Background •000000000	c GTO 00000000000	ETOs 0000000	Grid-based	Plane waves	Addendum 00000	A & Q 00
Electronic Schrödin	ger operator					

State of the basis in electronic structure theory Sketching the scene beyond Gaussian-type orbitals

Michael F. Herbst

MathCCES lunch seminar

29th Mai2018

Background **ETOs** Grid-based Addendum Plane waves A & Q •000000000 Electronic Schrödinger operator

Electronic structure theory

- $N_{\rm elec}$ electrons in chemical system
- Spectrum of $\hat{\mathcal{H}}_{N_{\text{oloc}}}$

-

 $\hat{\mathcal{V}}$

$$\hat{\mathcal{H}}_{N_{\text{elec}}} \equiv \sum_{i=1}^{N_{\text{elec}}} -\frac{1}{2} \Delta_i + \sum_{i=1}^{N_{\text{elec}}} \hat{\mathcal{V}}_{\text{Nuc},i} + \sum_{i=1}^{N_{\text{elec}}} \sum_{j=i+1}^{N_{\text{elec}}} \frac{1}{r_{ij}}$$

with

$$\begin{array}{ll} -\frac{1}{2}\Delta_i & \text{Kinetic energy of electrons} \\ \hat{\mathcal{V}}_{\text{Nuc},i} & \text{Electron-nuclear interaction} \\ \frac{1}{r_{ij}} & \text{Electron-electron interaction} \end{array}$$

Schrödinger operator domain

- $N_{\rm elec}$ electrons $\Rightarrow 3N_{\rm elec}$ coords
- Electrons are fermions:

$$D(\hat{\mathcal{H}}_{N_{\text{elec}}}) = H^2(\mathbb{R}^{3N_{\text{elec}}}, \mathbb{C}) \cap \bigwedge^{N_{\text{elec}}} L^2(\mathbb{R}^3, \mathbb{C})$$

where

$$\bigwedge^{N_{\text{elec}}} L^{2}(\mathbb{R}^{3}, \mathbb{C}) \equiv \text{span} \left\{ \psi_{1} \wedge \psi_{2} \wedge \dots \wedge \psi_{N_{\text{elec}}} \right|$$
$$\psi_{i} \in L^{2}(\mathbb{R}^{3}, \mathbb{C}) \,\forall i = 1, \dots N_{\text{elec}} \right\}$$

• One-particle function ψ_i (orbitals)

Schrödinger operator discretisation (1)

- HVZ theorem
- Ritz-Galerkin / Courant-Fischer
- Ground state (lowest eigenvalue):

$$E_0 \leq \min_{\Phi \in \operatorname{span} \mathbb{B}_{N_{\operatorname{elec}}}} \frac{\left\langle \Phi \middle| \hat{\mathcal{H}}_{N_{\operatorname{elec}}} \Phi \right\rangle}{\langle \Phi \middle| \Phi \rangle}$$

where

$$\mathbb{B}_{N_{\text{elec}}} \subset \bigwedge^{N_{\text{elec}}} H^1(\mathbb{R}^3, \mathbb{C}) \subset H^1(\mathbb{R}^{3N_{\text{elec}}, \mathbb{C}})$$

is N_{elec} -particle basis

Schrödinger operator discretisation (2)

• Choose one-particle basis

$$\mathbb{B}_1 = \{\varphi_\nu\}_{\nu \in \mathcal{I}_{\text{bas}}} \subset H^1(\mathbb{R}^3, \mathbb{C})$$

• Construct $N_{\rm orb}$ orthonormal orbitals

$$\{\psi_i\}_{i=1,\dots,N_{\rm orb}} \subset \operatorname{span} \mathbb{B}_1$$

• Construct Slater determinants

$$\mathbb{B}_{N_{\text{elec}}} = \left\{ \psi_{\sigma(1)} \land \psi_{\sigma(2)} \land \dots \land \psi_{\sigma(N_{\text{elec}})} \right|$$

$$\sigma \text{ permutation from } \{1 \dots N_{\text{elec}}\} \text{ to } \{1 \dots N_{\text{orb}}\} \right\}$$

as N_{elec} -particle basis.

Background	cGTO 00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum 00000	A & Q 00
Seeking a basis						

Questions

• $\mathbb{B}_{N_{\text{elec}}}$ grows as $O(N_{\text{bas}}^{N_{\text{elec}}})$

 \Rightarrow Use $\{\psi_i\}_i$ to construct subset

- How to construct ψ_i ?
 - Yield best single determinant

 \Rightarrow Hartree-Fock (HF) or density-functional theory (DFT)

- Construction of subset of B_{Nelec}?
 e.g. Post-HF
- Which functions to choose in \mathbb{B}_1 ?

