
Introduction to awk programming
(block course)

Solutions to the exercises

Michael F. Herbst
michael.herbst@iwr.uni-heidelberg.de

http://blog.mfhs.eu

Interdisziplinäres Zentrum für wissenschaftliches Rechnen

Ruprecht-Karls-Universität Heidelberg

15th – 17th August 2016

michael.herbst@iwr.uni-heidelberg.de
http://blog.mfhs.eu

Contents

Contents i

Solutions to the exercises 1
Solution to 1.3 . 1
Solution to 1.4 . 1
Solution to 2.2 . 2
Solution to 2.3 . 2
Solution to 2.4 . 2
Solution to 2.5 . 3
Solution to 3.1 . 3
Solution to 3.3 . 4
Solution to 3.5 . 4
Solution to 3.6 . 5
Solution to 3.7 . 6
Solution to 3.8 . 6
Solution to 3.10 . 7
Solution to 3.11 . 9
Solution to 4.1 . 9
Solution to 4.2 . 10
Solution to 4.5 . 11
Solution to 5.3 . 11
Solution to 5.5 . 12
Solution to 6.3 . 13
Solution to 6.4 . 14
Solution to 6.5 . 14
Solution to 6.7 . 15
Solution to 6.9 . 16
Solution to 6.10 . 16
Solution to 6.11 . 17
Solution to 6.12 . 18
Solution to 7.3 . 19
Solution to 8.3 . 20
Solution to 9.4 . 21

Licensing and redistribution 23

i

Solutions to the exercises

Solution to 1.3

� The commands are

$ awk '/hunger/' resources/gutenberg/pg76.txt

and

$ awk '/hunger/' resources/gutenberg/pg74.txt

� One solution for the program first.awk is

1 # print lines matching hunger

2 /hunger/ {print}

3

4 # print lines matching year

5 /year/ {print}

1 first look/sol/first.awk

which works since if either rule matches the line is printed. Unfortunately it will
print the line twice, if both the words “hunger” as well as “year” are contained in
the input data.

Solution to 1.4

� The file resources/testfile contains

1 some words

2 any data

3 some further words

4 somer morer things

5 more other thing

6 even more data

resources/testfile

whereas the output of

$ awk -f 1_first_look/printprint.awk resources/testfile

is

1 some words

2 some words

3 any data

4 any data

5 some further words

6 some further words

7 somer morer things

8 somer morer things

1

9 more other thing

10 more other thing

11 even more data

12 even more data

in other words, each line is shown twice. This is due to the fact, that the awk

program 1_first_look/printprint.awk contains the rule {print} twice, which
is unconditionally executed. Therefore this printing instruction (which prints the
whole record) is executed twice, i.e. the output contains each line twice.

� Now awk reads no records (empty file) and hence none of the two rules is executed.
Therefore the program produces no output.

Solution to 2.2

The matching part:

� .. matches any string that contains any two character substring, i.e. any string
with two or more letters. This is everything except g and the empty string.

� ^..$ matches a string with exactly two characters, i.e. ab and 67.

� [a-e] matches any string that contains at least one of the characters a to e, i.e.
ab and 7b7.

� ^.7*$ matches any string which starts with an arbitrary character and then has
zero or more 7s following. This is g, 67, 67777, 7777 and 77777.

� ^(.7)*$ matches any string which has zero or more consecutive substrings con-
sisting of an arbitrary character and a 7. This is 67, o7x7g7, 7777 and the empty
string. Note that e.g. 77777 does not match: If we “use” the pattern .7 three
times we get ^.7.7.7$ and 77777 has one character too little to be a match for
this.

Solution to 2.3

The crossword:

a?[3[:space:]]+b? b[^eaf0-2]

[a-f][0-3] a3 b3
[[:xdigit:]]b+ 3b bb

Solution to 2.4

a) ab*c or c$ or just c

b) ab+c or bc$

c) ^a.*c or c$

d) ^ *q or q..

e) ^a|w or

2

Solution to 2.5

� Regexes for the parts:

– sign: “[+-]”

– prefactor: “[01]\.[0-9]*”

– exponent: “[0-9]+”

� So altogether the scientific numbers need to match:

1 ([+ -]?) ([01]\.[0 -9]*)e([+ -]?) ([0 -9]+)

where the parenthesis () are only provided to show the individual parts, i.e.

