Quantum chemistry using Coulomb-Sturmian basis functions

In the second half of my PhD studies I turned my focus towards developing quantum-chemical simulation methods using Coulomb-Sturmian basis functions. Coulomb Sturmians are atom-centred, exponentially decaying functions, which show some desirable properties. For example they are complete and computing the required two-electron integrals is simpler compared to Slater-type orbitals. For implementing Coulomb Sturmians and trying them in the context of Hartree-Fock (HF) and post-HF methods we developed the molsturm quantum-chemistry code. The aim of molsturm is to provide a framework, which has the flexibility to support rapid development of novel simulation methods using arbitrary basis functions. For this we provide in molsturm a very general self-consistent field code, where any kind of basis function can be used. As a result molsturm provides a basis-function agnostic link between the integral library and a Post-HF code. See our JCP article for more details.

For an overview of the different types of basis functions used in quantum chemistry beyond Gaussian-type orbitals see my talk at the MathCCES lunch seminar at RWTH Aachen 2018.

Highlighted publications

Other research projects