
Advanced bash scripting
(block course)

Solutions to the exercises

Michael F. Herbst
michael.herbst@iwr.uni-heidelberg.de

https://michael-herbst.com

Interdisziplinäres Zentrum für wissenschaftliches Rechnen
Ruprecht-Karls-Universität Heidelberg

6th – 10th November 2017

michael.herbst@iwr.uni-heidelberg.de
https://michael-herbst.com

Contents

Contents i

Solutions to the exercises 1
Solution to 1.6 . 1
Solution to 1.7 . 1
Solution to 1.8 . 2
Solution to 2.1 . 3
Solution to 2.2 . 3
Solution to 2.3 . 4
Solution to 2.4 . 4
Solution to 2.5 . 4
Solution to 2.6 . 5
Solution to 2.7 . 5
Solution to 2.8 . 6
Solution to 2.9 . 6
Solution to 2.10 . 7
Solution to 3.2 . 7
Solution to 3.3 . 7
Solution to 3.4 . 8
Solution to 3.8 . 9
Solution to 3.9 . 9
Solution to 3.10 . 10
Solution to 3.11 . 10
Solution to 4.1 . 11
Solution to 4.2 . 11
Solution to 4.4 . 12
Solution to 4.5 . 13
Solution to 4.6 . 15
Solution to 4.7 . 16
Solution to 4.8 . 16
Solution to 4.13 . 17
Solution to 4.14 . 18
Solution to 4.15 . 18
Solution to 4.16 . 20
Solution to 4.17 . 21
Solution to 4.18 . 21
Solution to 4.19 . 21

i

Solution to 5.1 . 22
Solution to 5.2 . 23
Solution to 5.3 . 24
Solution to 5.4 . 25
Solution to 5.5 . 26
Solution to 5.6 . 27
Solution to 5.7 . 28
Solution to 6.2 . 29
Solution to 6.3 . 30
Solution to 6.4 . 31
Solution to 6.5 . 32
Solution to 6.6 . 33
Solution to 6.7 . 37
Solution to 7.2 . 38
Solution to 7.3 . 38
Solution to 7.4 . 38
Solution to 7.5 . 39
Solution to 7.6 . 39
Solution to 7.7 . 40
Solution to 7.8 . 40
Solution to 8.2 . 41
Solution to 8.3 . 42
Solution to 8.4 . 44
Solution to 8.5 . 44
Solution to 8.9 . 45
Solution to 8.10 . 45

Licensing and redistribution 47

ii

Solutions to the exercises

Solution to 1.6

A few things you should have observed:
• Using the -L flag we can change the language of the manual page shown. Most

notably man -LC command will always show the manual page in English. Sometimes
the content of the manpages is different depending on the language used. Most
often the English manpage offers the best documentation.

• Different sections contain documentation about different topic, i.e
section 1 Executable programs or shell commands
section 2 System calls (needed for Unix programming)
section 3 Library calls (needed for Unix programming)
section 4 Special files and device files
section 5 File formats and conventions of special files in the system
section 6 Games
section 7 Miscellaneous
section 8 System administration commands
section 9 Kernel routines (needed for Unix programming)

• For us the most important is the first section, i.e. the section documenting exe-
cutables and shell commands

• By prepending the section number as first argument to man. E.g. try man 2
mkdir vs man 1 mkdir. Here man 1 mkdir gives the documentation for the mkdir
command, the other for the system call.

Solution to 1.7

greping in Project Gutenberg
• The two solutions are

1 < pg74.txt grep hunger | wc -l
2 < pg74.txt grep -c hunger

where the second one should be preferred, since it does the counting already in
grep. This means that we need to call one program less ⇒ Usually better for
performance.

• The options do the following:
-A n Add n lines of input after each matching line
-B n Add n lines of input before each matching line
-n Print line numbers next to each matching input line as well
-H Print file name next to each matching input line as well

1

-w A line only is displayed if exactly the keyword exists. Usually it
is sufficient if the search string is contained in the line only.

• Run the command
1 < pg74.txt grep -nwA 1 hunger | grep -w soon

in order to find the numbers 8080 and 8081.

Solution to 1.8

Possible solutions are:
• Here we need to invert the file first in order for head to select the last 10 lines

(which are now the first 10). Then another inversion using tac gives back the
original order, i.e.