Background	cGTO 00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum 00000	A & Q 00
Seeking a basis						

Questions

• $\mathbb{B}_{N_{\text{elec}}}$ grows as $O(N_{\text{bas}}^{N_{\text{elec}}})$

 \Rightarrow Use $\{\psi_i\}_i$ to construct subset

- How to construct ψ_i ?
 - Yield best single determinant
 - \Rightarrow Hartree-Fock (HF) or density-functional theory (DFT)
- Construction of subset of B_{Nelec}?
 e.g. Post-HF
- Which functions to choose in \mathbb{B}_1 ?

Self-consistent field methods (HF and DFT)

- Single determinant minimiser to trial energy functional
- Euler-Lagrange equations:

with

$$\underbrace{\left(-\frac{1}{2}\Delta + \hat{\mathcal{V}}_{\text{Nuc}} + \hat{\mathcal{V}}_{2e}\left[\left\{\psi_{i}\right\}_{i \in I}\right]\right)}_{=\hat{\mathcal{F}}}\psi_{i} = \varepsilon_{i}\psi_{i}$$
$$\langle\psi_{i}|\psi_{j}\rangle = \delta_{ij}$$

 $\begin{array}{l} & -\frac{1}{2}\Delta & \text{Kinetic energy of electrons} \\ \hat{\mathcal{V}}_{\text{Nuc}} & \text{Electron-nuclear interaction} \\ \hat{\mathcal{V}}_{2e}[\{\psi_i\}_{i\in I}] & \text{Electron-electron interaction} \end{array}$

• Non-linear system of partial differential equations

Background ○○○○○●○○○	cGTO 00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum 00000	A & Q 00
Seeking a basis						

Questions

• $\mathbb{B}_{N_{\text{elec}}}$ grows as $O(N_{\text{bas}}^{N_{\text{elec}}})$

 \Rightarrow Use $\{\psi_i\}_i$ to construct subset

- How to construct ψ_i ?
 - Yield best single determinant

 \Rightarrow Hartree-Fock (HF) or density-functional theory (DFT)

• Construction of subset of $\mathbb{B}_{N_{\text{elec}}}$?

• e.g. Post-HF

• Which functions to choose in \mathbb{B}_1 ?

Background ○○○○○●○○○	cGTO 00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves 00000000	Addendum 00000	A & Q 00
Seeking a basis						

Questions

• $\mathbb{B}_{N_{\text{elec}}}$ grows as $O(N_{\text{bas}}^{N_{\text{elec}}})$

 \Rightarrow Use $\{\psi_i\}_i$ to construct subset

- How to construct ψ_i ?
 - Yield best single determinant

 \Rightarrow Hartree-Fock (HF) or density-functional theory (DFT)

• Construction of subset of $\mathbb{B}_{N_{\text{elec}}}$?

• e.g. Post-HF

• Which functions to choose in \mathbb{B}_1 ?

Background ○○○○○○○○●○	cGTO 000000000000	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum 00000	A & Q 00
Seeking a basis						

- Represents physics well
- Results reliable
 - Error margin known
 - Systematic improvement possible
- Prior knowledge
 - Little required
 - If available: Can be incorporated
- Integrals and eigenproblem are feasible
- \Rightarrow In reality need a good compromise

Background	cGTO	ETOs	Grid-based	Plane waves	Addendum	A & Q
○○○○○○○○●○	000000000000	0000000	0000000000		00000	00
Seeking a basis						

- Represents physics well
- Results reliable
 - Error margin known
 - Systematic improvement possible
- Prior knowledge
 - Little required
 - If available: Can be incorporated
- Integrals and eigenproblem are feasible
- \Rightarrow In reality need a good compromise

Background ○○○○○○○●○	cGTO 00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves 00000000	Addendum 00000	A & Q 00
Seeking a basis						
An ideal	hasia					

• E.g. hydrogen atom ground state

$$\Psi_{1s}(r,\theta,\phi) = \sqrt{\frac{Z^3}{\pi}} \exp(-Zr)$$

• Kato's electron-nuclear cusp condition¹:

$$\frac{\partial \langle \Psi(\underline{x}) \rangle}{\partial r_i} \Big|_{\underline{r}_i = \underline{R}_A} = -Z_A \left. \langle \Psi(\underline{x}) \rangle \right|_{\underline{r}_i = \underline{R}_A}$$

where $\langle \Psi(\underline{x}) \rangle |_{\underline{r}_i = \underline{R}_A}$ is the average value if $\underline{r}_i = \underline{R}_A$ fixed.