1 [+ -]?[01]\.[0 -9]*e[+ -]?[0 -9]+

would be valid as well. Executing this on the digitfile gives

$ awk '/[+ -]?[01]\.[0 -9]*e[+ -]?[0 -9]+/ {print}' ↙
↪→resources/digitfile

1 1.759e+15

2 1.5e+5da is a scientific number

3 -1.34e+04

� Introducing the fault tolerance implies:

– We replace the plain requirement for “e” by the bracket expansion “[eEdD]”.

– Instead of “[01]\.[0-9]*”, we require a number with an optional decimal
part, i.e. “[0-9]+(\.[0-9]*)?”

Hence overall

1 [+ -]?[0 -9]+(\.[0 -9]*) ?[eEdD][+ -]?[0 -9]+

$ awk '/[+ -]?[0 -9]+(\.[0 -9]*)?[eEdD][+ -]?[0 -9]+/ {print}' ↙
↪→resources/digitfile

1 1.759e+15

2 -9.3e-5

3 19e-5 is not properly formatted either.

4 1.5e+5da is a scientific number

5 -1.34e+04

Solution to 3.1

This can be achieved using the commandline

$ awk '/^free/ { print $2 }' resources/gutenberg/pg1232.txt

which prints

3

1 Republic

2 him

3 he

4 sharing

5 distributed

Solution to 3.3

The first and second column from the matrix file can be extracted using

$ awk '{ print $1 " " $2 }' resources/matrices/lund_b.mtx

which gives

1 %% MatrixMarket matrix

2 % This

3 147 147

4 1 1

5 2 1

6 8 1

7

8 ...

9

10 146 146

11 147 146

12 147 147

If we want to exclude the first two lines (comment lines), we need to run

$ awk '/^[^%] { print $1 " " $2 }' resources/matrices/lund_b.mtx

instead.

Solution to 3.5

One solution to the exercise is

1 {

2 res = res " " $0

3 print res

4 }

3 basics/sol/growingconcat.awk

If additionally one wants to get rid of the leading space in each line, one could use the
program

1 {

2 res = res blank $0

3 blank = " " # set blank to be a space from here on

4 print res

4

5 }

3 basics/sol/growingconcat nospace.awk

The idea behind this latter script is, that for the first record blank and res are not
defined, i.e. equivalent to the empty string.

Solution to 3.6

First we explain the program:

� The first line of 3_basics/exscript.awk just causes the current value of the
variable a to be printed. If this variable is undefined or empty it will print an
empty line.

� The second line always sets num to the string "false" and increases the value of a.

� Third line decreases a and sets num to "true" if the record, which is processed
contains a digit 0 . . . 9

� In other words if the record contains a digit the value of a will overall remain
unchanged and num is "true" before executing line 4.

� Line 4 will just print the value of num, so if this line prints num: false then the
value of a is increased.

Now we look at the input.

� The first record is 4. Here no value resides in a, i.e. we print an empty string.
Furthermore num is set to "true" and a is updated to 0. The output of this record
is

1

2 num: true

� Next record is a number as well. We print the 0 from the previous record and the
same num: true. No change to a. The output is

1 0

2 num: true

� Next record contains no number, so a is increased to 1 and num is now "false",
which yields

1 0

2 num: false

� Finally we print the increased a and increase it further, since num is still "false":

1 1

2 num: false

� and so on

5

Solution to 3.7

In order to count the number of lines which contain any digit, we can use the script

1 /[0 -9]/ { c+=1 }

2 END { print c }

3 basics/sol/count numbers.awk

This will provide us with those lines containing any kind of number as well, since numbers
are obviously made up of digits.

