawk ,"Paul Rubin , Jay Fenlason , Richard Stallman ",1988

4This might give you already a hint what a horrible and totally underdefined file format csv is . . .

CHAPTER 4. INFLUENCING INPUT PARSING 39

Exercise 4.5. (optional) Use your regular expression pattern from 2.5 on page 11 to
add all scientific numbers in resources/digitfile and print the result.
If you want you can also try to add all numbers (regardless whether they are integers,
floats or scientific numbers).

4.4 Other ways to get input

So far we covered how one may influence the way awk deals with input data, which was
provided on standard input or by passing a file upon execution.

awk is, however, much more flexible. It may, for example, read an arbitrary number of
files at a time or dynamically execute a command and interpret its output. The relevant
command is called getline and it is very powerful. For further information on using
getline see section 4.9 of the awk manual [2].

Chapter 5

Printing output

The ultimate goal of every awk program is to output some data which was extracted or
computed from the parsed input. For this purpose we already used the print statement
in the previous chapters.

In this chapter we will both discuss ways to affect the formatting of the printed
results as well as introduce the printf command which allows much more fine-grained
specification of how things are formatted. Finally in section 5.3 on page 47 we will briefly
touch on awk’s capabilities for writing data to files or pipe to other commands.

5.1 The print statement

print allows to pass the value of one or many variables to standard output. E.g.

1 print item1 , item2 , ...

will first print the value of item1 followed by a space and the content of item2 and so
on. After everything has been printed a <newline> character is added. If more than
one item is specified it is recommended (but not required) to include the arguments in
parenthesis, i.e.

1 print(item1 , item2 , ...)

Example 5.1. Compare the output of

$ awk '{ print $1 , $2 }' resources/data/telephonelist

1 Amelia 555 -5553

2 Anthony 555 -3412

3 Becky 555 -7685

4 Bill 555 -1675

5 Broderick 555 -0542

6 Camilla 555 -2912

7 Fabius 555 -1234

8 Julie 555 -6699

9 Martin 555 -6480

40

CHAPTER 5. PRINTING OUTPUT 41

10 Samuel 555 -3430

11 Jean -Paul 555 -2127

to

$ awk '{ print $1 $2 }' resources/data/telephonelist

1 Amelia555 -5553

2 Anthony555 -3412

3 Becky555 -7685

4 Bill555 -1675

5 Broderick555 -0542

6 Camilla555 -2912

7 Fabius555 -1234

8 Julie555 -6699

9 Martin555 -6480

10 Samuel555 -3430

11 Jean -Paul555 -2127

In the first case the comma makes sure that print gets passed the two arguments $1 and
$2 separately, which are as a consequence printed with a space in between. In the second
case the strings $1 and $2 are first concatenated and then passed as one argument to
print. Hence no space shows up.

awk honours special characters in printed string literals. This allows to print more
than one line in a single print command or to include tabs in the printed output. For
example

$ awk '{ print $1 "\thas the number :\n" $2 "\n" }' ↙
↪→resources/data/telephonelist

1 Amelia has the number:

2 555 -5553

3

4 Anthony has the number:

5 555 -3412

6

7 Becky has the number:

8 555 -7685

9

10 Bill has the number:

11 555 -1675

12 ...

5.1.1 Influencing the formatting of printed data

Both the separator between items as well as the separator at the end of the printed data
are configurable:

� The special variable OFS (output field separator) controls how the individual printed
items are separated (default: OFS=" ").

CHAPTER 5. PRINTING OUTPUT 42

� ORS (output record separator) controls which character is printed at the end of a
print (default: ORS="\n", i.e. <newline>)

We mentioned in section 3.2 on page 14 that altering a field variable like $1, $2, . . . causes
$0 to be rebuilt. This uses the value of OFS in order to separate fields. E.g.

$ echo "a b c" | awk 'BEGIN {OFS=":"}; {$2 = "2"; print $0}'

1 a:2:c

Contrast this to

$ echo "a b c" | awk 'BEGIN {OFS=":"}; {print $0}'

1 a b c

where no rebuild has occurred (no field value has been altered) and hence $0 still contains
the original record. If one wants to trigger a rebuild without changing any field value, a
very common practice is to use a dummy assignment like $1=$1:

$ echo "a b c" | awk 'BEGIN {OFS=":"}; {$1=$1; print $0}'

1 a:b:c

Example 5.2. Many important environment variables like PATH or LD_LIBRARY_PATH

hold a colon-separated string of directories, e.g. a typical value of PATH is

1 /usr/local/bin:/usr/bin:/bin

Often the configuration of these variables, however, is realised in files which just contain
one directory per line. A simple awk program like

1 #!/usr/bin/awk -f

2 # print records separated by :

3 BEGIN { ORS=":" }

4 { print }

5 printing output/fold folders.awk

can read the input files and produce the value for PATH.

Exercise 5.3. Write awk programs in order to achieve the following in less than 3 lines
of code.

� Unfold a text such that each word will be printed to its own line. There are two solu-
tions. Try your programs on some of the resource files, e.g. resources/testfile.

� Change the separator character in resources/data/money.csv from comma(,) to
semicolon(;).

CHAPTER 5. PRINTING OUTPUT 43

5.2 Fancier printing: printf

For more control over the formatting of the printed data awk provides the command
printf (print fancy)1 Its basic syntax is

1 printf(format , item1 , item2 , ...)

The main difference to print is the extra format string argument in first position. This
argument defines how awk interprets the other argument items and how their value is
formatted. Most characters of the format string are not treated specially, but are printed
verbosely to the output instead. For example

$ echo "10 1.2 3 4" | awk '{printf("Data: \nand more")}'

1 Data:

2 and more

Note, that printf does neither automatically append a newline nor the value of ORS to
the output2 If one wants the line to end after a printf command, one needs to manually
insert a line break by adding a “\n” at the end of the format string.

5.2.1 Format specifiers for printf

A format specifier is a string starting with % and ending with a format control
letter. This letter defines what kind of value to print (e.g. integer, string or floating
point number). There also exist so-called format modifiers which control how to print
this value (e.g. how many significant figures to print).

In order to define the formatting of the individual items, printf expects one format
specifier for each item.

The most important format control letters are3

%d, %i Print a decimal integer (%d and %i are absolutely equivalent)

$ echo "10 1.2 3 4" | awk '{printf("Numbers: %i %i ↙
↪→%d\n",$1 ,$2 ,$3/$4)}'

1 Numbers: 10 1 0

%e, %E Print a number in scientific notation, e.g.

$ echo "10 1.2 3 4" | awk '{printf("Numbers: %e ↙
↪→%4.3e\n",$1 ,$3/$4)}'

1 Numbers: 1.000000e+01 7.500e-01

1Those which know the printf function of the programming language C will notice that awk’s printf
is more or less exactly the same thing.

2In fact the behaviour of the printf statement is entirely unaffected by changes to the values of ORS
or OFS.

3The full list can be found in section 5.5.2 of [2].

CHAPTER 5. PRINTING OUTPUT 44

Here 4.3 is a format modifier, which will be discussed below. %E uses “E”
instead of “e” in the output.

%f Print a number in fixed point notation, e.g.

$ echo "10 1.2 3 4" | awk '{printf("Numbers: %4.3f %4.3f ↙
↪→%f\n",$1 ,$2 ,$3/$4)}'

1 Numbers: 10.000 1.200 0.750000

%g, %G Print a number in either scientific notation or fixed point notation, whichever
uses fewer characters. If scientific notation is employed %G uses uppercase “E”
instead of “e”. E.g.

$ echo "10 1.2 3 4e9" | awk '{printf("Numbers: %4.3g ↙
↪→%4.3g %g\n",$1 ,$2 ,$3/$4)}'

1 Numbers: 10 1.2 7.5e-10

%s Print as a plain string (as if print was used on this item).

$ echo "10 1.2 3 4" | awk '{printf("Numbers: %s %s ↙
↪→%s\n",$1 ,$2 ,$3/$4)}'

1 Numbers: 10 1.2 0.75

%% Print a literal %.

The most important format modifiers are4

width This is a number specifying the minimum width of a field. If one inserts width
between the % and the format control letter the field is expanded to this width
by padding the value with spaces on the left. E.g.

$ echo "foo" | awk '{printf(":%5s:\n", $1)}'

1 : foo:

Note that width specifies the minimum width, i.e. fields may still expand
beyond this width:

$ echo "long" | awk '{printf(":%5s:\n", $1 "word")}'

1 :longword:

.prec prec is a number specifying the precision of the numerical value to be printed.
Its meaning depends on the control letter:

%d,%i Minimum number of digits to print

%e,%E,%f Number of digits to the right of the decimal point.

4The full list can be found in section 5.5.3 of [2].

CHAPTER 5. PRINTING OUTPUT 45

%g,%G Maximum number of significant digits.

%s Maximum number of characters from the string to
be printed.

For example

$ echo "long" | awk '{printf(":%.5s:\n", $1 "word")}'

1 :longw:

- If a minus sign is used before specifying the width modifier, the padding will
be applied on the right, i.e. the data will be left-justified

$ echo "foo" | awk '{printf(":%-5s:\n", $1)}'

1 :foo :

0 A leading zero before the width indicates than numerical values should be
padded with zero, e.g.

$ echo "15" | awk '{printf(":%04d:\n", $1)}'

1 :0015:

Since the format string argument of printf is just a plain string it may well be built
by string concatenation, e.g.