1 < resourches/digitfile tac | head | tac

• The trick is to use tail -n +2, i.e.
1 tail +n2 resources/matrices /3. mtx

• We can use the -v flag of grep in order to invert the result, i.e. now all non-
matching lines are printed:

1 < resources/matrices /3. mtx grep -v %

• Use cut to extract the third field and sort -u to get a sorted list of the values
with all duplicates removed. Now piping this to wc -l gives the number of lines
in the output of sort -u, i.e. the number of distinct values:

1 < resources/matrices /3. mtx grep -v % | cut -d "␣" -f 3 | ↙
↪→sort -u | wc -l

• Now we need sort without the -u. We get the smallest as the first in the sorted
output:

1 < resources/matrices /3. mtx grep -v % | cut -d "␣" -f 3 | ↙
↪→sort | head -n1

• Running the equivalent command
1 < resources/matrices/bcsstm01.mtx grep -v % | cut -d "␣" -f ↙

↪→3 | sort | head -n1

gives the result 0. Looking at the file we realise, that there is actually another,
negative value, which should be displayed here. The problem is that sort does
lexicographic ordering by default. To force it into numeric ordering, which further-
more includes the interpretation of special strings like 1E-09, we need the flag -g.
The correct result is displayed with

1 < resources/matrices/bcsstm01.mtx grep -v % | cut -d "␣" -f ↙
↪→3 | sort -g | head -n1

• Running

2

1 < resources/matrices/lund_b.mtx grep -v % | cut -d "␣" -f 3 ↙
↪→| sort -g | head -n1

gives an empty output. This happens since the file contains lines like

1 9␣8␣␣5.5952377000000e+01

where there are two spaces used between 2nd and 3rd column. The problem is
that cut splits data at each of the delimiter characters — <space> in this case.
In other words it considers the third field to be empty and will take the data
5.5952377000000e+01 to be in field 4. For us this means that there are empty
lines present in the output of cut, which sort first and are printed by head.

• Using awk, we would run
1 < resources/matrices/lund_b.mtx grep -v % | awk '{print $3}' ↙

↪→| sort -g | head -n1

which gives the correct result.

Solution to 2.1

One way of doing this could be:
cd !$ Enter
Ctrl + R i End 7−→ 7−→ 7−→ blue Enter
ls|!:3-4 Enter
mkdir !:2_red !:3_blue Enter

This makes 5 + 11 + 9 + 22 = 47.

Solution to 2.2

Using the same kind of redirection diagrams as in the notes, we get

keyboard ls
0

grep test

1→ 0

2→ 0

grep blue
1 → 0

terminal

2 2

awk ...
1 → 0

outfile

1

2

where awk ... denotes the awk '{print $2}' command.

3

Solution to 2.3

Exploring tee for logging:
• The commandline proposed does not work as intended. Error output of some_program

will still be written to the terminal and error messages of tee and grep both reach
the log.summary file.
This commandline, however, does work exactly as intended

1 some_program |& tee log.full | grep keyword > log.summary

here both stdin and stderr of some_program reach tee and get subsequently filtered.
• Each time the program executes, both tee as well as the normal output redirector

> will cause the logfiles to be filled from scratch with the output from the current
program run. In other words all logging from the previous executions is lost.
We can prevent this from happening using the -a (append) flag for tee and the
redirector >>. Hence we should run

1 some_program |& tee -a log.full | grep keyword >> log.summary

Solution to 2.4

Some notes:
• Running < in cat > out is exactly like copying the file in to out as mentioned

before.
• Running < in cat > in gives rise to the in file to be empty.

This is because the shell actually opens the file handles to read/write data before
calling the program for which input or output redirection was requested. This
means that in fact the file handle to write the output to in is already opened
before cat is called and hence in is already at the time cat looks at it (because the
non-appending output file handle deletes everything). Overall therefore no data
can be read from in and thus the in file is empty after execution.

• stdin is connected to the keyboard, stdout and stderr are connected to the terminal.
Therefore everything we type(stdin of cat) is copied verbatim to the terminal
(stdout of cat). The shell just seems to “hang” because cat waits for our input
via the keyboard and thus blocks the execution of further commands. Ctrl + D
sends an “EOF” character and hence signals that there is no more input to come.
This quits cat and returns to the command propmt.

Solution to 2.5

• For the first case, pressing Ctrl + D signals cat that end-of-file, i.e. EOF, has
been reached. This causes cat to quit processing and since no error has occurred
since startup 0 is returned. Since no data was read by cat, also no output will be
produced at all.

• Ctrl + C aborts the program and hence returs a non-ero exit code. Again no
data was read so no data is returned.

4

Solution to 2.6

• true is a program that — without producing any output — always terminates
with return code 0.

• false is a program that produces no output and always terminates with return
code 1.

For the first set of commands the exit code is
• 0, since false returns 1 and hence true is executed, which returns 0.
• 0, since true triggers the execution of false, which in turn triggers the execution

of true
• 1, since false returns 1, so nothing else is executed and the return code is 1.
• 0, since false causes true to be executed, which returns 0. So the final false is

not executed and the return code is 0.
Running the commandlines in the shell, we get

• 0
• 0
• 1
• 1
• 0

In a pipe sequence, the return code is solely determined by the last command executed.
In other words the return code of all other commands in the pipe is lost1

Solution to 2.7

This problem is meant to be a summary of the different types of syntax containing &
and |.