The program

1 /[+ -]?[01]\.[0 -9]*e[+ -]?[0 -9]+/ { c+=1 }

2 END { print c }

3 basics/sol/count scinumbers.awk

on the other hand counts the number of lines with scientific numbers (in the strict
sense).

Solution to 3.8

We compute the column-wise averages using the program

1 {

2 count++ # Count of the matrix elements

3 sum1 += $1 # Sum of first column

4 sum2 += $2 # Sum of second column

5 sum3 += $3 # Sum of third column

6 }

7

8 END {

9 # Compute averages and print:

10 print "Average col1: " sum1/count

11 print "Average col2: " sum2/count

12 print "Average col3: " sum3/count

13 }

3 basics/sol/mtx averages.awk

This results in

$ awk -f 3_basics/sol/mtx_averages.awk resources/matrices /3. mtx

1 Average col1: 1.90909

2 Average col2: 1.90909

3 Average col3: 2.45455

and

$ awk -f 3_basics/sol/mtx_averages.awk ↙
↪→resources/matrices/lund_b.mtx

6

1 Average col1: 79.1026

2 Average col2: 68.2924

3 Average col3: 150.228

and

$ awk -f 3_basics/sol/mtx_averages.awk ↙
↪→resources/matrices/bcsstm01.mtx

1 Average col1: 24.48

2 Average col2: 24.48

3 Average col3: 64.96

If one wants to make sure to skip the first few comment lines, one can use the program

1 /^[^%]/ {

2 count++ # Count of the matrix elements

3 sum1 += $1 # Sum of first column

4 sum2 += $2 # Sum of second column

5 sum3 += $3 # Sum of third column

6 }

7

8 END {

9 # Compute averages and print:

10 print "Average col1: " sum1/count

11 print "Average col2: " sum2/count

12 print "Average col3: " sum3/count

13 }

3 basics/sol/mtx averages skip.awk

instead, where a guarding regular expression pattern makes sure that only non-comment
lines are included in the average.

Solution to 3.10

� The program

1 # check if we have a comment. If not increase the line number

2 # and flag as a nocomment record

3 /^[^%]/ {

4 linenr +=1

5 nocomment =1

6 }

7

8 # Extract the number of entries and store them

9 linenr == 1 && nocomment {

10 nentries=$3

11 }

12

13 # Increase the count of actual entries ,

14 # since this an explicitly provided entry

7

15 linenr > 1 && nocomment {

16 actualentries ++

17 }

18 END {

19 print "Expected entries: " nentries

20 print "Actual entries: " actualentries

21 }

3 basics/sol/mtx check entry count.awk

prints both the counted and the expected number of non-zero entries in the mtx

file.

� Both values for the sparsity ratio are printed by

1 # check if we have a comment. If not increase the line number

2 # and flag as a nocomment record

3 /^[^%]/ {

4 linenr +=1

5 nocomment =1

6 }

7

8 # Extract the number of nonzeros and store them

9 # Compute the number of rows times colums

10 linenr == 1 && nocomment {

11 rows = $1

12 cols = $2

13 nentries=$3

14 total = rows*cols

15 }

16

17 # Increase the count of actual entries ,

18 # since this an explicitly provided entry

19 linenr > 1 && nocomment {

20 actualentries ++

21 }

22

23

24 END {

25 print "Sparsity ratio: " (total -nentries)/total

26 print "Actual sparsity ratio: " (total -actualentries)/total

27 }

3 basics/sol/mtx sparsity ratio.awk

� The elementwise square is computed by the program

1 # Copy all comments:

2 /^%/ { print $0 }

3

4 # If no comment and we have passed the first line:

5 /^[^%]/ && passedfirst == 1 {

6 print $1 " " $2 " " ($3*$3)

7 }

8

9 # Copy the first non -comment line verbatim:

8

10 /^[^%]/ && passedfirst != 1 {

11 passedfirst =1

12 print

13 }

3 basics/sol/mtx square elements.awk

Solution to 3.11

One possible way to extract the excited states is:

1 #!/usr/bin/awk -f

2

3 # We use the state variable inside_block to keep track whether

4 # we are inside or outside an excited states block

5 # It's default value is 0, i.e. outside

6

7 # whenever we encounter the " Excited state ", we

8 # change the flag to indicate that we are inside the table.