- electron-electron cusp^1 as $r_{ij} \to 0$
- Energy-dependent exponential decay¹ ¹Kato 1957

Background	cGTO	ETOs	Grid-based	Plane waves	Addendum	A & Q
○○○○○○○○●○	000000000000	0000000	0000000000		00000	00
Seeking a basis						

- Represents physics well
- Results reliable
 - Error margin known
 - Systematic improvement possible
- Prior knowledge
 - Little required
 - If available: Can be incorporated
- Integrals and eigenproblem are feasible
- \Rightarrow In reality need a good compromise

Background	cGTO	ETOs	Grid-based	Plane waves	Addendum	A & Q
○○○○○○○○●○	000000000000	0000000	0000000000		00000	00
Seeking a basis						

- Represents physics well
- Results reliable
 - Error margin known
 - Systematic improvement possible
- Prior knowledge
 - Little required
 - If available: Can be incorporated
- Integrals and eigenproblem are feasible
- \Rightarrow In reality need a good compromise

Background	cGTO 00000000000	ETOs 0000000	Grid-based	Plane waves	Addendum 00000	A & Q 00
Seeking a basis						

Matrix representation of $\hat{\mathcal{H}}_{N_{\text{elec}}}$ involves integrals

$$(\mu\nu|\kappa\lambda) = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\varphi_{\mu}^*(\underline{r}_1)\varphi_{\nu}(\underline{r}_1)\,\varphi_{\kappa}^*(\underline{r}_2)\varphi_{\lambda}(\underline{r}_2)}{\|\underline{r}_1 - \underline{r}_2\|_2} \,\mathrm{d}\underline{r}_1 \,\mathrm{d}\underline{r}_2.$$

Background	cGTO	ETOs	Grid-based	Plane waves	Addendum	A & Q
○○○○○○○○●○	000000000000	0000000	0000000000		00000	00
Seeking a basis						

- Represents physics well
- Results reliable
 - Error margin known
 - Systematic improvement possible
- Prior knowledge
 - Little required
 - If available: Can be incorporated
- Integrals and eigenproblem are feasible
- \Rightarrow In reality need a good compromise

Background ○○○○○○○○●	cGTO 00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum 00000	A & Q 00

Contents

- 1 contracted Gaussian-type orbitals
 - Explicitly correlated methods
- 2 Exponential orbitals
 - Slater-type orbitals
 - Sturmian-type orbitals
- 3 Grid-based approaches
 - Finite elements
 - Multiwavelets
 - Plane wave methods
 - 5 Addendum

Background	cGTO ●00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum 00000	A & Q 00
Contents	5					

- 1 contracted Gaussian-type orbitals
 - Explicitly correlated methods
 - 2 Exponential orbitals
 - Slater-type orbitals
 - Sturmian-type orbitals
 - 3 Grid-based approaches
 - Finite elements
 - Multiwavelets
- Plane wave methods
- 5 Addendum

10/51

Atom-centred basis functions

- Molecular density to good approximation sum of atomic densities
- Typical ansatz

$$\varphi(\underline{\boldsymbol{r}}_{\mu}) = R(r_{\mu})Y_l^m(\theta_{\mu},\phi_{\mu})$$

where

$$(r_{\mu}, \theta_{\mu}, \phi_{\mu}) \equiv \underline{r}_{\mu} = \underline{r} - \underline{R}_{\mu}$$

- $\underline{\mathbf{R}}_{\mu}$ is the centre, i.e. atom position
- \Rightarrow Intrinsic assumption: Electrons close to atoms

 Background
 cGTO
 ETOs
 Grid-based
 Plane waves
 Addendum
 A & Q

 0000000000
 0000000000
 000000000
 000000000
 000000000
 00000000
 000000000

 contracted Gaussian-type orbitals

Gaussian-type orbitals

• Use Gaussian radial part

$$R_{\mu}^{\rm GTO}(r) = N_{\mu}r^{l_{\mu}}\exp(-\alpha_{\mu}r^2)$$

- Dense in H^1 , but slow convergence
- Not physical
- Very feasible integrals $(\mu\nu|\kappa\lambda)$
- Not used in practice

 Background
 cGTO
 ETOs
 Grid-based
 Plane waves
 Addendum
 A & Q

 0000000000
 0000000000
 000000000
 000000000
 000000000
 00000000
 000000000

 contracted Gaussian-type orbitals

Gaussian-type orbitals

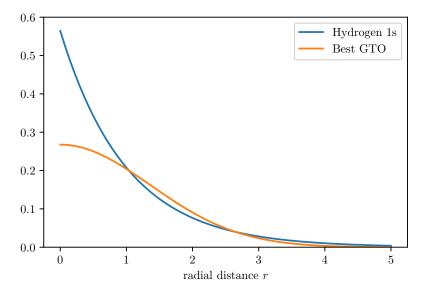
• Use Gaussian radial part

$$R_{\mu}^{\rm GTO}(r) = N_{\mu}r^{l_{\mu}}\exp(-\alpha_{\mu}r^2)$$

- Dense in H^1 , but slow convergence
- Not physical
- Very feasible integrals $(\mu\nu|\kappa\lambda)$
- Not used in practice

Background	cGTO ○○●○○○○○○○○○	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum 00000	A & Q 00
contracted Gaussian	n-type orbitals					