1 #!/usr/bin/awk -f

2

3 {

4 width =10

5 prec=4

6

7 # build format string

8 # the resulting string is "3 args: %10.4e %10.4f"

9 format="3 args: "

10 format=format "%" width "." prec "e %" width "." prec "f"

11

12 printf(format , $1/$2 , $2 -$3)

13 }

5 printing output/format vars.awk

$ echo "3 15 -1e-3" | 5_printing_output/format_vars.awk

1 3 args: 2.0000e-01 15.0010

This is especially advantageous if awk programs become more complex and the precise
number of fields is dynamic and only known at run-time.

CHAPTER 5. PRINTING OUTPUT 46

Example 5.4. In this example we want to produce a nicely formatted table containing
the information of resources/data/telephonelist. One way of doing this in a fairly
flexible manor would be

1 #!/usr/bin/awk -f

2 BEGIN {

3 # For the first column (name , allow 12 characters

4 # - enforces justification to the left)

5 name_width = 12

6 format = format "%-" name_width "s"

7

8 # Column separator

9 format = format " | "

10

11 # For the second column (phone number) allow

12 # 8 characters , right -justify

13 phone_width = 8

14 format = format "%" phone_width "s"

15

16 # Column separator

17 format = format " | "

18

19 # For the number of years employed allow 8

20 # characters

21 years_width = 8

22 format = format "%" years_width "s\n"

23

24 # Print the headline

25 printf(format ,"Name","Phone -No","yrs empld")

26 }

27 { printf(format ,$1 ,$2 ,$3) }

5 printing output/format telephone.awk

Running

$ 5_printing_output/format_telephone.awk ↙
↪→resources/data/telephonelist

gives

1 Name | Phone -No | yrs empld

2 Amelia | 555 -5553 | 1

3 Anthony | 555 -3412 | 2

4 Becky | 555 -7685 | 1

5 Bill | 555 -1675 | 4

6 Broderick | 555 -0542 | 5

7 Camilla | 555 -2912 | 2

8 Fabius | 555 -1234 | 0

9 Julie | 555 -6699 | 3

10 Martin | 555 -6480 | 1

11 Samuel | 555 -3430 | 2

12 Jean -Paul | 555 -2127 | 3

CHAPTER 5. PRINTING OUTPUT 47

Exercise 5.5. The file resources/data/values.csv contains the values of the same
measurements made on 14 different apparatus. The first column contains the apparatus
number and the remaining columns (separated by :) contain the measured values. The
first two lines (starting with #) are comments.

� For each apparatus compute the average measurement value. Also compute the
total average value in the same awk program.

� Show your results in a nice table similar to the example above. Give 3 significant
figures for all values.

� (optional) One instrument seems to be a bit off. Which one? Exclude it when
calculating the total average.

5.3 Redirection and piping from awk

Similar to plain shell scripts awk allows to redirect any output to a file or the standard
input of a shell command. We do not want to go into details here, but just show a couple
of examples demonstrating the feature. Details can be found in chapter 5.6 of [2].

Example 5.6. In this example we want to split our telephonelist into a file containing
only the names and a file containing only the phone numbers. One way to do this is

1 #!/usr/bin/awk -f

2

3 BEGIN {

4 # define name of name file

5 namefile="name.list"

6

7 # define name of phone file

8 phonefile="phone.list"

9 }

10

11 {

12 # Append name to namefile (all existing

13 # content in namefile will be kept)

14 print $1 >> namefile

15

16 # Write phone number to phonefile

17 # The single > indicates that this is no append

18 # i.e. that all content of the file will be erased

19 # before awk touches it. All subsequent writes

20 # will still append to the file

21 print $2 > phonefile

22 }

5 printing output/split telephone.awk

CHAPTER 5. PRINTING OUTPUT 48

Example 5.7. Suppose we wrote a program send_fax which sends a fax to a phone
number. If we want to execute this for everyone in the telephonelist, we could do this
using awk like so

1 #!/usr/bin/awk -f

2

3 {

4 # $1 contains the name

5 # $2 contains the phone number

6

7 # We want to pipe some text to the program , which

8 # we want to fax to the person

9 text="Hello " $1 "\n"

10 text=text "I will call you soon for further info.\n"

11 text=text "Best"

12

13 # We call send_fax with the number as argument

14 print text | ("send_fax " $2)

15

16 # This is one of the subtleties when using this feature

17 # with awk: Sometimes a manual close() is necessary.

18 close("send_fax " $2)

19 }

5 printing output/fax list.awk

Chapter 6

Patterns, special variables and
control statements

One of the key aspects of learning any programming language is knowing ways how to
influence which parts of the program are executed when. In awk this is mainly realised
by specifying a pattern in front of the actions: The actions are done exactly when the
record matches the pattern. Furthermore the usual control structures like loops, if

statements, etc. exist in awk as well. We will introduce them in section 6.2 on page 52.

Already at this point a word of caution: Control structures introduce a new level of
flexibility to awk code. On the one hand this means that they allow to solve previously
unsolvable problems. On the other hand control structures somewhat compete with awk-
internal features — as we will see further down in this chapter. Additionally programs
with too many control structures tend to violate the data-driven design paradigms behind
awk: No longer the data, but some built-in program logic decides what to do.

6.1 Controlling program flow with rules and patterns

Before we deal with control structures, just a reminder and a summary about rules and
patterns. We already saw before that an awk program is essentially made up of a list
of pattern-action rules. Once the program runs each input record is compared against
the patterns and in case the record matches a pattern the corresponding action block is
executed.

This implies that in a usual awk program the patterns control which part of the
program are executed and hence how execution flows between the action blocks. In other
words: The patterns are the core feature in awk to control the program flow.

A summary of the type of patterns which are supported by awk:

/regex/ If the text of current record matches this regex the pattern is considered
a match. See section 3.1 on page 13 for details.

49

CHAPTER 6. PATTERNS, VARIABLES AND CONTROL STATEMENTS 50

expr A single expression, which usually involves comparison of some variables.
In case the final result is non-zero or a non-empty string the pattern is
considered a match. See section 3.5.4 on page 27 for details.

BEGIN Special pattern, which matches right before any input record is pro-
cessed. Usually used for initialising variables.

END Special pattern, which matches right before the awk program is exited,
either because there are no more records to process or because the exit

statement has been encountered (see section 6.2.1 on page 52). Usually
used to specify cleanup actions or print final results.

pat1, pat2 A pair of patterns, which identifies a range of records which match. The
range is inclusive on both sides, i.e. the first record is the one which
matches pat1 and the last record is the one which matches pat2. This
type of pattern will be discussed in more detail in section 6.1.1 below.

empty The empty pattern matches all records.

As we saw in section 3.5.4 on page 27 two patterns may be logically combined using
|| (or) or && (and) in order to form a more complex pattern for a rule.

Example 6.1. This example prints every second record, which contains a vowel.

1 #!/usr/bin/awk -f

2

3 /[aeiou]/ {

4 # invert flag

5 flag = !flag

6 }

7

8 # Print if condition and flag

9 # are satisfied.

10 /[aeiou]/ && flag

6 patterns actions variables/ex vowel.awk

If we run this on resources/data/telephonelist we get

1 Amelia 555 -5553 1

2 Becky 555 -7685 1

3 Broderick 555 -0542 5

4 Fabius 555 -1234 0

5 Martin 555 -6480 1

6 Jean -Paul 555 -2127 3

6.1.1 Range patterns

Range patterns consist of two elementary patterns separated by “,”. For example the
awk program

1 $1 == "on", $1 == "off"

will simply print every record between on and off pairs, including the delimiting on/off
records itself. Quite often one employs regexes as the subpatterns to mark beginning
and end.

CHAPTER 6. PATTERNS, VARIABLES AND CONTROL STATEMENTS 51

Example 6.2. All Project Gutenberg books contain some information about the project
itself as well as some licensing information, both of which are not part of the actual
book. So if we want to do some processing on the book itself we need to make sure to
explicitly exclude the paragraphs Project Gutenberg added.

Careful inspection of the Project Gutenberg files reveals that there are guarding lines
like

1 *** START OF THIS PROJECT GUTENBERG EBOOK ... ***

and

1 *** END OF THIS PROJECT GUTENBERG EBOOK ... ***

where “...” stands for the book title in capitals in both cases. Hence the awk program

1 #!/usr/bin/awk

2 /^*** START OF THIS PROJECT GUTENBERG EBOOK/, /*** END OF ↙
↪→THIS PROJECT GUTENBERG EBOOK/ { print tolower($0) }

6 patterns actions variables/pg filter.awk

performs both the task of filtering out the non-interesting parts of the file and normalising
all the strings to lower case (a typical first step when computer-processing text).