9 # also we store the state number , which sits in the third field

10 /^ *Excited state / { inside_block =1; state_number=$3 }

11

12 # if we find the "Term symbol" line inside the block , we store

13 # the term symbol which sits in $3 $4 and $5

14 inside_block ==1 && /^ *Term symbol/ { term_symbol=$3 " " $4 " " ↙
↪→$5 }

15

16 # if we find the "Excitation energy" line , we store the ↙
↪→excitation energy

17 # and print the table , since we do not care about the rest of the

18 # block. Next we reset the inside_block flag for the next block ↙
↪→to come.

19 inside_block ==1 && /^ *Excitation energy/ {

20 excitation_energy=$3

21

22 # print the data tab -separated (for analysis with e.g. cut)

23 print state_number "\t" term_symbol "\t" excitation_energy

24

25 inside_block =0

26 }

3 basics/ex extract states.awk

Solution to 4.1

The following program implements one way to print duplicated words in a text:

1 #!/usr/bin/awk -f

2 # change the record separator to anything which is not

3 # an alphanumeric (we consider a different word to start

4 # at each alphanumeric character)

5 BEGIN { RS="[^[: alnum :]]+" }

9

6 # now each word is a separate record

7

8 $0 == prev { print prev }

9 { prev = $0 }

4 parsing input/sol/duplicated words.awk

Solution to 4.2

� The final balance is printed by

1 #!/usr/bin/awk -f

2

3 # Change field separator:

4 BEGIN { FS ="," }

5

6 # Extract starting balance

7 /^[#] Starting balance/ { balance = $2 }

8

9 # Once in the transfer block , adjust balance:

10 /^[^#]/ { balance += $2 }

11

12 # Print the final balance:

13 END { print "Final balance: " balance }

4 parsing input/sol/csv balance.awk

� A balance column is appended by

1 #!/usr/bin/awk -f

2

3 # Change field separator:

4 BEGIN { FS ="," }

5

6 # Extract starting balance

7 /^[#] Starting balance/ { balance = $2 }

8

9 # Print all comment lines verbatim:

10 /^[#]/

11

12 # Once in the transfer block , adjust balance and append a ↙
↪→column

13 /^[^#]/ {

14 balance += $2

15 print $0 "," balance

16 }

4 parsing input/sol/csv balance append column.awk

10

Solution to 4.5

One solution program to add all scientific numbers which occur in some input is:

1 #!/usr/bin/awk -f

2

3 BEGIN {

4 # Pattern for the Sign:

5 sign="[+-]?"

6

7 # Pattern for an integer

8 intp="[0-9]+"

9

10 # For a float we may additionally have

11 fpe="(\\.[0 -9]+)?"

12

13 # The optional exponent

14 expe="(e[+ -][0 -9]+)?"

15

16 # Build the pattern:

17 FPAT=sign intp fpe expe

18 }

19

20 # Assume that we have no more than 5 numbers in each line

21 # (which is true for the digitsfile)

22 { c += ($1 + $2 + $3 + $4 + $5) }

23 END { print "The sum is " c }

4 parsing input/sol/add digits.awk

Solution to 5.3

� One way to achieve the unfolding is to do default input parsing, but to print each
field on a different line, e.g.

$ awk 'BEGIN { OFS="\n" }; { $1=$1; print }' ↙
↪→resources/testfile

The other option is to treat each word as a separate record, i.e.

$ awk 'BEGIN { RS="[[: space :]]+" }; { print }' ↙
↪→resources/testfile

� Changing the separator character in a csv file from comma to semicolon can be
achieved by the simple commandline

$ awk 'BEGIN {OFS=";"; FS=","}; {$1=$1; print }' ↙
↪→resources/data/money.csv

which sets FS and OFS appropriately and then triggers a rebuild of the 0 variable.