Gaussian-type orbitals



 Background
 cGTO
 ETOs
 Grid-based
 Plane waves
 Addendum
 A & Q

 0000000000
 0000000000
 000000000
 000000000
 000000000
 00000000
 000000000

 contracted Gaussian-type orbitals

Gaussian-type orbitals

• Use Gaussian radial part

$$R_{\mu}^{\rm GTO}(r) = N_{\mu}r^{l_{\mu}}\exp(-\alpha_{\mu}r^2)$$

- Dense in H^1 , but slow convergence
- Not physical
- Very feasible integrals $(\mu\nu|\kappa\lambda)$
- Not used in practice

contracted Gaussian-type orbitals

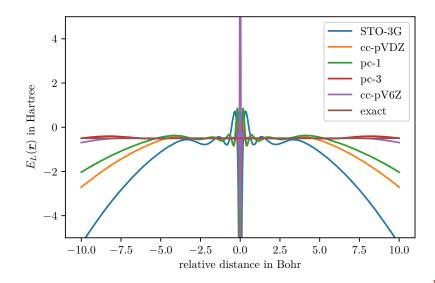
• *Fixed* linear combination of primitive Gaussians

$$R_{\mu}^{\rm cGTO}(r) = r^{l_{\mu}} \sum_{i}^{N_{\rm contr}} c_{\mu,i} \exp(-\alpha_{\mu,i} r^2)$$

- Integrals still feasible
- Fitted to
 - exponential shape
 - achieve best energies
 - achieve best properties
- \Rightarrow Effectively split parameter space

Background	cGTO	ETOs	Grid-based	Plane waves	Addendum	A & Q	
0000000000	○000●000000	0000000	0000000000		00000	00	
contracted Gaussian-type orbitals							

Discretising hydrogen



Background	cGTO ○000●00○○○○	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum 00000	A & Q 00
contracted Gaussiar	n-type orbitals					

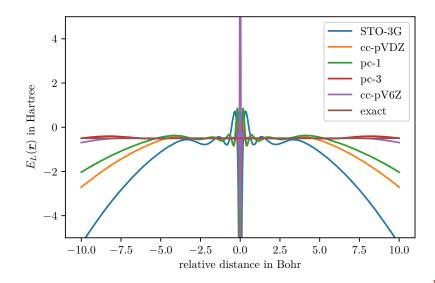
Discretising hydrogen

Local energy

$$E_L(\underline{\boldsymbol{r}}) = \frac{\left(\hat{\mathcal{H}}_{N_{\text{elec}}}\Phi\right)(\underline{\boldsymbol{r}})}{\Phi(\underline{\boldsymbol{r}})}$$

Background	cGTO	ETOs	Grid-based	Plane waves	Addendum	A & Q	
0000000000	○000●000000	0000000	0000000000		00000	00	
contracted Gaussian-type orbitals							

Discretising hydrogen



Notes and observations

- Pragmatic compromise:
 - Not physical
 - Chemistry is about energy differences
 - Mostly work by error compensation
- Special basis sets for special use cases:
 - $\bullet\,$ correlation-consistent construction
 - Core polarisation
 - Augmentation
- Over-complete:
 - Numerical issues

 Background
 cGTO
 ETOs
 Grid-based
 Plane waves
 Addendum
 A & Q

 0000000000
 00000000000
 0000000000
 000000000
 000000000
 000

 Explicitly correlated methods

Explicitly correlated methods

- Fundamental problem of one-electron basis functions:
 - electron-electron cusp not taken into account
- \Rightarrow Slow convergence of Post-HF methods
- \Rightarrow Include dependency r_{ij} in basis
 - Boys, Singer: Exponentially correlated Gaussians (ECG):

$$\Phi_{k}(\underline{\boldsymbol{x}}) = \exp\left(-\sum_{i=1}^{N_{\text{elec}}} \alpha_{k,i} \left\|\underline{\boldsymbol{r}}_{i} - \underline{\boldsymbol{R}}_{k,i}\right\|^{2} - \sum_{i < j} \gamma_{k,ij} r_{ij}^{2}\right)$$

where $\underline{\mathbf{R}}_{k,i}$ are Gaussian centres

Properties of ECGs

- Analytically evaluatable many-electron integrals
- Dense N_{elec} -electron basis
- Cusp condition not perfect
- Many non-linear parameters $\gamma_{k,ij}$
- \Rightarrow Only keep one $\gamma_{k,ij}$ per k.
- \Rightarrow Gaussian-type geminals:

$$g_k(\underline{\boldsymbol{r}}_1, \underline{\boldsymbol{r}}_2) = \exp\left(-\alpha_{k,1} \left\|\underline{\boldsymbol{r}}_1 - \underline{\boldsymbol{R}}_{k,1}\right\| - \alpha_{k,2} \left\|\underline{\boldsymbol{r}}_2 - \underline{\boldsymbol{R}}_{k,2}\right\| - \gamma_k r_{12}^2\right)$$

• Maximal 4-electron integrals

Background cGTO ETOS Grid-based Plane waves Addendum A & Q 0000000000 CONCOLOR CONC