• A usual pipe: The output of echo test on stdout, i.e. “test” gets piped into
grep test, which filters for the string “test”. Since this string is contained in
echo’s output, we see it on the terminal and the return code is 0

• Recall that & sends the command to its LHS into the background. So the echo
happens, which we see on the screen. At the same time grep test is executed,
which does not have its stdin connected to a file or another program’s stdout. In
other words it has its stdin connected to the keyboard and it waits for the user to
input data (The terminal “hangs”.). Depending on what we type (or if we type
anything at all) the return code of grep is different.

• A pipe where both the stdout as well as the stderr are piped to grep. The effect
is the same as in the first example, since echo produces no output on stderr. I.e.
we get “test” on the terminal and return code 0.

• We print once again “test” onto the terminal by executing echo test. Since this
1Not entirely true . . . there exists a special array variable PIPESTATUS which actually captures the

return code of each command of the pipe. How to use it is, however, out of the scope of this course.

5

is successful (zero return code) grep test is also executed. Similar to the second
case, stdin of grep is connected to the keyboard and waits for user input. The exit
code of grep — and hence the whole commandline — depends on what is typed.

• The echo test prints “test” onto the terminal and since this is successful, nothing
else happens.

Solution to 2.8

Possible solutions are
• The question asks explicitly to just search for the word “the”, so we need to use

grep -w:
1 < pg1661.txt grep -w the && echo success || echo error

• We need to provide grep with the -q argument as well:
1 < pg1661.txt grep -wq the && echo success || echo error

This code executes a lot quicker, since grep can use a different algorithm for the
search: Once it found a single match, it can quit the search and return 0.

• We need to use grep twice. Otherwise we get a “0” printed if there is no match:
1 <pg1661.txt grep -wq Heidelberg && <pg1661.txt grep -wc ↙

↪→Heidelberg || echo "no␣matches"

• The results are
word output
Holmes 460
a 2287
Baker 42
it 1209
room 168

• We can use the command wc -w pg1661.txt or equivalently < pg1661.txt wc -w
to achieve this task.

Solution to 2.9

• Since the return code of the commands to the left of && or || determine if the
command to the right is executed, we best look at the command list left-to-right
as well:
– The directory 3/3 does not exist and hence the first cd gives return code 1.
– Therefore cd 4/2 is executed (|| executes following command if preceding

command has non-zero return code)
– The command list to the left of the first &&, i.e. cd 3/3 || cd 4/2 has return

code 0 (the last command executed was cd 4/2, which succeeded)
– Hence cd ../4 is executed which fails since the directory 4/4 does not exist

below resources/directories

6

– In other words the list cd 3/3 || cd 4/2 && cd ../4 has return code 1 and
thus cd ../3 gets executed

– This succeeds and thus the command to the right of && is executed, i.e. we
cat the file

• We need to suppress the error messages of the failing cd commands. These are
cd 3/3 and cd ../4. In other words the shortest commandline would be

1 cd 3/3 2>/dev/null || cd 4/2 && cd ../4 >/dev/null || cd ↙
↪→../3 && cat file

• We now first make the directory 3/3. So the execution changes slightly:
– cd 3/3 now succeeds and thus cd 4/2 is not executed; we are in directory

resources/directories/3/3.
– The last command executed was the succeeding cd 3/3, such that the return

code of the command list cd 3/3 || cd 4/2 is zero.
– We attempt to execute cd ../4, which fails as the dir resources/directories/3/4

does not exist.
– Hence we execute cd ../3, which is successful and “changes” the directory

to resources/directories/3/3.
– Finally the pwd command is also executed, since cd ../3 was successful.

Solution to 2.10

We easily find out that the commands
1 kill time fg history pwd exit

have documentation which can be accessed using help command. This means that they
are shell builtins.

Solution to 3.2

This would give a quine:
1 #!/bin/bash
2 cat $0

3_simple_scripts/sol/quine.sh

Solution to 3.3

The solution for the generalised version is:
1 #!/bin/bash
2

3 # first print everything non -comment
4 < "$1" grep -v "%" > "$2"

7

5

6 # now everything comment , note the append operator >>
7 < "$1" grep "%" >> "$2"

3_simple_scripts/sol/comment_move.sh

or alternatively
1 #!/bin/bash
2

3 # First copy everything *from* the second line
4 < resources/matrices /3. mtx tail -n +2 > output.mtx
5

6 # Then only the *first* line , again note the append.
7 < resources/matrices /3. mtx head -n 1 >> output.mtx

3_simple_scripts/sol/comment_move_alternative.sh

Solution to 3.4

Since cat takes data on stdin and copies it to stdout without modification, we can cache
all data a script gets on stdin in a variable CACHE using the simple line

1 CACHE=$(cat)

Once this has been achieved we just use echo to access this data again and grep inside
it twice:

1 #!/bin/bash
2

3 # Store the keyword we get as first arg:
4 KEYWORD=$1
5

6 # Read every data cat can get on stdin into the
7 # variable CACHE.
8 # Since cat 's stdin gets fed from the script 's stdin ,
9 # this effectively reads the stdin of the script into