There are a couple of rather subtle points one needs to keep in mind when working
with range patterns:

� If a record matches both beginning and end at the same time, then the action is
executed only for this record. In other words we cannot use a pattern like

1 /<-->/,/<-->/ { some_actions }

to match a range between two occurrences of <-->. Instead we need something
like

1 # swap flag whenever <--> encountered

2 /<-->/ { skip = ! skip }

3 skip == 1 { some_actions }

� Range patterns cannot be combined with other patterns, i.e. constructs like

1 $1 == "on", $1 == "off" && $2 == "blubber" { some_actions }

do not work as expected. See section 7.1.3 of [2] for details.

Exercise 6.3. Write an awk program which extracts a given chapter from the book
resources/gutenberg/pg161.txt. Your program should expect the chapter number
to be stored in the variable v. Set v to various values in the BEGIN section in order to
verify that your code works. Do not worry if you extract an extra line at the end or so.

Exercise 6.4. (optional) The file resources/chem_output/qchem.out contains the
logged output of a quantum-chemical calculation. During this calculation two so-called
Davidson diagonalisations have been performed. Say we wanted to extract how many
iterations steps were necessary to finish these diagonalisations. Take a look at line 422
of this file. You should notice:

CHAPTER 6. PATTERNS, VARIABLES AND CONTROL STATEMENTS 52

� Each Davidson iteration start is logged with the line

1 Starting Davidson ...

� A nice table is printed afterwards with the iteration count given in the first column

� The procedure is concluded with the lines

1 --

2 Davidson Summary:

Use what we discussed so far about awk in order to extract the number of iterations
both Davidson diagonalisations took.

6.2 Control statements

Similar to other programming languages awk offers a range of control structures like for

or while loops and if statements to control the program flow1. These statements are,
however, only allowed inside action blocks.

As mentioned before it should be avoided to overuse control statements in awk and
instead rely on other awk-specific paradigms like patterns or a careful selection of the
field separator. In my experience this makes best use of awk’s powers and as a result
awk code become both shorter and less complicated.

Those of you familiar with a C-like programming language will probably notice that
the awk control structures are designed with C syntax in mind.

6.2.1 exit statement

The exit statement instructs awk to quit the program. The current action block is left
immediately and no further input is processed. If an END rule exists it is still executed,
then the program is stopped. The full syntax of the statement is

1 exit return_code

The return_code argument is an optional integer between 0 and 126, which serves as the
exit code of the awk program. By convention 0 means “success”. Just exit is equivalent
to exit 0. For example

1 #!/usr/bin/awk -f

2 { print }

3 /^B/ { exit 15 }

4 END { print "Reached END" }

6 patterns actions variables/ex exit.awk

$ 6_patterns_actions_variables/ex_exit.awk ↙
↪→resources/data/telephonelist; echo $?

1awk has a lot more control structures than we discuss. See section 7.4 of [2] for the full details.

CHAPTER 6. PATTERNS, VARIABLES AND CONTROL STATEMENTS 53

1 Amelia 555 -5553 1

2 Anthony 555 -3412 2

3 Becky 555 -7685 1

4 Reached END

5 15

whereas

$ 6_patterns_actions_variables/ex_exit.awk resources/integers; ↙
↪→echo $?

1 40

2 400

3 50000000000000

4 40000000000000

5 -10

6 Reached END

7 0

Especially the return-code feature is extremely helpful when combining awk programs
with bash scripts2.

6.2.2 next statement

The next statement causes awk to stop processing the current record and proceed with
the next one. This means that no further action or rule will be executed for the current
record and the first rule of the program will be executed for the next record. E.g.

1 #!/usr/bin/awk -f

2

3 # Print first name

4 { print $1 }

5

6 # skip if not letters B and M

7 ! (/^B/ || /^M/) {

8 print " Skipping"

9 next

10 }

11

12 # print number and empty line

13 {

14 print $2

15 print ""

16 }

6 patterns actions variables/ex next.awk

2See example 8.8 in [1].

CHAPTER 6. PATTERNS, VARIABLES AND CONTROL STATEMENTS 54

$ 6_patterns_actions_variables/ex_next.awk ↙
↪→resources/data/telephonelist

1 Amelia

2 Skipping

3 Anthony

4 Skipping

5 Becky

6 555 -7685

7

8 Bill

9 555 -1675

10

11 Broderick

12 555 -0542

13

14 Camilla

15 Skipping

16 Fabius

17 Skipping

18 Julie

19 Skipping

20 Martin

21 555 -6480

22

23 Samuel

24 Skipping

25 Jean -Paul

26 Skipping

Exercise 6.5. In the optional part of exercise 5.5 on page 47 we realised that one
instrument was a bit off. We will now write a script which aids with automatically
excluding data from an apparatus with strange behaviour.

� Copy your script from ex. 5.5.

� Modify it such that the data of an apparatus is only considered if the average of
its measurements is below -0.05.

� In other words: Neither should the printing of the computed average occur nor
should the data be considered for the total average in the end. Instead you might
want to print a nice message which says that the apparatus was excluded from the
final average.

� The easiest way to achieve this is by first computing the average and to skip
everything else if this is below the given threshold.

CHAPTER 6. PATTERNS, VARIABLES AND CONTROL STATEMENTS 55

6.2.3 if-else statement

The if-else statement in awk has the syntax

1 if (condition) then_action else else_action

or alternatively

1 if (condition) then_action

since the else-part is optional. If condition is “true” the then_action is executed,
otherwise the else_action is executed, so it exists.

� The condition may be pretty much any awk statement. It is only considered to
be “false” if it evaluates to 0 or the empty string. Usually checks involving the
conditional operators (see section 3.5.3 on page 25) are used for condition. E.g.

1 if (x % 2 == 0)

2 print "x is even"

3 else

4 print "x is odd"

� If more than one action or awk statement should be executed as part of then_action
or else_action the statements have to be grouped together using curly braces ({. . . })
E.g.

1 if ($2 ~ /some.regex /) {

2 print "Second field matches."

3 print "Hooray!"

4 # Increment x

5 x++

6 } else {

7 print "Oah no match"

8 # decrement:

9 --x

10 }

� There also exists a special kind of if statement when dealing with awk arrays.
This is discussed separately in section 7.1 on page 64.

6.2.4 while statement

If one wants to execute certain actions repetitively for some number of times, one needs
to employ a so-called loop. The while statement in awk is a particular simple looping
statement:

1 while (condition)

2 loop_action

It causes loop_action to be executed over and over again until condition is no longer
“true”.

� The rules for the condition expression to be considered “true” or “false” are exactly
the same as with the if statement above.

CHAPTER 6. PATTERNS, VARIABLES AND CONTROL STATEMENTS 56

� The condition is both tested before the first loop_action is executed and after each
execution of loop_action. If it is no longer true the loop is exited and program
execution continues below the loop.

� If many actions are executed in the loop_action, we need to supply surrounding
braces ({. . . }) again.

Example 6.6. This awk program computes for each record the n-th element of the
famous Fibonacci sequence, where n is supplied as the first field of the record.

1 #!/usr/bin/awk -f

2 {

3 # Extract n and convert to number

4 n=+$1

5

6 # The previous element of the sequence

7 prev=0

8

9 # The result we want to finally print

10 res=1

11

12 # Exit on an error with exit code 1:

13 if (n <= 0) {

14 print "Error: n <= 0: " $1

15 exit 1

16 }

17

18 # Special case: Just print the value and jump to next record

19 if (n == 1) {

20 print prev

21 next

22 }

23

24 # Decrement n by 2 (the first element of the sequence was

25 # dealt with above and the second requires no computation)

26 n -= 2

27

28 # Compute Fibonacci and decrement n as we go along

29 while (n > 0) {

30 tmp = res+prev

31 prev = res

32 res = tmp

33 n -= 1

34 }

35 print res

36 }

6 patterns actions variables/ex fibonacci.awk

CHAPTER 6. PATTERNS, VARIABLES AND CONTROL STATEMENTS 57

$ echo -e "1\n3\n9\n30" | ↙
↪→6_patterns_actions_variables/ex_fibonacci.awk

1 0

2 1

3 21

4 514229

Exercise 6.7. Repeat the idea of the previous example:

� For each record compute (and print) the factorial n!, where n is the first field of
the record. You may assume that this is a positive number.

� Try to compute a couple of fairly large factorials like 50! or 100!. How does awk

deal with this?

6.2.5 for statement

The for statement makes it more convenient to use loops which perform some sort of
counting. Its general form looks like

1 for (initialisation; condition; increment)

2 loop_action

� Once this statement is encountered, first the initialisation statement is executed.

� Then condition is checked. If it is “true”, loop_action and increment are executed,
followed by another check for condition. This loop_action-increment-condition
sequence continues until the condition is “false”.

� In other words the for statement is just a shorthand for

1 initialisation

2 while (condition) {

3 loop_action

4 increment

5 }

� E.g. in order to print something 5 times we could use3

1 for(c=1; c <= 5; ++c)

2 print "something"

3In awk we conventionally count 1-based, i.e. unlike many other programming languages counting
goes like 1, 2, 3, . . . and not 0, 1, 2,

CHAPTER 6. PATTERNS, VARIABLES AND CONTROL STATEMENTS 58

� More complicated increments and bodies involving multiple lines are allowed as
well (if surrounded by braces).

