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High-throughput Density-functional theory Error estimation in DFT UQ and high-throughput

About this talk

A talk of questions, not of answers

A biased summary

Stimulate discussion

⇒ Please interrupt me if . . .
. . . you have a question

. . . you have a suggestion

. . . you have no clue why one would possibly do this
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Societal challenges of 21st century

Renewable energy

Green chemistry and catalysts

Drug design

Transportation

Data storage and communication

⇒ Need for novel materials

⇒ High-throughput computational screening
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High-throughput screening: Approach

Given: Design space of novel materials
Aim: Optimise wrt. target descriptors:

1 Solve physical model for material
2 Computed derived properties

Computational approaches / fidelities:
Empirical models (Statistical surrogates, coarse-graining)

Density-functional theory (DFT)

Post-DFT methods (GW, . . . )

Statistical learning:
Still needs (lots of) high-level samples
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Typical scale

One DFT calculation: O(hours) to O(days)
E.g. Open Catalyst Project1

1.3 million DFT calculations

> 250 million DFT energy evaluations

Workflow success rate: ' 50%2

⇒ Reliability needs to be improved!

⇒ Need for careful understanding of errors

⇒ How much effort is really needed?

Multidisciplinary research problem
1L. Chanussot et. al. The Open Catalyst 2020 (OC20) Dataset, 2020, arXiv 2010.09990.
2Z. Ulissi, private communication in ARPAE differentiate group seminar, Dec 2020.
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Density-functional toolkit (DFTK)1

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

https://dftk.org
2 years of development
Pure code

Supports mathematical
developments and scale-up to
regime relevant to applications
Low entrance barrier: Only 6k
lines of code!

International and interdisciplinary
user base:

Analysis, mathematical physics,
applications, . . .

1M. F. Herbst, A. Levitt and E. Cancès. JuliaCon Proc., 3, 69 (2021).
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The essence of density-functional theory

γ0 = arg min
γ∈PN

EDFT(γ)

Energy functional

EDFT(γ) = trL2

(
−1

2∆γ
)

+
∫
ργ(r)Vext(r) dr

+ 1
2

∫
ργ(r)vC(r, r′)ργ(r′) dr dr′ + Exc(ργ)

Density matrix γ ∈ PN , 0 ≤ γ ≤ 1, trL2 (γ) = N

Density ργ(r) = γ(r, r)

Coulomb kernel vC(r, r′) = ‖r − r′‖−1

Exchange-correlation energy Exc(ργ)

External potential Vext
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Euler-Lagrange equation
Coupled set of non-linear elliptic partial differential equations:(
− 1

2∆ + V(ρ)
)
ψi = εiψi,

∫
ψ∗i ψj = δij

ρ =
∞∑
i=1

f

(
εi − εF
T

)
|ψi|2 , with εF such that

∫
ρ = N

Density-dependent potential

V(ρ) = Vext +
∫

(vCρ) + Vxc(ρ)

with Coulomb kernel vC(r, r′) = ‖r − r′‖−1

Fermi-Dirac function f(x) = 1/(1 + ex)

Temperature T , electron count N

Exchange-correlation potential Vxc = dExc(ρ)
dρ
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Self-consistent field (SCF) as a fixed-point problem
Density-dependent potential

V(ρ) = Vext +
∫

(vCρ) + Vxc(ρ)

Potential-to-density map F

F (V ) =
∞∑
i=1

f

(
εi − εF
T

)
|ψi|2

with (εi, ψi) eigenpairs of −1
2∆ + V .

⇒ SCF solves ρ = F (V(ρ))

Numerically: Damped fixed-point scheme
ρn+1 = ρn + αP−1 [F (V(ρn))− ρn]

with preconditioner (“mixing”) P
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DFT properties and descriptors

Assume fixed-point problem solved: ρ∗ = arg minρ EDFT(ρ)

DFT properties:

Derivatives dEλDFT(ρ∗)
dλ

λ: Physical system-dependent parameter of Vext
Examples: Forces, stresses, dipole moment, phonons, . . .

Total derivative: Might require derivative of ρ(λ)

Descriptors to compute for screening:
DFT quantities: EDFT, εi, . . . (' stability)

DFT properties (' usefulness)
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DFT takeaways
Nested iterative problem:

Fixed point search, with diagonalisation for each iterate ρn
Multi-step procedure:

(Geometry optimisation)

Fixed-point problem

Properties

Numerous modelling parameters:
Model parameters: Exc?

Numerical parameters: Discretisation , T , . . .

Algorithmic parameters: Tolerances, preconditioners, . . .

Arithmetic parameters: Floating-point type, . . .
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Perspective of error estimation in DFT

Nowadays: Parameter selection by trial and error

Sources of error in DFT:
Model error: ↔ Exc

Numerical error: ↔ Discretisation , T , . . .

Algorithmic error: ↔ Tolerances, preconditioners, . . .

Arithmetic error: ↔ Floating-point type, . . .

Robust error estimates:
Total error known ⇒ Error bars

Error-guided adaptive numerics ⇒ Efficiency gain

Vision: Robust automatic selection of numerical parameters
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A posteriori error analysis: First results with DFTK 1
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Reduced model: Non-self-consistent Kohn-Sham
Estimation of full numerical error
Discretisation + algorithm + arithmetic
Extensions ongoing work . . .

1M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. 224, 227 (2020).
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Error categories
Numerical error:

Discretisation + algorithm + arithmetic

Promising a posteriori error estimates emerging

But: Usually the smaller contribution to the total error

Reason: Calculations “over-converged”

⇒ Source for extra performance

Model error (Exc):
Plethora of fidelity options (more in a sec)

A posteriori error estimates very challenging

⇒ Regime of UQ / statistical methods

⇒ Answers: How much numerical accuracy needed?
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DFT model classes

“Jacob’s ladder” hierarchy for Exc:
LDA, GGA, meta-GGA, Hybrid, RPA-like, . . .