10 # the variable CACHE
11 CACHE=$(cat)
12

13 # Now echo the data again , i.e. transfer the data from the
14 # variable to stdin of grep.
15 # Grep for the keyword and store it in the cache again.
16 CACHE=$(echo "$CACHE" | grep "$KEYWORD")
17 #
18 # The above two commands can be done at once using:
19 # CACHE=$(grep "$KEYWORD ")
20

21 # We need the so-called quoting here , i.e. the " character
22 # before and after the parameter expansion for reasons
23 # explained in the next section.
24

25 # Print the first line of the results using head:
26 echo "$CACHE" | head -n1

8

27

28 # Print the last line of the results using tail:
29 echo "$CACHE" | tail -n1
30

31 # Now print an empty line
32 echo
33

34 # and now all the matches:
35 echo "$CACHE"

3_simple_scripts/sol/grep_print.sh

Solution to 3.8

1 #!/bin/bash
2 # Script to extract matching lines from a few project
3 # gutenberg books and show the results
4 # $1: Keyword to search for
5 #
6 cd resources
7 ILLIAD=$(<"Project␣Gutenberg␣selection/The␣Iliad.txt" grep -i "$1")
8 YELLOW=$(<Project\ Gutenberg\ selection/"The␣Yellow␣↙

↪→Wallpaper.txt" grep -i "$1")
9

10 cd "Project␣Gutenberg␣selection"
11 OTHERS=$(<Dracula.txt grep -H "$1"; <"The␣Count␣of␣Monte␣↙

↪→Cristo.txt" grep -H "$1")
12 COUNT=$(echo "$OTHERS" | grep -c ^)
13

14 echo Searching for the keyword "$1":
15 echo "␣␣␣Illiad:␣$ILLIAD"
16 echo "␣␣␣Yellow␣Wallpaper:␣$YELLOW"
17 echo We found $COUNT more findings in
18 echo "$OTHERS"

3_simple_scripts/sol/ex_quoting.sh

Solution to 3.9

When using echo "$VAR"| wc -l the results are
• 2 (correct)
• 1 (correct)
• 1 (wrong, since string is empty)

On the other hand echo -n "$VAR"| grep -c ^ gives
• 2 (correct)
• 1 (correct)
• 0 (correct)

Therefore this method should be preferred.

9

Solution to 3.10

A short excerpt of an output of ls --recursive:

1 ./ resources/directories /5:
2 1␣␣2␣␣3␣␣4␣␣6
3

4 ./ resources/directories /5/1:
5 file
6

7 ./ resources/directories /5/2:
8 file
9

10 ./ resources/directories /5/3:
11 file
12

13 ./ resources/directories /5/4:
14 file
15

16 ./ resources/directories /5/6:
17 file

It shows the following features:
• Each subdirectory is denoted by the relative path to it
• For each subdirectory we get a list of files it contains.
• Most notably the path of the subdirectories always ends in a “:”

If we now assume that no file or directory contains a “:” in its name, we can grep for “:”
in order to get a list of all subdirectories. Since by our assumption no file or dir contains
a “:” we can use “cut -d: -f1” in order to get rid of the tailing “:” in the output. A
final grep of exactly this output achieves the desired filtering function. Overall we get
the script

1 #!/bin/bash
2

3 # filter in the output of recursive ls
4 # for a pattern
5 #
6 # overall prints those directory paths that match the pattern
7 ls --recursive | grep ":" | cut -d: -f1 | grep "$1"

3_simple_scripts/sol/recursive_ls.sh

Solution to 3.11

The solution makes use of the fact that grep -n separates the line number and the text
of the matching line by a “:”. So by sending the output of grep to a cut -d: -f1 we
can just extract the numbers of the matching lines.

1 #!/bin/bash
2 FILENAME="$1"

10

3 KEYWORD="$2"
4

5 # Grep in the file for each of the keywords
6 # use the -w flag to only match words
7 # and the -c flag to only count the matches
8 # Since grep will return with exit code 1 if no match
9 # was found , this aborts the script prematurely in this case.

10 COUNT_KEYWORD=$(grep -cw "$KEYWORD" "$FILENAME") || exit 1
11

12 # Grep in the file for each of the keywords again
13 # now use the -n flag to get the line number of the matches
14 # use the -w flag to only match words
15 #
16 # if one considers the output of grep -n, one notices , that
17 # the line numbers and the text of the line are
18 # separated by :
19 # so using cut we can only extract the line numbers:
20 LINES_KEYWORD=$(grep -wn "$KEYWORD" "$FILENAME" | cut -d: -f1)
21 # now each of the former variables contains a list of
22 # line numbers with matching text
23

24 # Now just print the data as requested
25 echo $COUNT_KEYWORD $LINES_KEYWORD
26