1 #!/usr/bin/awk -f

2 {

3 for (i = 1; i <= 100; i *= 2) {

4 print(i, $0)

5 }

6 }

6 patterns actions variables/ex for complicated.awk

� All three statements in the brackets after for are optional. If nothing needs to be
done in the relevant step, it may be empty, e.g.

1 for (;;)

2 print("bla")

is an infinite loop or

1 c = 15

2 for(;c <= 30;++c)

3 ++c

just increments c until it is 31.

� Note that initialising more than one variable in the initialisation statement or
incrementing more than one variable in increment are not allowed4.

� There also exists a special for each type of loop, which deals with elements of an
awk array. See section 7.1 on page 64 for more details.

The variables $i, which hold the content of the fields, are different from other variables
because the value after the $ may in fact be computed by an arbitrary expression. E.g.
the expression $(5+3) returns the content of the 8th field. One often exploits this
together with for loops in order to do something for all fields of a records without
knowing exactly how many fields there are.

Example 6.8. The awk program below computes the sum of all fields of a record and
prints it:

1 #!/usr/bin/awk -f

2 {

3 sum=0 # initialise the sum

4

5 # Loop over all fields:

6 # NF is a special variable (see next section) which contains the

7 # number of fields of the current record

8 for(i=1; i<=NF; ++i) {

9 sum += $i # add the value of the ith field

10 }

11

12 print sum # print the result

13 }

6 patterns actions variables/ex for fields.awk

4Unlike for-loops in C++

CHAPTER 6. PATTERNS, VARIABLES AND CONTROL STATEMENTS 59

It works as expected:

$ echo -e "4 5 6 1\n 1.1 -1.1 0 9.1" | ↙
↪→6_patterns_actions_variables/ex_for_fields.awk

1 16

2 9.1

Exercise 6.9. Redo exercise 6.7 on page 57 using a for loop.

Exercise 6.10. Take another look at your script from exercise 5.5 on page 47. Generalise
it such that an arbitrary and potentially different number of measurements may be taken
with each apparatus.

6.2.6 break statement

The break statement can be used to jump out of the innermost loop in encloses. For
example the program

1 #!/usr/bin/awk -f

2 {

3 # Accumulate the divisors

4 divsum =0

5

6 # Loop over all numbers excluding the

7 # one we deal with:

8 n=$1

9 for (i=1; i < n; ++i) {

10 if (n % i == 0) {

11 divsum +=i

12 if (divsum > n) break

13 }

14 }

15

16 if (divsum == n) {

17 printf("%d is a perfect number\n",n)

18 } else {

19 printf("%d is not a perfect number\n",n)

20 }

21 }

6 patterns actions variables/ex break.awk

finds out whether the first field of each record is a perfect number5. For example

$ echo -e "6\n19\n28\n33550336" | ↙
↪→6_patterns_actions_variables/ex_break.awk

1 6 is a perfect number

2 19 is not a perfect number

5A perfect number is a number, for which the sum of all its proper divisors is equal to the number
itself. E.g. 6 is a perfect number, since 1 + 2 + 3 = 6. So is 28, because 1 + 2 + 4 + 7 + 14 = 28.

CHAPTER 6. PATTERNS, VARIABLES AND CONTROL STATEMENTS 60

3 28 is a perfect number

4 33550336 is a perfect number

Exercise 6.11. Write an awk program, which checks for each record whether the first
field is a prime number. If this is not the case the program should print the smallest
(non-trival) divisor of the number. Try it on a few cases (e.g. 101, 1001)

6.2.7 continue statement

The continue statement on the other hand may be used inside a loop to skip the
remaining statements of the current loop cycle. E.g.

1 #!/usr/bin/awk -f

2

3 {

4 for (i=0; i<$1; ++i) {

5 print "Reached 1 for " i

6 if (i%2==0) continue

7 print " 2 for " i

8 }

9 }

6 patterns actions variables/ex for continue.awk

$ echo "5" | 6_patterns_actions_variables/ex_for_continue.awk

1 Reached 1 for 0

2 Reached 1 for 1

3 2 for 1

4 Reached 1 for 2

5 Reached 1 for 3

6 2 for 3

7 Reached 1 for 4

6.3 Builtin and special variables in awk

Apart from the variables you assign and alter in your program, awk provides a few other
variables which have special meaning. Some of these change the way awk behaves and
some just provide access to information which may be useful to your program.

This section just gives an overview of the most important of these special variables.
The full list can be found in section 7.5 of the gawk manual [2].

These variables change awk’s behaviour when parsing data:

RS The record separator. Changes how input data is split into records. See
section 4.1 on page 33 for details.

FS The field separator. Changes how records are split into fields. See section 4.2
on page 34.

CHAPTER 6. PATTERNS, VARIABLES AND CONTROL STATEMENTS 61

ORS Changes the extra character print appends to the printed data. See sec-
tion 5.1.1 on page 41.

OFS Changes how the arguments supplied to print are separated in the output and
defines the character between the fields once $0 is rebuilt. See section 5.1.1
on page 41.

IGNORECASE If this variable is set to any value other than 0 all string comparisons
and regular expression matching operations are case independent. Thus the
comparison operators ~ and !~ as well as the regular expression versions of
RS, FPAT and FS all ignore case when doing their particular operation.

The following variables contain information, mostly of parsed data.

NR The number of input records parsed so far. Its value is incremented whenever
a new record is touched, i.e. it has value 1 when the rules are considered for
the first record, value 2 when the second record is worked upon and so on.
E.g. the program

1 #!/usr/bin/awk -f

2 { printf("%4d %s\n",NR ,$0) }

6 patterns actions variables/ex line nr.awk

adds the line number to the input data and

1 #!/usr/bin/awk -f

2 END { print NR }

6 patterns actions variables/ex line count.awk

just prints the number of lines in a file.

NF Contains the number of fields in the current record. See example 6.8 on
page 58 for details.

$0 Variable containing the full record. See section 3.2 on page 14.

$1, $2, ... Variable containing individual fields. The value after the $ may be
computed from an expression. See section 3.2 on page 14 as well as 6.2.5 on
page 57 for details.

Exercise 6.12. In this exercise we want to collect some statistical data about the
usage of the vowels “a” and “e” in a book of Project Gutenberg. Take the book
resources/gutenberg/pg5200.txt as an example. Your program should print both
the total number of characters, the number of times “a” as well as the number of times
“e” have been encountered. Some hints:

� Recall that setting FS="" causes each character to be a field on its own.

� Use a for-loop to go over each field in each record.

� Keep in mind that the beginning and the end of a project gutenberg file are not
actually part of the book. See exercise 6.3 on page 51.

Chapter 7

Arrays

So far we only dealt with simple variables, which were able to store a single value —
either integer or floating point or string. awk also supports so-called arrays, i.e. tables of
values, which can be accessed by a common name and an associated index. For example
the code

1 array [0] = 15

2 array [1] = "dog"

3 array [10] = "number 10"

creates an awk array called array and stores three values inside it, namely the integer
15 under the index 0, the string "dog" under index 1 and the string "number 10" under
10. We can refer to these stored values by exactly the same syntax, e.g.

1 print "My" array [1] " " array [10] "."

would print “My dog number 10.”. Some properties of awk arrays:

� The number of elements which is to be stored in the array does not need to be
known, neither does it need to be constant during the program run.

� The index range does not need to be consecutive in any kind. But of course you
could use consecutive integers like 1, 2, · · · 100 if you wanted.

� You may use strings as indices for awk arrays, e.g.

1 #!/usr/bin/awk -f

2 {

3 arr["first"] = $1

4 arr["second"] = $2

5 }

6 END {

7 print("first:",arr["first"])

8 print("second:",arr["second"])

9 }

7 arrays/ex stringindices.awk

62

CHAPTER 7. ARRAYS 63

$ echo 3 4 | 7_arrays/ex_stringindices.awk

1 first: 3

2 second: 4

� In fact any index which is supplied to an array is automatically converted to a
string. Even the integers in the introductory example1.

� Using non-present indices will automatically generate an empty entry, which may
then be interpreted as zero or the empty string.

1 #!/usr/bin/awk -f

2

3 {

4 # Entry does not exist for the first record

5 # => acts as zero

6 arr["some"]+=$1

7 }

8 END {

9 print "We have " arr["some"] " and -->" arr["any"] "<--"

10 }

7 arrays/ex empty.awk

$ echo 3 | 7_arrays/ex_empty.awk

1 We have 3 and --><--

� Overall awk arrays resemble more features of what other programming languages
call a map or a dictionary.

� It is important to keep in mind, that awk keeps a central register of all user-defined
names. This means that there cannot be a normal variable and an array of the same
name. Next to variables and arrays there is one further thing, namely user-defined
functions (see section 8.2 on page 74) for which the same applies: If a name is
taken by one of these structures, there cannot be another user-defined thing under
the same name, even it is a different kind.

Example 7.1. Suppose we have a file like

1 2 line two

2 5 line seven

3 4 line six

4 1 line one

5 3 line four

7 arrays/unsorted.in

where the first column gives the proper sorting.

1This has subtle consequences, see 8.3 in [2] for details.