Geminal methods

 $g_k(\underline{\boldsymbol{r}}_1,\underline{\boldsymbol{r}}_2) = f(\underline{\boldsymbol{r}}_1,\underline{\boldsymbol{r}}_2) \, \exp\left(-\alpha_{k,1} \left\|\underline{\boldsymbol{r}}_1 - \underline{\boldsymbol{A}}_k\right\|\right) \, \exp\left(-\alpha_{k,2} \left\|\underline{\boldsymbol{r}}_2 - \underline{\boldsymbol{B}}_k\right\|\right)$

- Generalised geminal:
 - linear $f(\underline{r}_1, \underline{r}_2) = r_{12}$
 - Slater-type $f(\underline{r}_1, \underline{r}_2) = \exp(-\gamma_k r_{12})$
- Introduced in context of *pair theories*
 - Post-HF methods: MP2, CCD, CCSD(T)
 - R12 or F12 methods
- Lead to additional terms and geminal parameters
- Optimised alongside vs. predetermined

Notes and observations

- Leads to challenging equations
- 4-electron integrals are very expensive
 - \Rightarrow Approximations allow factorisation into one- and two-electron integrals
- Effect diminishes for:
 - large Gaussian basis sets
 - higher-order Post-HF methods
- Minor effect on fundamental cGTO issues

Background 0000000000	cGTO 00000000000	ETOs •000000	Grid-based 0000000000	Plane waves	Addendum 00000	A & Q 00
Contents	;					

- 1 contracted Gaussian-type orbitals
 - Explicitly correlated methods
- 2 Exponential orbitals
 - Slater-type orbitals
 - Sturmian-type orbitals
 - 3 Grid-based approaches
 - Finite elements
 - Multiwavelets
- Plane wave methods
- 5 Addendum

20 / 51

Exponential-type orbitals (ETO)

• Hydrogen-atom radial part

$$R_{nl}(r) = N_{nl} \left(\frac{2Zr}{n}\right)^l \exp\left(-\frac{Zr}{n}\right) {}_1F_1\left(l+1-n\left|2l+2\right|\frac{2Zr}{n}\right)$$

- Not used as basis:
 - Classical turning point: $O(n^2)$
 - Too fast expansion
 - Not complete
- Template for exponential-type orbitals

Slater-type orbitals

• Functional form:

$$R_{\mu}(r) = N_{\mu}r^{n_{\mu}-1}\exp(-\zeta_{\mu}r)$$

- ζ_{μ} : Fitted / predetermined atomic exponents
- Physical shape
- BUT: Integrals difficult
- Not complete
- Fast convergence of e.g. NMR properties¹

¹Hoggan 2009

Coulomb-Sturmians

• Iso-energetic solutions φ_{nlm} to hydrogen-like equation¹

$$\left(-\frac{1}{2}\Delta - \beta_n \frac{Z}{r}\right)\varphi_{nlm}(\underline{r}) = E\varphi_{nlm}(\underline{r})$$

• Scaling factor β_n chosen to uniform energy:

$$\beta_n = \frac{kn}{Z} \quad \Rightarrow \quad E = -\frac{k^2}{2}$$

- φ_{nlm} look like hydrogenic orbitals with $\frac{Z}{n}$ replaced by k
- Radial part R_{nl} satisfies

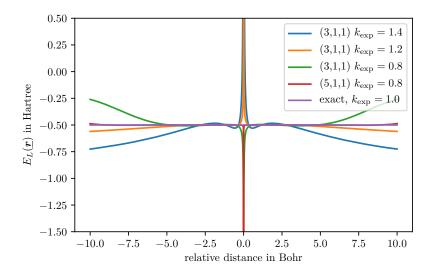
$$\left(-\frac{1}{2r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{l(l+1)}{2r^2} - \frac{nk_{\exp}}{r} - E\right)R_{nl}(r) = 0.$$

 \Rightarrow Sturm-Liouville equation²

¹Shull and Löwdin 1959²Rotenberg 1962, Rotenberg 1970

Background	cGTO	ETOs	Grid-based	Plane waves	Addendum	A & Q
	00000000000	0000000	0000000000	00000000	00000	00
Sturmian-type orbi	tals					

Discretising hydrogen



Coulomb-Sturmians properties

- Only atoms: Different Sturmians for molecules required
- Complete (Schauder) basis for $H^1(\mathbb{R}^3)^1$
- Correctly represent nuclear cusp
- Proper exponential decay for large r
- All functions have the same k_{exp}
- One-electron integrals sparse and analytic
- Two-electron integrals sparse tensor contraction

¹Klahn and Bingel 1977

Other Sturmian-type orbitals

- Molecular Sturmians
 - One-to-one onto hyperspherical harmonics¹
- Generalised Sturmians²
 - Geometry built into basis (N_{elec} -particle basis)
- $\bullet~d\text{-dimensional hyperspherical harmonic basis sets^3$
 - Strongly interacting few-body systems
- Ionising Sturmians⁴

¹Aquilanti 1992, Aquilanti 2003, Coletti 2013, Calderini 2012
²Avery 2012
³Avery 2018
⁴Mitnik 2011, Randazzo 2015, Granados 2016