27 # The exit 0 is not needed , since a successfully executed script
28 # always will exit with return code 0

3_simple_scripts/sol/grepscript.sh

Solution to 4.1

Here we use the positional parameters $1 to $3 and the [command in order to achieve
our goal:

1 #!/bin/bash
2

3 # print the first 3 arguments in reverse:
4 echo "$3␣$2␣$1"
5

6 # if there is help , we print some help statement:
7 ["$1" == "-h" -o "$2" == "-h" -o "$3" == "-h"] && echo "You␣↙

↪→asked␣for␣some␣help"
8

9 # alternative:
10 ["$1" == "-h"] || ["$2" == "-h"] || ["$3" == "-h"] && echo ↙

↪→"-h␣passed"
4_control_io/sol/arg_reverse.sh

Solution to 4.2

We use test to determine the file type and take appropriate action:

11

1 #!/bin/bash
2

3 # $1 is a file and an executable:
4 [-f "$1" -a -x "$1"] && echo "File␣$1␣is␣executable."
5

6 # $1 is just a plain file:
7 [-f "$1"] && echo "File␣$1␣has␣size␣$(<␣"$1"␣wc␣-c)␣bytes."
8

9 # $1 is a directory:
10 [-d "$1"] && cd "$1" && ls

4_control_io/sol/test_file.sh

Solution to 4.4

The solution requires two nested while loops. We use ((ICNT++)) and ((JCNT++)) to
increase the counter variables ICNT and JCNT by one in each iteration.

1 #!/bin/bash
2

3 # check if user wants help:
4 if ["$I" == "-h" -o "$2" == "-h" -o "$3" == "-h"]; then
5 echo "The␣script␣needs␣two␣integers␣and␣optionally␣a␣file␣name"
6 exit 0
7 fi
8

9 # store parameters as I, J and File
10 I="$1"
11 J="$2"
12 FILE="$3"
13

14 # check if I and J are not negative:
15 if [$I -lt 0 -o $J -lt 0]; then
16 echo "Both␣$I␣and␣$J␣need␣to␣be␣non -negative␣integers." >&2
17 exit 1
18 fi
19

20 ICNT=1 # counter for I
21

22 # loop over directories:
23 while [$ICNT -le $I];do
24 # create directory ICNT
25 mkdir $ICNT
26

27 JCNT=1 # counter for J
28 # loop over files:
29 while [$JCNT -le $J];do
30 # name of the file to generate
31 NAME="$ICNT/$JCNT"
32

33 # if the file exists , we throw an error and exit
34 if [-f "$NAME"]; then
35 echo "The␣file␣$NAME␣already␣exists."

12

36 exit 1
37 fi
38

39 # if user specified a file copy it:
40 if [-f "$FILE"]; then
41 cp "$FILE" "$NAME"
42 else
43 # else just create a new file
44 touch "$NAME"
45 fi
46

47 # increase JCNT by one.
48 ((JCNT ++))
49 done
50

51 # increase ICNT by one.
52 ((ICNT ++))
53 done

4_control_io/sol/while_files.sh

Solution to 4.5

A solution only implementing the 1-argument and 2-argument version of seq is:
1 #!/bin/bash
2

3 if ["$1" == "-h"]; then
4 echo "Some␣help"
5

6 # exit the shell with return code 0
7 exit 0
8 fi
9

10 # set the default for the 1-argument case:
11 FROMNUMBER =1 # the number at which the sequence starts
12 TONUMBER="$1" # the number until the sequence goes
13

14 if ["$#" == 2]; then
15 # overwrite defaults for 2-argument case:
16 FROMNUMBER="$1"
17 TONUMBER="$2"
18 fi
19

20 # check the assumptions are not violated:
21 if ! [$FROMNUMBER -le $TONUMBER]; then
22 # assumption is violated => exit
23 echo "$FROMNUMBER␣is␣not␣less␣or␣equal␣to␣$TONUMBER" >&2
24 exit 1
25 fi
26

27 N=$FROMNUMBER
28 while [$N -lt $TONUMBER];do

13

29 echo $N
30 ((N++))
31 done
32 echo $N

4_control_io/sol/seq2.sh

If the 3-argument version should be supported as well we arrive at:
1 #!/bin/bash
2

3 if ["$1" == "-h"]; then
4 echo "Some␣help"
5

6 # exit the shell with return code 0
7 exit 0
8 fi
9

10 #------------
11 # checking:
12

13 # set the default for the 1-argument case:
14 FROMNUMBER =1 # the number at which the sequence starts
15 TONUMBER="$1" # the number until the sequence goes
16 STEP=1
17

18 if ["$#" -gt 3];then
19 # we can only consume up to 3 args:
20 echo "Extra␣argument" >&2
21 exit 1
22 fi
23