CHAPTER 7. ARRAYS 64

The program

1 #!/usr/bin/awk -f

2 {

3 # store record in array

4 # indexed under first column

5 array[$1] = $0

6

7 # determine and store maximum index

8 if ($1 > max) {

9 max = $1

10 }

11 }

12 END {

13 # Print array entries

14 # Here we assume that all values from 1 until max

15 # are actually used by at least one row in the input.

16 for(x=1; x<=max; ++x) {

17 print array[x]

18 }

19 }

7 arrays/ex sort.awk

represents a very naive sorting algorithm for such data. It yields

1 1 line one

2 2 line two

3 3 line four

4 4 line six

5 5 line seven

as it should.

7.1 Statements and control structures for arrays

In the example above we had to assume that the first column of the input data contains
each integer from 1 to some kind of maximum at least once. One can lift this assumption
using the statement

1 if (index in array)

2 body

which is a special version of the if statement. It checks whether an index has been
used in an array, i.e. that array[index] is an existing element in the array. In order to
generalise our code, we just have to insert such a check in the END rule:

1 #!/usr/bin/awk -f

2 {

3 # store record in array

4 # indexed under first column

5 array[$1] = $0

6

CHAPTER 7. ARRAYS 65

7 # determine and store maximum index

8 if ($1 > max) {

9 max = $1

10 }

11 }

12 END {

13 # Print array entries

14 for(x=1; x<=max; ++x) {

15 if (x in array) {

16 print array[x]

17 }

18 }

19 }

7 arrays/ex sortgen.awk

Another common task when dealing with arrays is to scan over all contained elements
and do something with them. Since indices in awk can be any string it is a bad idea to
systematically generate all possible indices (i.e. strings) and just retrieve the values for
those which exist in a given array. Instead awk provides the statement

1 for (index in array)

2 body

which loops over all indices of an array. So using the subscript statement array[index]

we can then retrieve all values inside the loop. We can hence perform a task for each
element of the array. This is why this type of loop is also called a for-each loop. Note,
that there is no guarantee in which order the indices are traversed by such a loop2.

Example 7.2. We want to write an awk program that prints the distribution of values
in the third column of resources/data/telephonelist. One way to do this is

1 #!/usr/bin/awk -f

2

3 {

4 # if this value does not exist

5 # store 1, else increment:

6 count[$3]++

7 }

8

9 END {

10 # print table summarising what values we have

11 # and how many times they occurred:

12 print "value | count"

13 print "------+------"

14 for (val in count) {

15 printf("%5d | %5d\n",val ,count[val])

16 }

17 }

7 arrays/ex for each.awk

which gives the output

2There are ways to change this, see section 8.1.6 in [2].

CHAPTER 7. ARRAYS 66

1 value | count

2 ------+------

3 0 | 1

4 1 | 3

5 2 | 3

6 3 | 2

7 4 | 1

8 5 | 1

Finally it is possible to remove values from an array using the delete statement:

1 #!/usr/bin/awk -f

2 {

3 arr[$1] = "value"

4 arr["blu"] = "ber"

5

6 if ("blu" in arr) {

7 print "blu exists and has value " arr["blu"]

8 } else {

9 # Should not happen

10 print "Cannot happen"

11 }

12

13 delete arr["blu"]

14

15 if ("blu" in arr) {

16 # Should not happen

17 print "blu still exists ?? with value " arr["blu"]

18 } else {

19 print "No blu no more"

20 }

21

22 if ($1 in arr) {

23 print "We still have " $1 ": arr[" $1 "]=" arr[$1]

24 }

25 }

7 arrays/ex delete.awk

$ echo "blubber" | 7_arrays/ex_delete.awk

1 blu exists and has value ber

2 No blu no more

3 We still have blubber: arr[blubber]=value

A whole array array at once can be deleted by

1 delete array

Exercise 7.3. We want to generalise exercise 6.12 on page 61, such that not only the
all “a”s and “e”s, but all characters are counted. Your program should print both the
total number of characters as well as the use count of all characters as a nicely formatted
table.

CHAPTER 7. ARRAYS 67

Some Hints:

� Be very careful to only include characters of the book in the counts.

� Use an array to perform the counting of the characters.

(optional) Try to sort your output according to the count using an external shell com-
mand.

7.2 Multidimensional arrays

Some kind of multidimensional arrays exist in awk as well. We do not want to discuss
the details here (see 8.5 in [2]), but just show a small example. The program

1 #!/usr/bin/awk -f

2 {

3 # Determine maximum number of fields

4 # (i.e. the maximum number of columns

5 if (NF > max_nf) max_nf = NF

6

7 # Store values of this record (==row) away

8 for (i=1; i<=NF; ++i) {

9 # store transposed values in a 1-based 2d array

10 values[i,NR] = $i

11 }

12 }

13

14 # print the resulting array:

15 END {

16 for (i=1; i<= max_nf; ++i) {

17 for(j=1; j<=NR; ++j) {

18 printf("%s ",values[i,j])

19 }

20 printf "\n"

21 }

22 }

7 arrays/ex multidim.awk

transposes a matrix of values. E.g. given the input

1 1 2 3 4 5

2 4 3 2 1 5

3 3 1 2 5 4

4 5 3 4 2 1

7 arrays/values.mat

it produces

1 1 4 3 5

2 2 3 1 3

3 3 2 2 4

4 4 1 5 2

5 5 5 4 1

Chapter 8

Functions

In most programming languages a function is a small snippet of code, which is given a
name. Once such a function has been defined, i.e. the association from the function
name to the snippet of code has been made, we may also use the function name in order
to refer to said code. One says we call the function.

In other words functions are a convenient feature in order to make code more reusable.
We only need to write it once, namely in the function definition, and then we can call it
from many places in the program.

Data flow between the outside program and the inner function is sometimes required.
This is why functions may take one or more arguments, i.e. values or variable names
which are to be specified when calling the function. These are then passed on to code
which the function name refers to. This code can do its trick with the argument values
and optionally return resulting data back to the calling party.

For example consider the function length, which is already pre-defined in awk. This
function takes a string as an argument and returns the number of characters of this
string, i.e. its length. For example we can use it to determine the length of each field:

1 #!/usr/bin/awk -f

2 {

3 for (i=1; i<=NF;++i) {

4 $i = length($i)

5 }

6 print $0

7 }

8 functions/ex length.awk

$ echo "blubber blubi bla di bla" | 8_functions/ex_length.awk

1 7 5 3 2 3

Notice, that functions are called by providing their arguments in a comma-separated list
inside parenthesis, i.e.

1 function(arg1 , arg2 , ...)

68

CHAPTER 8. FUNCTIONS 69

8.1 Important built-in functions

Before we discuss how to define your own functions in section 8.2, we will first take a look
at those functions awk already provides for our convenience. A lot of common tasks like
string substitution, splitting strings or just computing the sine or retrieving a random
number are already implemented by awk in the form of built-in functions.

This section only gives an overview of the most important functions for numeric
computations (section 8.1.1) and for manipulating strings (section 8.1.2 on the next
page). Many of these functions seem fairly complicated and you will probably need a
little practice to make the most out of them. For the first reading it is probably best to
just take mental note what kind of functionality is available. Later, when you write a
program and require one of these functions, you can still refer back to this section or to
section 9.1 of the gawk manual [2] for detailed information.

8.1.1 Numeric functions

The following numeric functions are predefined in awk. Optional arguments are denoted
in square brackets ([]).

atan2(y, x) Return the arcus tangent of y
x in radians. For numerical reasons it is

desirable to take y and x as separate arguments1.

cos(x) Return the cosine of x in radians.

exp(x) Return the exponential of x.

int(x) Return the nearest integer to x, truncated towards zero. In other words
int(2.8) is 2 and int(-2.8) is -2.

log(x) Return the natural logarithm of x.

rand(x) Return a random number, uniformly distributed in [0,1), i.e. the value could
be zero, but is never one. Do not rely on good randomness here, some awk

implementations have pretty bad random number generators. gawk seems to
be ok here. Furthermore most awk implementations (including gawk) start
with the same seed each execution, i.e. will produce the same sequence of
random numbers each time. In other words a program like

1 #!/usr/bin/awk -f

2

3 {

4 for(i=0; i<$1; ++i) {

5 printf("%12.10f ", rand())

6 }

7 }

8 functions/ex random.awk

will print the same numbers each time.

1See https://en.wikipedia.org/wiki/Atan2 for details.

https://en.wikipedia.org/wiki/Atan2

CHAPTER 8. FUNCTIONS 70

$ echo 3 | 8_functions/ex_random.awk

1 0.2377875122 0.2910657359 0.8458138536

sqrt(x) Compute the square root of x.

srand([x]) Provide a seed for rand(). If no arguments are provided, i.e. the function
is called like seed(), the current date and time is used as seed. For example
the following script prints the result of simulated dice rolls:

1 #!/usr/bin/awk -f

2

3 BEGIN {

4 srand() # Seed with current date and time

5 }

6

7 # function to roll a dice (see section 8.2 for more

8 # explanation how functions are defined)

9 function roll_dice () {

10 return 1 + int(rand()*6)

11 }

12

13 {

14 for(i=0; i<$1; ++i) {

15 printf("%d ", roll_dice ())

16 }

17 }

8 functions/ex rolldice.awk

$ echo 3 | 8_functions/ex_rolldice.awk

1 3 6 4

sin(x) Return the sine of x in radians.