Each “step” defines parametrised model EαDFT
Hundreds of members differing by α

Found by fitting and/or from physics

Parameter space increases ' models get more accurate

Additional correction terms (+U, dispersion, counterpoise, . . . )

DFT is a non-variational approximation to exact physics

⇒ No strictly guaranteed ranking
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Quantifying model uncertainty

Error measures: Mean error, mean absolute error, relative error

Conclusions depend on error measure1

Best: Problem-specific error measure (e.g. ∆-test)

But: Hardly any specific ones developed

Predominant generic approach: Regression-based methods2

⇒ Not predictive

1B. Civalleri, D. Presti, R. Dovesi, A. Savin, On choosing the best density functional
approximation, in: Chemical Modelling: Applications and Theory, 168 (2012).

2K. Lejaeghere. The uncertainty pyramid for electronic-structure methods, 41. Elsevier
(2020).
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The need for predictive UQ

Screening decisions: Comparison with best case

I.e. both best case and design space are simulated

Then descriptors compared

Model uncertainty usually neglected

⇒ Errors in differences can be large

⇒ Without UQ: Comparison of simulations can be misleading1

1G. Houchins, D. Krishnamurthy and V. Viswanathan. MRS Bull., 44, 204 (2019).
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BEEF: Predictive UQ for the model error1

BEEF: Bayesian Error Estimation Functional

Based on ideas from Bayesian statistics

BEEF approach:
Given some observations of a quantity q (e.g. experiment)

Find “best” choice for α on a “step” by fit

Additionally: Distribution P (α) constructed

Aim: Ensemble spread of EαDFT represents model error

Challenges for construction:
No model class is exact

Approximation known to not contain exact result
1R. Christensen, T. Bligaard and K. W. Jacobsen. Bayesian error estimation in density

functional theory, 77-91. Elsevier (2020).
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BEEF: Key idea1

Consider N observations qi, model predictions qi(α),
least-squares cost C(α) =

∑
i(qi − qi(α))2

Assume we found α∗ = arg minαC(α)
For a model EαDFT define

Error ∆qi = qi − qi(α)

Model deviation δqi(α) = qi(α)− qi(α∗)

Goal: Spread on P (α) should be model deviation (on average)∑
i

∫
[δqi(α)]2 P (α) dα =

∑
i

(∆qi)

By maximum entropy principle (introduce least bias):

P (α) ∝ exp
(
−NC(α)

2C(α∗)

)
.

1V. Petzold, T. Bligaard and K. W. Jacobsen. Top. Catal., 55, 402 (2012). 23 / 30
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BEEF: Usage in practice

q typically an energy difference quantity
E.g. Formation energy: Ecompound

DFT − Eatoms
DFT

Offline: Determine α∗

Pick one DFT model class

Fit against data qi

Solve DFT: ρ∗ = arg minρ Eα
∗

DFT(ρ), E∗ = Eα∗
DFT(ρ∗)

Sample α̃ from P :
One-shot computation: E α̃DFT(ρ∗) (same ρ∗, different α)

Resulting energy distribution: Uncertainty estimate

Propagate distribution forward to quantity of interest q′
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BEEF: Issues and open questions

BEEF-based approaches termed uncertainty quantification

Issues:
Sensitivity of model parameters 6= error to experiment

Experimental error ignored (just regularisation)

Self-consistency not treated

Limitation to energies (and derivatives)

Open questions:
Rigid mathematical justification for this framework?

Usually q′ = q, but not always: Is error propagation valid?

What if numerics is not perfect? Experimental error?
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Multi-fidelity approaches

Natural approach for design-space searches:
Far from optimum: Full accuracy not needed

Possible axes of fidelity:
Discretisation parameters (some related, some not)

DFT models

Initial developments1,2

Two a priori defined fidelity layers

Co-kriging, Gaussian process regression approaches

Two models or two accuracies

1G. Pilania, J. Gubernatis and T. Lookman. Comput. Mater. Sci., 129, 156 (2017).
2R. Batra, G. Pilania, B. P. Uberuaga et al. ACS Appl. Mater. Interfaces, 11, 24906

(2019).
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Multi-fidelity: Open questions and challenges

Which approach?
Kriging, Bayesian optimisation, . . .

Design space ↔ feature space for learning
Experimental design and sampling strategy?

. . . in feature space

. . . in design space

Adaptive definition of numerical fidelity layers?

DFT models: No strict ordering of improvement
At best empirically for selected classes of materials

Selection of good features
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Opportunities for UQ: Uses of DFT data

X Design-space searches

Potential fitting
For molecular dynamics

Propagation of DFT error / fitting error?

Geometry optimisation
Sensitivity of DFT model?
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Summary https://michael-herbst.com/talks/2021.06.01_dft_uq.pdf

Density-functional theory:
Key method for high-throughput materials discovery

Nested iterative procedures

Sizable number of numerical parameters: Reliability issue

Error estimation in DFT:
A posteriori error estimation: Numerical error

Model error estimation ⇒ UQ research needed

Perspectives and efficiency gains by better UQ:
Error balancing model ↔ numerics

Multi-fidelity design-space searches

Error propagation beyond energy quantities 29 / 30
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Questions? https://michael-herbst.com/talks/2021.06.01_dft_uq.pdf

� mfherbst

� https://michael-herbst.com/blog

R herbst@acom.rwth-aachen.de

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International Licence.
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