11

Solution to 5.5

One solution to print the average measurement value and to exclude the erroneous
apparatus 3 explicitly is

1 #!/usr/bin/awk -f

2

3 BEGIN {

4 # make both space and : field separators

5 FS="[:]+"

6

7 # Alternatively we can use FPAT to describe

8 # the numbers that we expect:

9 #

10 # FPAT ="[0 -9]+| -[0 -9]\\.[0 -9]+"

11 #

12 # Problem is that this does not work for numbers

13 # in the scientific format like that.

14 # One would need to add another alternation.

15

16 print("## | average")

17 print("---+--------")

18 }

19

20 # only process if the line is no comment line

21 $0 !~ /^#/ {

22 # $1 is the apparatus count

23 # $2 to $8 is the values

24

25 # compute average and add to total sum

26 sum = ($2+$3+$4+$5+$6+$7+$8)

27 avg = sum/7.

28

29 # print avg

30 printf("%2d | %.4f\n",$1 ,avg)

31 }

32

33 # Apparatus 3 is a little off , so exclude it explicitly

34 $1 != 3 {

35 totsum += sum

36 totcount +=7

37 }

38

39 # Print a note about this:

40 $1 == 3 { print " | Note: Not included in total sum" }

41

42 # print results:

43 END { printf("\ntotal avg: %.4f\n",totsum/totcount) }

5 printing output/sol/analysis.awk

12

Solution to 6.3

If one wants to use a range pattern, this can be done using the program

1 #!/usr/bin/awk -f

2

3 # The chapter to extract , here the first

4 BEGIN { v=1 }

5

6 # The range: From this until the next.

7 $1 == "CHAPTER" && $2 == v, $1 == "CHAPTER" && $2 == (v+1)

6 patterns actions variables/sol/extract chapter.awk

Running this like

$ 6_patterns_actions_variables/sol/extract_chapter.awk ↙
↪→resources/gutenberg/pg161.txt

gives

1 CHAPTER 1

2

3

4 The family of Dashwood had long been settled in Sussex. Their ↙
↪→estate

5 was large , and their residence was at Norland Park , in the ↙
↪→centre of

6

7 ...

8

9 having much of her sense , she did not , at thirteen , bid fair to ↙
↪→equal

10 her sisters at a more advanced period of life.

11

12

13

14 CHAPTER 2

In order to avoid the chapter heading of the next chapter to be printed, one could store
the chapter number instead:

1 #!/usr/bin/awk -f

2 BEGIN { v=1 }

3

4 # remember chapter number

5 /^ CHAPTER [0 -9]+/ { chapter = $2 }

6

7 # Print the chapter if it is the right one

8 chapter == v

6 patterns actions variables/sol/extract chapter state.awk

13

Solution to 6.4

One solution is to count the number of lines inside the Davidson range:

1 #!/usr/bin/awk -f

2

3 # We know that the iteration count increases by one

4 # for each extra line we find in the Davidson block

5 # There are 7 lines containing no iterations

6 # (ie the headings , the guess and the summary)

7 # So we count all lines between "Starting Davidson"

8 # and "Davidson Summary" and subtract 7 to get the

9 # number of iterations.

10 /^ Starting Davidson \.\.\./ , /^ Davidson Summary :/ { count +=1 }

11 /^ Davidson Summary :/ {

12 # print count and reset

13 print count -7

14 count=0

15 }

6 patterns actions variables/sol/extract davidson.awk

Solution to 6.5

If one wants to automatically exclude the instrument based one an upper threshold, one
could use the program

1 #!/usr/bin/awk -f

2

3 BEGIN {

4 # The upper threshold to include a value

5 thresh_upper = -0.05

6

7 # make both space and : field separators

8 FS="[:]+"

9

10 print("## | average")

11 print("---+--------")

12 }

13

14 # Skip comment lines:

15 /^#/ { next }

16

17 # $1 is the apparatus count

18 # $2 to $8 is the values

19

20 {

21 # Compute the average:

22 sum = ($2+$3+$4+$5+$6+$7+$8)

23 avg = sum/7.