Note that awk does not have a function like abs which would return the absolute value
of a number. We will define such a function in section 8.2 on page 74.

8.1.2 String functions

The following gives a list of important string functions. Optional arguments are again
denoted in square brackets ([]).

asort(source [,dest])

Sort the values of source and replace the indices by with sequential in-
tegers starting with one.2 Return the number of elements in source. If dest
is provided, the sorted array is written into the variable dest and source

remains as it was. For example

2This function actually has an optional third argument, controlling how sorting is done, see section
12.2.2 in [2] for details.

CHAPTER 8. FUNCTIONS 71

1 #!/usr/bin/awk -f

2 BEGIN {

3 a["array"] = "awk"

4 a["value"] = "is"

5 a["some"] = "cool"

6

7 res = asort(a,b)

8 print(res , b[1], b[2], b[3])

9 print("a", a["some"], a["array"], a["value"])

10 print("")

11

12 res2 = asort(a)

13 print(res2 , a[1], a[2], a[3])

14 }

8 functions/ex asort.awk

1 3 awk cool is

2 a cool awk is

3

4 3 awk cool is

asorti(source [,dest])

Works exactly like asort, but sorts indices instead of values, i.e.

1 #!/usr/bin/awk -f

2 BEGIN {

3 a["array"] = "awk"

4 a["value"] = "is"

5 a["some"] = "cool"

6

7 res = asorti(a,b)

8 print(res , b[1], b[2], b[3])

9 print("a", a["some"], a["array"], a["value"])

10 print("")

11

12 res2 = asorti(a)

13 print(res2 , a[1], a[2], a[3])

14 }

8 functions/ex asorti.awk

1 3 array some value

2 a cool awk is

3

4 3 array some value

length([string]) Return the number of characters of a string or the number of
elements in an array. If string is not provided, the number of characters in
$0 is returned instead.

CHAPTER 8. FUNCTIONS 72

gensub(regex, replacement, how [,target])

Search through the target for matches of the regular expression regex

and replace one or more occurrences by replacement. The variable how

controls how many replacements are done. The original string target is not
altered as the function returns the modified string.

If target is absent, the function operates on the current record, i.e. $0.
The regex may either be a regex string like ":" or "[a-z]" or a regular
expression literal like /:/ or /[a-z]/. E.g. the following call replaces the
first “a” in the current record

$ echo "a b c a b c" | awk '{ print gensub (/a/, "AA" ,1) }'

1 AA b c a b c

as does this

$ echo "a b c a b c" | awk '{ print gensub("a", "AA",1, ↙
↪→$0) }'

1 AA b c a b c

“how” is either a string or a number. If it is a string starting with the letter
"g" or "G" (for global) all occurrences of the matching regex are replaced.
If it is a number then exactly this occurrence is replaced. E.g.

$ echo "a b c a b c" | awk '{ print gensub (/a/, "AA" ,2) }'

1 a b c AA b c

or

$ echo "a b c a b c" | awk '{ print gensub (/a/, ↙
↪→"AA","g") }'

1 AA b c AA b c

Some characters in the replacement string are special: They can be used to
refer back to the precise parts of the target string, which are matched by a
grouping expression in the regex3. See 9.1.3 in [2] for more details. Just one
example: This program swaps the first two words of the record using the
groupings like “([^]+)” and the back references “\\1” and “\\2”:

$ echo "word1 word2 word3 word4" | awk '{ print ↙
↪→gensub (/([^]+) ([^]+)/, "\\2 \\1" ,1,$0) }'

1 word2 word1 word3 word4

3This is exactly as in the sed command s.

CHAPTER 8. FUNCTIONS 73

split(string, array [,fieldsep])

Split string into pieces at every character which matches the regular expres-
sion fieldsep. Store the pieces into array indexed from 1 to n, where n is
the value returned by split, i.e. array[1] contains the first piece, array[2]
the second piece and so on.

fieldsep may be either a regex string like ":" or "[a-z]" or a regular
expression literal like /:/ or /[a-z]/. If this parameter is missing the value
of FS is used. If it is present FS has no influence on split.

For example:

1 #!/usr/bin/awk -f

2 BEGIN {

3 string="ooh -ya-koo"

4

5 n=split(string ,a,"-")

6

7 print("string is split into", n, "elements:")

8 for(i=1;i<=n;++i) print(" :" a[i] ":")

9

10 m=split(string ,a,/[hky]/)

11 print("string is split into", m, "elements:")

12 for(i=1;i<=m;++i) print(" :" a[i] ":")

13 }

8 functions/ex split.awk

1 string is split into 3 elements:

2 :ooh:

3 :ya:

4 :koo:

5 string is split into 4 elements:

6 :oo:

7 :-:

8 :a-:

9 :oo:

Note, that split has another optional argument for storing the actual sepa-
rator characters it encountered. See 9.1.3 in [2] for further details on this.

substr(string, start [,length])

Returns a substring of string which is length characters long and starts
at character number start. In awk the first character has index number 14.
If length is missing all characters of string starting at start are returned.
Examples:

$ echo "bladi_bla 4" | awk '{ print substr($1 ,$2) }'

1 di_bla

or
4This is different from many other programming languages like C, C++ or python, where the first

character has index 0!

CHAPTER 8. FUNCTIONS 74

$ echo "bladi_bla 2" | awk '{ print substr($1 ,$2 ,4) }'

1 ladi

tolower(string) Return a copy of string with each uppercase character replaced
by its lowercase equivalent. Non-alphabetic characters are not touched.

$ echo "somE4CRaZY_strINg" | awk '{ print tolower($0) }'

1 some4crazy_string

toupper(string) Return a copy of string with each lowercase character replaced by
its uppercase equivalent. Non-alphabetic characters are not touched.

$ echo "somE4CRaZY_strINg" | awk '{ print toupper($0) }'

1 SOME4CRAZY_STRING

8.2 User-defined functions

A user-defined function looks like this

1 function name(parameter_list) {

2 body

3 }

Such a definition may not be placed inside an action block or a pattern, but apart from
that anywhere in the code. Since awk reads the full code before executing it, the function
may even be defined after its first use. Conventionally one places all functions before
specifying the first rule of the program.

� The name of a function follows the same rules as the name of a variable: It is a
sequence of letters, digits and underscores, that does not start with a digit.

� The parameter_list is a comma-separated list of variable names. Inside the body

we may use these variables to refer to the values of the arguments, which were
passed to the function when it was called.

� body may contain any awk statement, which may also be placed in an action block,
e.g. other function calls, prints, arithmetic or comparison with variables.

� Inside a function body the special statement return exists

1 return expression

This may be used to return the value of expression back to the caller. The
expression argument is optional.

In either case: As soon as the return statement is encountered, the rest of the
function body is ignored and the execution of the awk program continues at the
place where the function was called.

CHAPTER 8. FUNCTIONS 75

� This description only provides a brief and non-exhaustive introduction into user-
defined functions in awk. More information can be found in section 9.2 of [2].

Example 8.1. We want to define and use a abs function in order to compute the absolute
value of an argument. The following program for example computes the absolute value
of each field:

1 #!/usr/bin/awk -f

2 function abs(x) {

3 if (x < 0) {

4 return -x

5 }

6 return +x

7 }

8 {

9 for (i=1; i<NF; ++i) {

10 $i = abs($i)

11 }

12 print $0

13 }

8 functions/ex abs.awk

$ echo "3 -4 -3.4 19" | 8_functions/ex_abs.awk

1 3 4 3.4 19

One could use a user-defined function like abs in a pattern. This program, for
example, does only print those transfers of resources/data/money.csv which cause a
balance change larger than 15.

1 #!/usr/bin/awk -f

2 function abs(x) {

3 if (x < 0) {

4 return -x

5 }

6 return +x

7 }

8

9 # Change Field separator (we need a comma)

10 BEGIN { FS="," }

11

12 # if no comment and balance change > 15

13 /^[^#]/ && abs($2) > 15 {

14 printf("%-20s %.2f\n",$1 ,$2)

15 }

8 functions/ex blance change.awk

1 Transfer to 8879 -87.30

2 Transfer from 2299 -19.88

CHAPTER 8. FUNCTIONS 76

Example 8.2. The program

1 #!/usr/bin/awk -f

2

3 # A helper function to achieve the reversal

4 function rev_helper(string ,start) {

5 # start starts off to be the string length

6 # (last character) and is reduced during the

7 # recursive call. If it is 0 recursion has to end

8 if (start == 0) return ""

9

10 # Append the character under start and call

11 # myself recursively reducing the value of start by one.