24 if ["$#" -eq 3]; then
25 # third arg not zero -> 3-arg case
26 # overwrite defaults accordingly
27 FROMNUMBER="$1"
28 STEP="$2"
29 TONUMBER="$3"
30 elif ["$#" -eq 2];then
31 # third arg is zero
32 # (otherwise we did not get here)
33 # but second is set , hence:
34 # overwrite defaults for 2-argument case:
35 FROMNUMBER="$1"
36 TONUMBER="$2"
37 STEP=1
38 fi
39

40 # one arg case is default , but what if $1 is also empty
41 if [-z "$1"] ; then
42 echo "Need␣at␣least␣one␣arg" >&2
43 exit 1
44 fi
45

46 # check the assumptions are not violated:

14

47 if ! [$FROMNUMBER -le $TONUMBER]; then
48 # assumption is violated => exit
49 echo "$FROMNUMBER␣is␣not␣less␣or␣equal␣to␣$TONUMBER" >&2
50 exit 1
51 fi
52

53 #-------------
54 # do the seq:
55

56 N=$FROMNUMBER
57 while [$N -lt $TONUMBER];do
58 echo $N
59

60 # do the increment STEP times:
61 # using a loop running STEP times:
62 I=0
63 while [$I -lt $STEP]; do
64 ((N++)) # increment our number
65 ((I++)) # also increment the I
66 done
67 done
68 echo $N

4_control_io/sol/seq3.sh

Solution to 4.6

A script which has the required functionality is:
1 #!/bin/bash
2

3 # The directory where the Project Gutenberg books are located:
4 DIR="resources/gutenberg"
5

6 if ["$1" == "-h"]; then
7 echo "Please␣supply␣an␣argument␣with␣the␣pattern␣to␣search␣for."
8 exit 0
9 fi

10

11 if [-z "$1"]; then
12 echo "Please␣provide␣a␣pattern␣as␣first␣arg"
13 exit 1
14 fi
15

16 #---
17

18 # go through all gutenberg files
19 # they all end in txt
20 for book in $DIR /*.txt; do
21 # grep for the pattern
22 # we need the " because $book is a path
23 # and because $1 is user input
24 # and store the count in the variable

15

25 MATCHES=$(< "$book" grep -ic "$1")
26

27 # suppress books without matches:
28 [$MATCHES -eq 0] && continue
29

30 # find out the number of lines:
31 LINES=$(< "$book" grep -c ^)
32

33 # print it using tabs as separators
34 echo -e "$book\t$MATCHES\t$LINES"
35 done

4_control_io/sol/book_parse.sh

Solution to 4.7

One way to achieve the required substitutions is to exploit word splitting. Recall that
word splitting takes place at all <tab>, <newline> or <space> characters.

• For the first part we need a commandline that performs word splitting on the
content of VAR and inserts a <newline> between each word. This can be done e.g.
by executing

1 for i in $VAR;
2 echo $i
3 done

• For the second part we need to insert a <space> between all the words after word
splitting. This is the effect of

1 echo $VAR

Note that we deliberately leave $VAR unquoted here.

Solution to 4.8

We need to use the while-case-shift paradigm in order to parse the commandline in
the required way

1 #!/bin/bash
2

3 QUIET =0 # are we in quiet mode -> 1 for yes
4 FILE= # variable to contain the file
5

6 while ["$1"]; do
7 case "$1" in
8 -h|--help)
9 echo "Help!!"

10 exit 0
11 ;;
12 -q|--quiet)
13 QUIET =1
14 ;;

16

15 -f)
16 shift
17 FILE="$1"
18 ;;
19 *)
20 echo "Unknown␣argument:␣$1" >&2
21 exit 1
22 esac
23 shift
24 done
25

26 # check whether the file is valid
27 if [-f "$FILE"]; then
28 echo "File:␣$FILE"
29 else
30 echo "Not␣a␣valid␣file:␣$FILE"
31 exit 1
32 fi
33

34 # if we are not quiet:
35 if ["$QUIET" != "1"];then
36 echo "Welcome␣to␣this␣script"
37 fi
38

39 # exit the script
40 exit 0

4_control_io/sol/commandline_parsing.sh

Solution to 4.13

We use a few calls to read in order to read single lines from the script’s stdin. Then we
output the relevant lines to stdout or stderr.

1 #!/bin/bash
2 # read first line of stdin
3 read line
4

5 # read second line of stdin
6 read line
7

8 # read third line of stdin
9 # and print to stdout

10 read line
11 echo $line
12

13 # read fourth line on stdin
14 # and print to stderr
15 read line
16 echo $line >&2

4_control_io/sol/read_third.sh

17

Solution to 4.14

We use read together with the -p (prompt) flag in order to ask the user for two numbers
and then use the code from the exercise on page 13 to do the counting and printing:

1 #!/bin/bash
2

3 # Ask for two numbers:
4 read -p "Enter␣a␣first␣number:␣␣" N
5 read -p "Enter␣a␣second␣number:␣" M
6