Background 0000000000	cGTO 00000000000	ETOs 0000000	Grid-based • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Plane waves	Addendum 00000	A & Q 00
Contents	5					
	contracted G	aussian-ty	pe orbitals			
	• Explicitly of	correlated	methods			
2	Exponential of	orbitals				
	• Slater-type	orbitals				

- Sturmian-type orbitals
- 3 Grid-based approaches
 - Finite elements
 - Multiwavelets
 - Plane wave methods
 - 5 Addendum

Grid-based approaches

- Fully numerical vs. radial only
- Challenges:
 - Discontinuity at nuclei
 - Non-locality of $\hat{\mathcal{H}}_{N_{\text{elec}}}$
 - Basis size
- Perspectives:
 - Error control
 - No implicit bias

Grid-based approaches

- Fully numerical vs. radial only
- Challenges:
 - Discontinuity at nuclei
 - Non-locality of $\hat{\mathcal{H}}_{N_{\text{elec}}}$
 - Basis size
- Perspectives:
 - Error control
 - No implicit bias

Background	cGTO 00000000000	ETOs 0000000	Grid-based ○○●○○○○○○○	Plane waves	Addendum 00000	A & Q 00
Finite elements						

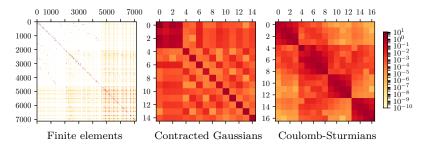
Finite elements

- Affine, conformal mesh, continuous FEs
- Example: Hartree-Fock problem
- After discretisation:

$$\mathbf{F}[\mathbf{C}] \mathbf{C} = \operatorname{diag}(\varepsilon_1, \dots, \varepsilon_n) \mathbf{S} \mathbf{C}$$

Finite elements

- Affine, conformal mesh, continuous FEs
- Example: Hartree-Fock problem
- After discretisation:



$\mathbf{F}[\mathbf{C}] \mathbf{C} = \operatorname{diag}(\varepsilon_1, \dots, \varepsilon_n) \mathbf{S} \mathbf{C}$

 Background
 cGTO
 ETOs
 Grid-based
 Plane waves
 Addendum
 A & Q

 0000000000
 000000000
 00000000
 00000000
 0000000
 0000000
 0000000

 Finite elements

Example: Evaluating the Coulomb integral

$$J_{jk} = \int_{\Omega} \varphi_j(\underline{r}) \, \hat{\mathcal{V}}_H(\underline{r}) \, \varphi_k(\underline{r}) \, \mathrm{d}\underline{r}$$
$$\hat{\mathcal{V}}_H(\underline{r}_1) = \sum_{i \in \mathrm{occ}} \int_{\Omega} \frac{|\psi_i(\underline{r}_2)|^2}{r_{12}} \, \mathrm{d}\underline{r}_2$$

- $\hat{\mathcal{V}}_H(\underline{r})$ is a local potential
- Obtained by solving Poisson eq^{n} :

$$-\Delta \hat{\mathcal{V}}_H(\underline{\boldsymbol{r}}) = 4\pi\rho(\underline{\boldsymbol{r}}) \qquad \underline{\boldsymbol{r}} \in \Omega$$

- Need higher polynomial degree for Poisson problem
- Which boundary conditions?
- Hartree-Fock exchange non-local \Rightarrow More challenging

Notes and observations

- Non-locality of HF exchange:
 - Contraction-based ansatz
 - Focus on density-functional theory
- No general rigorous error estimates (yet):
 - Use simple heuristics
 - \Rightarrow Adaptive refinement
 - Error controlable
- Discontinuity at nuclei
 - Employ effective core potentials
 - But: No longer fully black box

Multi-resolution analysis (MRA)

• Sequence of subspaces

$$0 \subset V_0 \subset V_1 \subset \cdots \subset V_n \subset L^2([0,1])$$

- Necessary to form MRA:
 - For all $m \in \mathbb{Z}$: $f \in V_i \Rightarrow f(x m2^{-i})$ in V_i
 - $j > i \Rightarrow \forall f \in V_i \; \exists g \in V_j : \; \forall x \in \mathbb{R} \; g(x) = f(2^{j-i}x)$
 - $j > i \Rightarrow V_i \subset V_j$
 - $\bigcup_{i=0}^{n} V_i \subset L^2([0,1])$ dense
- Telescoping series:

$$V_n = V_0 \oplus \underbrace{(V_1 \ominus V_0)}_{=W_1} \oplus \underbrace{(V_2 \ominus V_1)}_{=W_2} \oplus \cdots \oplus \underbrace{(V_n \ominus V_{n-1})}_{=W_n}$$

where \oplus is direct sum, \ominus is orthogonal complement

Background	cGTO 00000000000	ETOs 0000000	Grid-based ○○○○○●○○○	Plane waves	Addendum 00000	A & Q 00
Multiwavelets						