24

25 # if the average is larger than upper threshold ,

26 # the apparatus is off and we skip the rest

14

27 if (avg >= -0.05) {

28 printf("%2d | %.4f > %.4f => Not ↙
↪→included\n",$1 ,avg ,thresh_upper)

29 next

30 }

31

32 # All the records that made it here

33 # should be included:

34 printf("%2d | %.4f\n",$1 ,avg)

35

36 totsum += sum

37 totcount +=7

38 }

39

40 END { printf("\ntotal avg: %.4f\n",totsum/totcount) }

6 patterns actions variables/sol/analysis automatic.awk

Solution to 6.7

� A possible factorial program is

1 #!/usr/bin/awk -f

2 {

3 n=+$1

4 res=1

5 while(n>1) {

6 res=res*n

7 --n

8 }

9 print res

10 }

6 patterns actions variables/sol/factorial.awk

� A couple of examples:

$ echo -e "20\ n50\n100" | ↙
↪→6_patterns_actions_variables/sol/factorial.awk

gives

1 2432902008176640000

2 3041409320171337557636696640...832057064836514787179557289984

3 9332621544394410218832560610...311236641477561877016501813248

So awk is able to do integer arithmetic up to the point that it allows to calculate
100! using an extremely naive algorithm!

15

Solution to 6.9

Just replace the while by a for loop:

1 #!/usr/bin/awk -f

2 {

3 res=1

4 for(n=+$1; n>0; --n) {

5 res=res*n

6 }

7 print res

8 }

6 patterns actions variables/sol/factorial for.awk

Solution to 6.10

We generalise the program by using a for-loop over fields and make the code cleaner
using an if-statement.

1 #!/usr/bin/awk -f

2

3 BEGIN {

4 # The upper threshold to include a value

5 thresh_upper = -0.05

6

7 # make both space and : field separators

8 FS="[:]+"

9

10 print("## | average")

11 print("---+--------")

12 }

13

14 # Skip comment lines:

15 /^#/ { next }

16

17 # $1 is the apparatus count

18 # from $2 onwards are the values

19

20 # Compute the average:

21 {

22 # Accumulate the sum:

23 sum=0

24 for (i=2;i<=NF;++i) {

25 sum+=$i

26 }

27 avg = sum/(NF -1)

28

29 # check if the average is larger than

30 # upper threshold , if yes then apparatus

31 # is off and we skip the rest , else we

32 # print and add to the total

33 if (avg > thresh_upper) {

16

34 printf("%2d | %.4f > %.4f => Not ↙
↪→included\n",$1 ,avg ,thresh_upper)

35 next

36 } else {

37 printf("%2d | %.4f\n",$1 ,avg)

38 totsum += sum

39 totcount +=(NF -1)

40 }

41 }

42

43 END { printf("\ntotal avg: %.4f\n",totsum/totcount) }

6 patterns actions variables/sol/analysis general.awk

Solution to 6.11

The following script checks whether the first field of each record is a prime number.

1 #!/usr/bin/awk -f

2 {

3

4 isprime =1

5 n=+$1

6 for (i=2; i*i < n; ++i) {

7 if (n % i == 0) {

8 isprime =0

9 break

10 }

11 }

12

13 if (isprime) {

14 printf("%d is prime\n", n)

15 } else {

16 printf("Smallest divisor of %d is %d\n", n,i)

17 }

18 }

6 patterns actions variables/sol/is prime.awk

The output for

$ echo -e "101\ n1001" | 6_patterns_actions_variables/ex_break.awk

is

1 101 is prime

2 Smallest divisor of 1001 is 7

17

Solution to 6.12

One solution to find the number of times “a” and “e” occur in a book is

1 #!/usr/bin/awk -f

2

3 BEGIN { FS="" }

4

5 /*** START OF THIS PROJECT GUTENBERG EBOOK [A-Z,-.]+ ***/ {

6 # Flag that we are inside , but do not do statics on this record

7 inside_book =1

8 next

9 }

10

11 /*** END OF THIS PROJECT GUTENBERG EBOOK [A-Z,-.]+ ***/ {

12 # We are at the end of the book => quit awk program

13 exit

14 }

15

16 # if we are inside:

17 inside_book {

18 # Ignore case such that both upper

19 # and lower case characters are counted

20 IGNORECASE =1

21

22 for (i=1; i<=NF; ++i) {

23 # Use a regex here , since == operator

24 # is not affected by IGNORECASE

25 if ($i ~ /a/) {

26 acount ++

27 } else if ($i ~ /e/) {

28 ecount ++

29 }

30 charcount ++

31 }

32

33 # Unset IGNORECASE , since the regex patters above are

34 # case sensitive.

35 IGNORECASE =0

36 }

37

38 # Print final results:

39 END {

40 printf("total %8d\n",charcount)

41 printf("a %8d (%6.2f%%)\n",acount ,acount/charcount *100)

42 printf("e %8d (%6.2f%%)\n",ecount ,ecount/charcount *100)

43 }

6 patterns actions variables/sol/gutenberg character statistics.awk

18

Solution to 7.3

One solution, which also excludes all whitespace characters when performing the charac-
ter counting, is

1 #!/usr/bin/awk -f

2

3 BEGIN { FS="" }

4

5 /*** START OF THIS PROJECT GUTENBERG EBOOK [A-Z,-.]+ ***/ {

6 # Flag that we are inside , but do not do statics on this record

7 inside_book =1

8 next

9 }

10

11 /*** END OF THIS PROJECT GUTENBERG EBOOK [A-Z,-.]+ ***/ {

12 # We are at the end of the book => quit awk program

13 exit

14 }

15

16 inside_book {

17 for (i=1; i<=NF; ++i) {

18 # Ignore those characters which are space characters:

19 # Note: Not strictly speaking required for the exercise ,

20 # but gives a nicer result in the end.

21 if ($i ~ /[[: space :]]/) continue

22

23 # Increase count for character and total count

24 #

25 # one could also use

26 # count[tolower($i)]

27 # in order to map each character to its lower -case

28 # equivalent and make a count over this instead.

29 count[$i]++

30 charcount ++

31 }

32 }

33

34 # Print final results:

35 END {

36 printf("total %8d ↙
↪→(%6.2f%%)\n",charcount ,charcount/charcount *100)

37 print("-----------------------")

38

39 for (c in count) {

40 printf("%-5s %8d ↙
↪→(%6.2f%%)\n",c,count[c],count[c]/ charcount *100)

41 }

42 }

7 arrays/sol/gutenberg character statistics.awk

19

Solution to 8.3

If we allow ourselves to use the usual control structures one could find the maximum
and absolute maximum like this

1 #!/usr/bin/awk -f

2

3 # The usual abs function

4 function abs(a) {

5 if (a<0) return -a

6 return +a

7 }

8

9 # Initialise max and absmax:

10 NR == 1 {

11 max = $1

12 absmax = abs($1)

13 }

14

15 # Loop over each field (number) and update

16 # max and absmax if necessary

17 {

18 for(i=1;i<=NF;++i) {

19 if ($i > max) {

20 max = $i

21 }

22 if (abs($i) > absmax) {

23 absmax=abs($i)

24 }

25 }

26 }

27

28 END {

29 print "max: " max

30 print "absmax: " absmax

31 }

8 functions/sol/max element long.awk

Alternatively, we can change the range separator and use awk’s implicit loop over records
to achieve the same thing in less lines of code and without a single control structure:

1 #!/usr/bin/awk -f

2

3 # The usual abs function

4 function abs(a) {

5 if (a<0) return -a

6 return +a

7 }

8

9 # Change record separator to repeated space chars

10 # so each field of the matrix becomes a record on its own.