7 if [$N -lt $M]; then
8 START=$N
9 END=$M

10 else
11 START=$M
12 END=$N
13 fi
14

15 C=$START
16 while [$C -lt $END]; do
17 echo $C
18 ((C++))
19 done
20 echo $C

4_control_io/sol/read_seq.sh

Solution to 4.15

The final version of the script could look like this
1 #!/bin/bash
2

3 # the default values for from and to
4 FROM=1
5 TO="end"
6

7 # while -case -shift to parse arguments:
8 while ["$1"]; do
9 case "$1" in

10 --help)
11 echo "Script␣can␣take␣two␣arguments␣--from␣and␣--to."
12 echo "Each␣have␣a␣line␣number␣following"
13 echo "The␣script␣then␣moves␣the␣--from␣line␣to␣the␣--to␣line"
14 exit 0
15 ;;
16 --from)
17 shift
18 FROM=$1
19 ;;
20 --to)
21 shift

18

22 TO=$1
23 ;;
24 *)
25 echo "Unknown␣argument:␣$1" >&2
26 exit 1
27 esac
28 shift
29 done
30

31 if ["$TO" != "end"] && ["$TO" -le "$FROM"]; then
32 echo "The␣--to␣line␣(=␣$TO)␣needs␣to␣be␣larger␣that␣the␣--from␣↙

↪→line␣(=␣$FROM)." >&2
33 exit 1
34 fi
35

36 # line count
37 LC=0
38

39 # line cache (for the line that should be moved)
40 CACHE=
41

42 # var to keep track if cache is filled or not
43 # just needed to spot errors more quickly
44 CACHEFILLED=n
45

46 # while read line to read stdin line -by-line
47 while read line; do
48 # increase line count
49 ((LC++))
50

51 # if the current line is the from line
52 # just store the line in a cache
53 if [$LC -eq $FROM]; then
54 # fill the cache:
55 CACHE=$line
56 CACHEFILLED=y
57

58 # no printing of this line
59 # just continue to next line
60 continue
61

62 # if TO is not "end"
63 # and it is equal to the current line number
64 elif ["$TO" != "end"] && [$LC -eq $TO]; then
65 # check first if we have something in the cache:
66

67 if ["$CACHEFILLED" != "y"];then
68 # this means some error
69 echo "Expected␣cache␣to␣be␣filled␣in␣line␣$LC" >&2
70 echo "This␣is␣not␣the␣case ,␣however." >&2
71 exit 1
72 fi
73

19

74 # print the cached line
75 echo "$CACHE"
76

77 # reset state of the cache
78 # just done to spot errors more quickly
79 CACHE=""
80 CACHEFILLED=n
81 fi
82

83 # print current line:
84 echo "$line"
85 # note that quoting is needed such that
86 # characters like tab are kept and not
87 # removed by word splitting
88 done
89

90 # we still have something in the cache?
91 if ["$CACHEFILLED" != "n"]; then
92 if ["$TO" == "end"]; then
93 # just print it after everything:
94 echo "$CACHE"
95 exit 0
96 fi
97

98 # if we are getting here this means that
99 # the CACHE is still filled even though

100 # TO is a number and not "end"
101 # so TO is too large:
102 echo "The␣argument␣supplied␣to␣--to␣(=␣$TO)␣is␣not␣correct." >&2
103 echo "We␣got␣less␣number␣on␣stdin␣than␣the␣value␣given␣to␣--to␣↙

↪→" >&2
104 exit 1
105 fi
106

107 exit 0
4_control_io/sol/swap_lines_general.sh

Solution to 4.16

The solution just takes 5 lines of bash code:
1 #!/bin/bash
2 CACHE=
3 while read line; do
4 # insert line by line into the CACHE , but
5 # in reverse order.
6 # quoting is important here to not loose any
7 # newlines due to word splitting
8 CACHE=$(echo "$line"; echo "$CACHE")
9 done

10 # print the result: Again quoting is needed

20

11 echo "$CACHE"
4_control_io/sol/tac.sh

Solution to 4.17

We need to use a slightly modified version of while read line, where we pass multiple
arguments to read:

1 #!/bin/bash
2 # read line by line and extract the first second
3 # and third column to BIN , BIN2 and COL.
4 # Extract all the other columns to TRASH
5 while read BIN BIN2 COL TRASH; do
6 # just print the third column
7 echo $COL
8 done

4_control_io/sol/mtx_third.sh

Now if we run our script, redirecting the file resources/matrices/lund_b.mtx to its
stdin

1 < resources/matrices/lund_b.mtx 4_control_io/sol/mtx_third.sh

we realise that it can deal with the multiple spaces which are used in some lines to
separate the columns. In other words, compared to cut it gives the correct result when
the third column of the mtx files is to be extracted.