Multiwavelets

• MRA for solving PDEs¹

$$V_0^k \subset V_1^k \subset \dots \subset V_n^k \subset L^2([0,1])$$

where

$$V_n^k = \left\{ f \left| \forall l = 0, \dots 2^{n-1} : \text{Restriction of } f \text{ to } \left(2^{-n}l, 2^{-n}(l+1) \right) \right. \right.$$
 is polynomial with degree less than $k \right\}$

- \bullet Computational domain mapped to [0,1]
- Tensor-product generalisation
- Systematic construction for V_n^k and W_n^k

• Discontinuous polynomials on grid: In V_0^k : Roughly DG FE ¹Alpert 2002

 Background
 cGTO
 ETOs
 Grid-based
 Plane waves
 Addendum
 A & Q

 0000000000
 00000000
 000000000
 00000000
 0000000
 0000000
 0000000

 Multiwavelets

Multiwavelets: Systematic construction

• Basis for V_0^k : $\{\phi_j\}_j$ where

$$\phi_j = \sqrt{2i+1}P_i(2x+1)$$

scaled Legendre polynomials

- Mother scaling functions
 - $\{\phi_{jl}^n\}_{jl}$ basis for V_n^k with $j = 0, \dots, k-1, l = 0, \dots, 2^n 1$,

$$\phi_{jl}^n = 2^{n/2} \phi_j (2^n x - l)$$

- Mother wavelets: Basis to W_1^k
 - First k moments are zero
 - Bases for W_n^k analogous to V_n^k
- V_n^k and W_n^k of dimension 2nk

Multiwavelets: Properties

- Function has two discrete representations:
 - $\bullet\,$ On finest V_n^k
 - On V_0^k plus corrections via W_1^k, \ldots, W_n^k
- Multiwavelets: Basis organised in groups of functions
- Error estimate:
 - Based on moments of interpolated
 - Can always increase \boldsymbol{n}
 - Local refinement and coarsening
 - \Rightarrow Adaptive refinement strategy
- \Rightarrow Adaptive, sparse, hierarchical decomposition

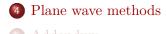
Notes and observations

- Fully hidden numerics¹
- \Rightarrow Simple error control and no bias
 - Massively parallel
 - $\bullet~{\rm Regularisation}$ of nuclear ${\rm cusp}^2$
 - Related to explicitly correlated methods
- \Rightarrow Multiple electronic structure theory methods with guaranteed accuracy

¹Harrison 2016 ²Bischoff 2014

Background	cGTO 00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum 00000	A & Q 00
Contents						
Contents						
	contracted Ga	ussian-ty	pe orbitals			
(• Explicitly c	orrelated	methods			
2]	Exponential o	rbitals				
(• Slater-type	orbitals				
(• Sturmian-ty	vpe orbita	ls			
3	Grid-based ap	proaches				
(• Finite elem	ents				
	3.6.1.4					

• Multiwavelets



37 / 51

Plane waves

- Modelling solid-state / condensed matter physics
- Periodic boundary conditions
- Plane-wave expansion

$$\psi_i(\underline{x}) = \frac{1}{\sqrt{\Omega}} \sum_{\underline{G}} c_{\underline{G}} e^{i\underline{G} \cdot \underline{x}}$$

where

- Unit cell volume Ω
- Reciprocal lattice vectors \underline{G}
- Range of **G** limited by kinetic energy cutoff

$$\frac{G^2}{2} < E_{\rm cut}$$

 Background
 cGTO
 ETOs
 Grid-based
 Plane waves
 Addendum
 A & Q

 0000000000
 000000000
 000000000
 000000000
 000000000
 00

Pseudopotentials (Problem)

• Core orbitals:

- Localised in atomic sphere
- Largely unaffected by chemistry
- Valence orbitals:
 - Interstitial region: Rather regular
 - Atomic sphere: Oscillations
 - Small energy gaps (e.g. metals)
 - Pauli exclusion / orthogonality
- \Rightarrow Need larger energy cutoff

Pseudopotentials (Idea)¹

- Remove core orbitals by projection
- Use repulsive potential term $\hat{\mathcal{V}}_{\mathrm{PP}}$
 - Model Pauli exclusion
 - Smoother valence orbitals
 - Lower energy cutoff
- Pseudopotentials generated from atomic calculations
- Valence orbital energies should stay unchanged

¹Hamann 1979, Bachelet 1982, Vanderbilt 1990, Kresse 1999

Pseudopotentials (Mechanism)

• Original SCF problem $\hat{\mathcal{F}}\psi_i = \varepsilon_i\psi_i$

FTOs

• Introduce pseudo wavefunction (and orbitals)

$$\psi_i = \tilde{\psi}_i - \sum_{c \in \text{core}} \psi_c \left< \psi_c \right| \psi_i \right>$$

Plane waves

00000000

Addendum

A & Q

where ψ_c Atomic core orbital inside cutoff

• Construct

$$\hat{\mathcal{V}}_{\mathrm{PP}}\tilde{\psi}_{i} = \sum_{c} \left(\varepsilon_{i} - \varepsilon_{c}\right) \psi_{c} \left\langle \psi_{c} \middle| \tilde{\psi}_{i} \right\rangle$$