11 BEGIN { RS="[[: space :]]+" }

12

13 # Initialise max and absmax with first record:

20

14 NR == 1 {

15 max = +$0

16 absmax = abs($0)

17 next

18 }

19

20 # For all other record , determine if max or absmax:

21 +$0 > max { max = +$0 }

22 abs($0) > absmax { absmax = abs($0) }

23

24 END {

25 print "max: " max

26 print "absmax: " absmax

27 }

8 functions/sol/max element.awk

Solution to 9.4

� wc -w is equivalent to

1 #!/usr/bin/awk -f

2 # Split into a new record at multiple occurrences of space

3 # characters. Then just print the record count.

4 BEGIN { RS="[[: space :]]+" }

5 END { print NR }

9 practical programs/sol/wc w.awk

� uniq -c we can implement like

1 #!/usr/bin/awk -f

2

3 # Initialise buffer to be the first record:

4 NR == 1 { buffer=$0 }

5

6 # If repeated occurrence increase count:

7 buffer == $0 { count ++ }

8

9 # Else print the record we had in the buffer

10 # and reset counter and buffer

11 buffer != $0 {

12 printf("%5d %s\n",count ,buffer)

13 buffer=$0

14 count =1

15 }

16

17 # Print what is left in the buffer

18 END {

19 printf("%5d %s\n",count ,buffer)

20 }

9 practical programs/sol/uniq c.awk

21

� sort is implemented using awk’s asort:

1 #!/usr/bin/awk -f

2

3 # Append all input lines to a buffer array

4 { buffer[NR] = $0 }

5

6 # In the end sort using asort and print in order

7 END {

8 nr = asort(buffer)

9 for (i=1; i<=nr; ++i) {

10 print(buffer[i])

11 }

12 }

9 practical programs/sol/sort.awk

� egrep can be mimicked using a surrounding shell script with inline awk code:

1 #!/bin/sh

2 # Store the regex (first argument to script)

3 regex=$1

4 shift

5

6 # Call awk and use DOUBLE quotes to insert the regex

7 # inside an awk pattern and pass the remaining

8 # arguments to the scripts to awk itself (as files)

9 #

10 # Whenever that regex pattern matches the default print

11 # action is executed (exactly like egrep does it)

12 awk "/$regex/" $@

9 practical programs/sol/egrep.sh

For more details, how the shell command shift works and what the shell variables
$1 and $@ mean, see chapter 3.2.1 and 4.6 of the lecture notes to the “advanced
bash scripting” course1.

1Available from http://blog.mfhs.eu/teaching/advanced-bash-scripting-2015/.

22

http://blog.mfhs.eu/teaching/advanced-bash-scripting-2015/

Licensing and redistribution

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Inter-
national License. To view a copy of this license, visit http://creativecommons.org/

licenses/by-sa/4.0/.

An electronic version of this document is available from http://blog.mfhs.eu/teaching/

introduction-to-awk-programming-2016/. If you use any part of my work, please
include a reference to this URL along with my name and email address.

23

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://blog.mfhs.eu/teaching/introduction-to-awk-programming-2016/
http://blog.mfhs.eu/teaching/introduction-to-awk-programming-2016/

	Contents
	Solutions to the exercises
	Solution to 1.3
	Solution to 1.4
	Solution to 2.2
	Solution to 2.3
	Solution to 2.4
	Solution to 2.5
	Solution to 3.1
	Solution to 3.3
	Solution to 3.5
	Solution to 3.6
	Solution to 3.7
	Solution to 3.8
	Solution to 3.10
	Solution to 3.11
	Solution to 4.1
	Solution to 4.2
	Solution to 4.5
	Solution to 5.3
	Solution to 5.5
	Solution to 6.3
	Solution to 6.4
	Solution to 6.5
	Solution to 6.7
	Solution to 6.9
	Solution to 6.10
	Solution to 6.11
	Solution to 6.12
	Solution to 7.3
	Solution to 8.3
	Solution to 9.4

	Licensing and redistribution

