Introduction to awk programming

Michael F. Herbst

15. = 17. August 2016

Course description and content

Dealing with large numbers of plain text files is quite frequent when making scientific
calculations or simulations. For example, one wants to read a part of a file, do some
processing on it and send the result off to another program for plotting. Often these
tasks are very similar, but at the same time highly specific to the particular application
or problem in mind, such that writing a single-use program in high-level language like C++
or Java hardly ever makes much sense: The development time is just too high. On the
other end of the scale are simple shell scripts. But with them sometimes even simple data
manipulation becomes extremely complicated or the script simply does not scale up and
takes forever to work on bigger data sets.

Data-driven languages like awk sit on a middle ground here: awk scripts are as easy to
code as plain shell scripts, but are well-suited for processing textual data in all kinds of
ways. One should note, however, that awk is not extremely general. Following the UNIX
philosophy it can do only one thing, but this it can do right. To make proper use of awk
one hence needs to consider it in the context of a UNIX-like operating system.

In the first part of the course we will thus start with revising some concepts, which
are common to many UNIX programs and also prominent in awk, like reqular expressions.
Afterwards we will discuss the basic structure of awk scripts and core awk features like

e ways to define how data sits in the input file
e extracting and printing data

e control statements (if, for, while, ...)

e awk functions

e awk arrays

If there is time left we will also look at some advanced topics, like performing calculations
with arbitrary precision using awk.

This course is a subsidiary to the bash course which was offered in August 2015[1]

Ihttp://blog.mfhs.eu/teaching/advanced-bash-scripting-2015/


http://blog.mfhs.eu/teaching/advanced-bash-scripting-2015/

Learning targets and objectives

After the course you will be able to

enumerate different ways to define the structure of an input file in awk,
parse an structured input file and access individual values for post-processing,
use regular expressions to search for text in a file,

find and extract a well-defined part of a large file without relying on the exact
position of this part,

use awk to perform simple checks on text (like checking for repeated words) in less
than 5 lines of code.

Prerequisites

Familiarity with a UNIX-like operating system like GNU /Linux and the terminal is
assumed.

Basic knowledge of the UNIX command grep is assumed. You should for example
know how to use grep to search for a word in a file.

It is not assumed, but highly recommended, that participants have had previous
experiences with programming or scripting in a UNIX-like operating system.