12 return (substr(string ,start ,1) rev_helper(string ,start -1))

13 }

14

15 # Do the reversal: Call the helper function

16 # appropriately

17 function rev(string) {

18 return rev_helper(string ,length(string))

19 }

20

21 { print rev($0) }

8 functions/ex rev.awk

reverses each record characterwise

$ echo "Some words and some blafasel." | 8_functions/ex_rev.awk

1 .lesafalb emos dna sdrow emoS

Exercise 8.3. (demo) Write an awk program which reads a matrix of input data like

1 16 26 88 6 10

2 1996 1101 -12 -582

3 0 225 -198776 -582

4 -5924 100 512 -582 10

5 16 16 2 -10

8 functions/matrix.data

and determins both the maximum element of the matrix as well as the maximum of the
absolute values of all the matrix elements.
Note: There are many ways to solve this exercise. One particularly nice solution exploits
the features of awk properly and manages to do this without any control structure like
if, for or while whatsoever.

Chapter 9

Writing practical awk programs

This chapter both summarises some hints and tips for writing useful awk programs and
gives a lot of examples. Most of these are not of great practical use by themselves,
but show rather nicely what could be done with awk. Think of them as a source for
inspirations for your own future awk programs.

9.1 When and how to use awk

In my experience awk is not a good general-purpose scripting language. It is, however,
very good at processing line-based data files or more generally files, which can be somehow
split up into records. Note, that most plain text files, which have some sort of a structured
format, fall in this category. If one needs to deal with these files, often a few lines of awk
code is enough do the trick. This is in contrast to other scripting languages like bash or
python. These are less practical in such cases, merely because one has to write the code
for parsing the data1.

Therefore I usually use awk as a supplement to a main script, which overall orches-
trates the work. Luckily bash and awk, for example, work together easily very well. For
example awk variables can be set directly from the commandline, i.e. effectively from
an outer main script. The respective flag is -v, which needs to be passed to the awk

executable as such:

$ awk -v "name=value" ' awk_source '

For example

$ awk -v "var=VALUE" 'BEGIN { print var }'

1 VALUE

This way awk programs can usually be placed inline, i.e. entirely inside the bash script.
For more details about combining awk and shell scripts see chapter 8 of [1].

1Please correct me if I am wrong here.

77

CHAPTER 9. WRITING PRACTICAL AWK PROGRAMS 78

9.2 Re-coding Unix tools using awk

The basic design philosophy behind UNIX2 implies that most UNIX utilities are small
building blocks for achieving larger tasks. Therefore being able to re-code these utils
with awk is a really helpful skill, just because one will need similar coding techniques
when writing more complicated awk programs.

Example 9.1. We want to re-code cut, which can be used to extract fields separated
by one specific character, by default a tab. cut has a couple of commandline parameters,
which change its behaviour. We have not yet discussed how to do argument parsing in
awk scripts3, so we will do the settings hard-coded in the BEGIN rule:

1 #!/usr/bin/awk -f

2 BEGIN {

3 ### Settings

4 # The field separator (cut flag -f)

5 f="\t"

6 # Which field should we extract (flag -d)

7 d=3

8 ### End settings

9

10 # Copy field separator from settings:

11 FS=f

12 }

13

14 # Only print the appropriate field.

15 { print $d }

9 practical programs/cut.awk

Example 9.2. Next we want to do tee: A program, which writes everything it gets on
its standard input to output as well as to disk.

1 #!/usr/bin/awk -f

2 BEGIN {

3 ### Settings

4 file="teeout.log"

5 }

6

7 # Print to stdout and to file

8 {

9 print > file

10 print

11 }

9 practical programs/tee.awk

2Each program does only one thing, but does this thing right.
3This is discussed in section 7.5.3 of [2].

CHAPTER 9. WRITING PRACTICAL AWK PROGRAMS 79

Example 9.3. Now we want to code tac. This program prints all lines of input, but in
reverse order.

1 #!/usr/bin/awk -f

2

3 # Write each line of text into an array

4 { lines[NR] = $0 }

5

6 # In the end print them in reverse order

7 END {

8 for (i=NR; i>0; --i) {

9 print lines[i]

10 }

11 }

9 practical programs/tac.awk

Exercise 9.4. Here are some UNIX utilities you could try to code yourself using awk.
See the respective man pages for more detailed explanation what the program does:

� wc -w: Print the number of words in the input text.

� uniq -c: Print only unique lines of text, but print the number of times the line
occurred after another.

� sort: A program which sorts its input lines lexicographically.

� egrep: A program which prints only lines of text, which match a given regular
expression. (For this you will probably need an enclosing shell script or you need
to hard-code the pattern to search for)

9.3 Example programs

This section gives a couple of concluding example programs, which employ techniques
we discussed in this course. Some of these programs are build upon ideas of chapter 11
of the gawk manual [2], where even more examples can be found as well.

Example 9.5. The program

1 #!/usr/bin/awk -f

2

3 BEGIN {

4 ### Settings

5 shift =13 # The shift to use (here 13 chars)

6

7

8 # All letters of the alphabet in lower and upper case

9 alphaLower="abcdefghijklmnopqrstuvwxyz"

10 alphaUpper=toupper(alphaLower)

11

12 # The number of letters in the alphabet:

13 NL=length(alphaLower)

14

15 # Use the shift variable and above strings to build an array

16 # for translating each character of the alphabet:

CHAPTER 9. WRITING PRACTICAL AWK PROGRAMS 80

17 for (i=1; i<=NL;++i) {

18 # first lower case

19 from=substr(alphaLower ,i,1)

20 to=substr(alphaLower ,(i+shift)%NL ,1)

21 trans[from]=to

22

23 # now upper case

24 from=substr(alphaUpper ,i,1)

25 to=substr(alphaUpper ,(i+shift)%NL ,1)

26 trans[from]=to

27 }

28

29 # Make sure that we traverse the data character by character:

30 FS=""

31

32 # Make sure there are no characters added to the output:

33 OFS=""

34 }

35

36 # Function to translate the characters:

37 # alters all characters known to the alphabet

38 function translate(c) {

39 if (c in trans) {

40 return trans[c]

41 } else {

42 return c

43 }

44 }

45

46 # Translate character by character ie field by field

47 {

48 for(i=1; i<=NF; ++i) {

49 printf("%1s",translate($i))

50 }

51 # Finish the line:

52 print ""

53 }

9 practical programs/caesar.awk

can perform a Caesar cipher “encryption”4. By default it performs the infamous ROT135.

4See https://en.wikipedia.org/wiki/Caesar_cipher for more information
5See for example https://en.wikipedia.org/wiki/ROT13

https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/ROT13

CHAPTER 9. WRITING PRACTICAL AWK PROGRAMS 81

Example 9.6. The program

1 #!/usr/bin/awk -f

2

3 {

4 # Normalise the input record:

5 # a) Remove punctuation (i.e. everything which is not

6 # a space char or an alphanumeric character)

7 $0 = gensub (/[^[: blank :][: alnum :]-]/,"","g",$0)

8 #

9 # b) Make everything lower case:

10 $0 = tolower($0)

11

12 # Add each field (word) to the wordcount array , which keeps

13 # track of how many times a word has been used and increment

14 # the count by one.

15 for (i=1;i<=NF;++i){

16 wordcount[$i]++

17 }

18 }

19

20 END {

21 # Print the count followed by the words

22 for (a in wordcount) {

23 printf("%5d %s\n",wordcount[a],a)

24 }

25 }

9 practical programs/word usage.awk

prints a list of all words, which were used in the input data. A count, how often they
are used, is determined and printed as well.

Example 9.7. UNIX systems usually come shipped with a dictionary of English words
located under /usr/share/dict/words. Each line in the dictionary only contains a
single word. We want to use this dictionary to build a list of anagrams in the English
language. A word is an anagram to another if both words contain the same letters, but
in a different order, e.g. “cat” and “act”. Here is the program:

1 #!/usr/bin/awk -f

2

3 # This function normalises a dictionary word by sorting the

4 # constituent letters alphabetically. Repetitions are kept , ie

5 # if a letter occurs multiple times in the word , the normalised

6 # version will also have it this number of times.

7 # The effect of the function is therefore:

8 # litter -> eilrtt

9 # cat -> act

10 # act -> act

11 # i.e. all anagrams will result to the same normalised string

12 function normalise_word(word) {

13 # Use split to make an array , which contains the characters

14 # of the word as array elements:

15 split(word ,arr ,"")

16

CHAPTER 9. WRITING PRACTICAL AWK PROGRAMS 82

17 # Now sort the array

18 n = asort(arr)

19

20 # Concatenate the characters again and return

21 res=""

22 for (i=1; i<=n; ++i) {

23 res = res arr[i]

24 }

25 return res

26 }

27

28 # Sort the array according to its values and store inside sorted

29 # the order of the indices required to obtain the sorted array.

30 # i.e. sorting

31 # a["a"] = "b"

32 # a["n"] = "a"

33 # using this function would yield

34 # sorted [1] = "n"

35 # sorted [2] = "a"

36 function argsort(array , sorted) {

37 i=0

38 for (key in array) {

39 sorted [++i] = array[key] "@@@" key

40 }

41 n = asort(sorted)

42 for (i=1;i<=n;++i) {

43 sorted[i] = gensub (/^.* @@@/,"" ,1,sorted[i])

44 }

45 return n

46 }

47

48 # Skip all possessives (words with 's at the end)

49 /'s$/ { next }

50

51 {

52 # In the data array we want to store the list of anagrams.