• Solve

Background

$$\left(\hat{\mathcal{F}}+\hat{\mathcal{V}}_{\mathrm{PP}}
ight) ilde{\psi}_{i}=arepsilon_{i} ilde{\psi}_{i}$$

• Outside cutoff radius: All-electron and pseudo wavefunction identical

Projector-augmented wave method

- Generalisation of pseudopotentials¹
- Smoothening is linear transformation

FTOs

$$\psi = \hat{\mathcal{T}} \tilde{\psi}$$

Plane waves

00000000

Addendum

A & Q

transforms pseudo orbital to all-electron orbital

- Augmentation region Ω_M around nuclei
- Obtain

Background

$$\hat{\mathcal{T}} = 1 + \sum_{\nu} \left(\phi_{\nu} - \tilde{\phi}_{\nu} \right) p_{\nu}$$

- ϕ_{ν} : Set of all-electron partial waves
- $\tilde{\phi}_{\nu}$: Set of pseudo partial waves
- p_{ν} : Set of projector functions

¹Kresse 1999

 Background
 CGTO
 ETOs
 Grid-based
 Plane waves
 Addendum
 A & Q

 PAW parameters¹

- ϕ_{ν} determined by atomic DFT
- Inside Ω_M : $\tilde{\phi}_{\nu}$ chosen smooth (Polynomial or Bessel)

• Outside
$$\Omega_M$$
: $\tilde{\phi}_{\nu} = \phi_{\nu}$

•
$$\left\langle p_{\nu} \middle| \tilde{\phi}_{\mu} \right\rangle = \delta_{\mu\nu}$$

• p_{ν} determined by solving correction equation in Ω_M

¹Enkovaara 2010

Notes and observations

- Pseudopotentials:
 - Not all-electron: Core and virtuals altered
 - State-of-the-art
- Projector-augmented wave:
 - Usually combined with frozen core
 - Fully grid based implementations¹
 - Resemblance with regularisation of electron-nuclear cusp in MRA

¹Enkovaara 2010

Background 0000000000	cGTO 00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum ●○○○○	A & Q 00
Content	S					
1	contracted Ga	aussian-ty	pe orbitals			
	• Explicitly of	orrelated	methods			
2	Exponential o	orbitals				
	• Slater-type	orbitals				
	• Sturmian-t	ype orbita	als			
3	Grid-based ap	oproaches				

- Finite elements
- Multiwavelets
- Plane wave methods

 Background
 cGTO
 ETOs
 Grid-based
 Plane waves
 Addendum
 A & Q

 0000000000
 000000000
 000000000
 000000000
 00000000
 00000000
 000000000

Other approaches worth mentioning

- Grid-based fast multipole method¹
- Finite-differences²
- $\bullet\,$ Dual grids and mixed bases 3

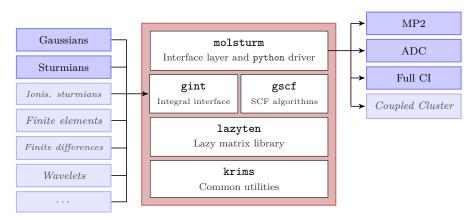
¹Toivanen 2015
²Soler 2002
³Yamakawa 2005, Kurashige 2007, Watson 2008

Background	cGTO 00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum	A & Q 00
molsturm						

molsturm structure

Integral backends

Post HF methods



Background	cGTO 00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum ○○○●○	A & Q 00
Conclusions						

Conclusions

- Contracted Gaussian-type orbitals
 - well-established
- Exponential-type orbitals
 - physical for bound systems
- Grid-based approaches
 - Error control and no bias
 - Locality built into basis
- Plane wave basis
 - Physical for extended systems

Background	cGTO 00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum ○○○○●	A & Q 00
Outlook						

Outlook

- Massively parallel architectures:
 - Grid-based approaches
 - Contraction-based methods
- Highly accurate calculations:
 - Grid-based approaches challenging beyond single determinant
- Probing nucleus-electron interaction:
 - Exponential-type orbitals
- Exploring further basis functions
 - Molecular Sturmians
 - Mixed basis sets

Background	cGTO 00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum 00000	A & Q ●○

Acknowledgements

- Dr. James Avery
- Prof. Eric Cancès
- Dr. Denis Davydov
- Prof. Andreas Dreuw
- Dr. Henrik Larsson

- Prof. Guido Kanschat
- Dr. Katharina Kormann
- Jan Janßen
- Dr. Michael Wormit

Background	cGTO 00000000000	ETOs 0000000	Grid-based 0000000000	Plane waves	Addendum 00000	A & Q ○●

Questions?

- michael.herbst@iwr.uni-heidelberg.de
- https://michael-herbst.com
- Download PhD thesis:

https://michael-herbst.com/phd-thesis.html

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.