53 # So the current word (record) is appended

54 # to the value which is indexed by the normalised key

55 key = normalise_word($1)

56 val = data[key]

57

58 # append , but only if there is something:

59 if (val != "") {

60 data[key] = val " " $1

61 } else {

62 data[key] = $1

63 }

64

65 # Keep a count of how many anagrams we found for this

66 # normalised key

67 count[key]++

68 }

69

CHAPTER 9. WRITING PRACTICAL AWK PROGRAMS 83

70 END {

71 # Drop keys with a count below 2 (i.e. no anagrams)

72 for (key in count) {

73 if (count[key] < 2) {

74 delete count[key]

75 }

76 }

77

78 # Perform argsort on count , i.e. sort the keys of count in a

79 # way that the values they refer to come out sorted

80 # if we write data[sorted[i]] with i running sequentially.

81 n = argsort(count ,sorted)

82

83 for (i=1; i<=n; ++i) {

84 print (data[sorted[i]])

85 }

86 }

9 practical programs/anagrams.awk

Running it on /usr/share/dict/words yields an output similar to

1 ...

2 palest pastel petals plates pleats staple

3 least slate stale steal tales teals

4 opts post pots spot stop tops

5 carets caster caters crates reacts recast traces

6 pares parse pears rapes reaps spare spear

Example 9.8. The final program sparsifies an mtx file6 by dropping those matrix
components which have an absolute value smaller than 10−12. We no longer need to
store those values, which implies that the number of entries in the mtx file decreases.

1 #!/usr/bin/awk -f

2

3 BEGIN {

4 # Our threshold for the values

5 eps = 1e-12

6 }

7

8 function abs(a) {

9 if (a<0) {

10 return -a

11 } else {

12 return +a

13 }

14 }

15

16 # Print all comment lines

17 /^%/ { print; next }

18

19 # the first non -comment line is the shape of the matrix

20 # interpret and store it:

6See appendix B.1 on page 86 for more details.

CHAPTER 9. WRITING PRACTICAL AWK PROGRAMS 84

21 shape_encountered == 0 {

22 shape_encountered =1

23

24 # number of rows and columns of the matrix:

25 nrows = $1

26 ncols = $2

27

28 # Note: The d, i.e. the number of entries

29 # stored in the mtx file , will change due

30 # to this program and is hence not kept

31 next

32 }

33

34 # All other comment lines contain data.

35 # Add it to the values array if its value

36 # (3rd field) is larger than the threshold

37 abs($3) > eps {

38 # Store the record and increase non -zero count

39 values [++ nnonzeros] = $0

40 }

41

42 # In the end write the altered file:

43 END {

44 # Print shape and number of non -zeros:

45 print(nrows ,ncols ,nnonzeros)

46

47 # Print all values:

48 for (i=1; i<= nnonzeros; ++i)

49 print(values[i])

50 }

9 practical programs/sparsify mtx.awk

Appendix A

Obtaining the files

In order to obtain the example scripts and the resource files you will need for the exercises,
you should run the following commands:

1 # clone the git repository:

2 git clone https :// github.com/mfherbst/awk -course

3

4 # download the books from Project Gutenberg

5 cd awk -course/resources/gutenberg/

6 ./ download.sh

All paths in this script are given relative to the directory awk-course, which you created
using the first command in line 2 above.

All exercises and example scripts should run without any problem on all Linux systems
that have the GNU awk implementation (gawk) installed. If other awk implementations
(see 1.2 on page 2) are used, it may happen that examples either do not work or give
other output due to the differences between the different awk dialects.

85

Appendix B

Supplementary information

B.1 The mtx file format

The main idea of the mtx file format is to be able to store matrix data in a plain text
file without storing those matrix entries which are zero. This is achieved by only storing
a selection of the matrix components and defaulting all other component values to 0.

The mtx files we use in this course1 for demonstration purposes, follow a very simple
structure

� All lines starting with “%” are comments

� The first line is a comment line.

� The first non-comment line contains three values separated by one or more <space>
or <tab> characters:

– The number of rows

– The number of columns

– The number of entries, which are explicitly set in the file. We will refer to
this number as d.

� All following lines — the explicitly provided entries — have the structure

– Row index (starting at 1, i.e. 1-based)

– Column index (1-based)

– Value

where the individual columns are again separated by one or more <space> or <tab>
chars. The number of lines in this latter block and the number d provided on the
first non-comment line have to agree in a valid mtx file.

All matrix components, which are not listed in the latter block, default to a value 0.

1We will only use a subset of the full format, which can be found under http://math.nist.gov/

MatrixMarket/formats.html#mtx

86

http://math.nist.gov/MatrixMarket/formats.html#mtx
http://math.nist.gov/MatrixMarket/formats.html#mtx

APPENDIX B. SUPPLEMENTARY INFORMATION 87

Some examples

� Consider the file

1 %% MatrixMarket matrix coordinate real symmetric

2 3 3 9

3 1 1 1

4 1 2 1

5 1 3 1

6 2 1 2

7 2 2 2

8 2 3 2

9 3 1 3

10 3 2 3

11 3 3 3

resources/matrices/3.mtx

The first line is a comment line, which we can ignore. The second line tells us that
the matrix represented is a 3×3 matrix and that all nine entries are provided in the
Matrix Market file. Lines 3 to 11 then list the values. Overall this file represents
the matrix 1 1 1

2 2 2
3 3 3

 .

� The file

1 %% MatrixMarket matrix coordinate real

2 3 3 9

3 1 1 1

4 1 2 0

5 1 3 0

6 2 1 0

7 2 2 2

8 2 3 0

9 3 1 0

10 3 2 0

11 3 3 3

describes a 3× 3 matrix as well, namely the diagonal matrix1 0 0
0 2 0
0 0 3

 .

If we want to avoid storing the zeros, we can use the equally valid mtx file

1 %% MatrixMarket matrix coordinate real

2 3 3 3

3 1 1 1

4 2 2 2

5 3 3 3

Notice, how the last value in the first non-comment line has changed as well.

Bibliography

[1] Michael F. Herbst. Advanced bash scripting, August 2015. URL http://docs.mfhs.

eu/teaching/bash_course-ss-2015/notes.pdf.

[2] Arnold D. Robbins. GAWK: Effective AWK Programming, April 2014. URL https:

//www.gnu.org/software/gawk/manual/.

88

http://docs.mfhs.eu/teaching/bash_course-ss-2015/notes.pdf
http://docs.mfhs.eu/teaching/bash_course-ss-2015/notes.pdf
https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/gawk/manual/

Index

; (semicolon), 18
awk scripts, 29

action, 2, 13
action block, 49
alternation operator, 9
arguments, 68
arithmetic operators, 23
arrays, 62

Boolean comparison operators, 25
bracket expansion, 8

calling a function, 68
comma-separated value files, 34
comment character in awk, 16
complemented bracket expansion, 8

data-driven, 1, 4, 5
defining a function, 68

field separator, 13, 34
fields, 13
format control letter, 43
format modifier, 43, 44
format specifier, 43
function, 68
function name, 68

greedy, 38

Linux, 1
loop, 55

match, 6

pattern, 2, 6, 13, 49
POSIX character classes, 10
program flow, 49

record, 2, 6, 13, 49
record separator, 13, 33

regular expression, 1, 6
regular expression comparison operators, 26
regular expression operators, 7
return, 68
rule, 2, 13, 49

shebang, 29
strings in awk, 16

UNIX, 1

Variables in awk, 18

ways to run awk, 29

89

	Contents
	List of Tables
	Course description
	Learning targets and objectives
	Prerequisites

	Compatibility of the exercises
	Errors and feedback
	Licensing and redistribution
	A first look at awk
	Design principles of awk
	awk versions and implementations
	awk programs
	Running awk programs

	Getting help and further reading

	Regular expressions
	Matching regular expressions in awk patterns
	Regular expression operators
	A shorthand syntax for bracket expansions
	POSIX character classes
	Getting help with regexes

	Basic features of awk
	Overview: How awk parses input
	Working with default awk input parsing
	Strings
	Multiple actions per pattern
	Variables
	Operators
	Arithmetic operators
	Conditional operators
	Conditional operators in patterns

	Standalone awk scripts
	What we can do with awk so far

	Influencing input parsing
	Changing how files are split into records
	Changing how records are split into fields
	Using regular expressions to separate fields
	Special field separator values

	Defining fields by their content
	Other ways to get input

	Printing output
	The print statement
	Influencing the formatting of printed data

	Fancier printing: printf
	Format specifiers for printf

	Redirection and piping from awk

	Patterns, variables and control statements
	Controlling program flow with rules and patterns
	Range patterns

	Control statements
	exit statement
	next statement
	if-else statement
	while statement
	for statement
	break statement
	continue statement

	Builtin and special variables in awk

	Arrays
	Statements and control structures for arrays
	Multidimensional arrays

	Functions
	Important built-in functions
	Numeric functions
	String functions

	User-defined functions

	Writing practical awk programs
	When and how to use awk
	Re-coding Unix tools using awk
	Example programs

	Obtaining the files
	Supplementary information
	The mtx file format

	Bibliography
	Index