Solution to 4.18

We can achieve exactly what is asked for in a bash three-liner:
1 #!/bin/bash
2

3 # search for all files using find
4 # and process them line by line using
5 # while read line:
6 find . -type f | while read file; do
7 # now grep inside the files
8 # we use -n -H in order to keep an overview
9 # which file and which lines did match

10

11 grep -n -H "$1" "$file"
12 done

4_control_io/sol/grep_all.sh

Solution to 4.19

Since the directories are separated by a “:” in PATH, a good IFS to use is :.

21

1 #!/bin/bash
2

3 # we change the field separator to :
4 OIFS="$IFS"
5 IFS=":"
6

7 # if the user did not provide a command as first arg
8 # we complain:
9 if [-z "$1"]; then

10 echo "Please␣provide␣a␣command␣as␣first␣arg" >&2
11 exit 1
12 fi
13

14 # now make use of the new IFS and go through all
15 # directories in PATH
16 for dir in $PATH; do
17 # does an executable $dir/$1 exist?
18 if [-x "$dir/$1"];then
19 # yes -> we are done
20 echo "$dir/$1"
21 exit 0
22 fi
23 done
24 IFS="$OIFS"
25

26 # there still has not been an executable found:
27 exit 1

4_control_io/sol/which.sh

Solution to 5.1

The return codes are
• 1 because the assignment B=0 inside the arithmetic evaluation returns zero, so

running ((B=0)) is equivalent to running ((0)), which is C-false. Hence the return
code is 1.

• 0 because we just do a simple echo of the last value of the arithmetic evaluation
((B=0)), which is 0. So the command is equivalent to echo 0, i.e. it prints “0”
onto the terminal and exits with return code 0 as well.

• 0: Here we take the output of echo $((B=0)) — which is “0” — and grep for “0”
within it. This character is of course is found and hence the return code is 0 again.

• 0, since -1 is nonzero, i.e. C-true.
• 1, since 0 is, well zero, which is interpreted as C-false.
• 1, since the last subexpression, i.e. 0 is, well zero.
• 0, since the last subexpression 3 is nonzero.
• 0: By just running

1 for((C=100,A=99 ; C%A-3 ; C++,A--)); do echo "C:␣$C"; echo ↙

22

↪→"A:␣$A";done

on a shell, we get the output
1 C:␣100
2 A:␣99

which means that the loop is only run once.
If we look at the 3 fields of the C-like for loop, we see that A is initialised to 99 and
C to 100. After each iteration C gets increased by one and A gets decreased by one.
The iteration stops if C%A-3 is equal to 0 (C-false), i.e. if

C%A = 3

This is the case after the first iteration, since this gives C equal to 101 and A equal
to 99.
Now we know that the loop body ((B=(B+1)%2)) is only executed once. Since B
has not been set, it defaults to zero. Executing the statement under arithmetic
evaluation hence assigns B with

(B + 1)%2 = 1%2 = 1

which is not C-false. Therefore the final ((B)) returns 0, which is also the return
code of the whole expression.

• 1: ((B=1001%10)) gives rise to no output, such that the first statement
1 ((B=1001%10)) | grep 4

fails. Note that B is assigned with 1001%10 = 1, however.

We continue with the second statement
1 ((C=$(echo "0"|grep 2)+4, 2%3))

the command substitution echo "0"|grep 2 gives rise to no output, hence the
resulting string is interpreted as zero. This means that C gets assigned to 4. The
return code of the statement is determined by 2%3, which is 2, i.e. the return code
is 0.
We proceed to execute the final statement

1 echo $((4-5 && C-3+B)) | grep 2

4-5 is -1 and hence C-true and C-3+B gives 4 − 3 + 1 = 2, hence also C-true. In
other words 4-5 && C-3+B is true and $((4-5 && C-3+B)) is the string “1”. This
means, however, that grep cannot find the character 2 in the output and overall
the return code of this last expression is 1.

Solution to 5.2

If one runs the code provided here on the shell, one realises, that for proper integer
numbers the result of echo $((A+0)) and the result of echo $A is identical. Exactly
this behaviour was used in the following script:

23

1 #!/bin/bash
2

3 # store the first argument in A
4 A=$1
5

6 # check whether it is an integer by the trick
7 # we just learned about:
8 if ["$((␣A␣))" == "$A"]; then
9 # compute the cube and echo it

10 echo "$((A*A*A))"
11 else
12 echo "Argument␣$1␣is␣not␣a␣valid␣integer." >&2
13 exit 1
14 fi

5_variables/sol/cube.sh

Solution to 5.3

One fairly naive solution is
1 #!/bin/bash
2 N=$1
3

4 # check if input is a positive number.
5 # note that this also checks whether the input is actually an ↙

↪→integer
6 # since strings that cannot be converted to an integer properly are
7 # interpreted as zero in the following arithmetic evaluation:
8 if ((N <= 0)); then
9 echo Please provide a positive number as first argument

10 exit 1
11 fi
12

13 # have a loop over all integers C less than or equal to N
14 C=1
15 while ((++C <= N)); do
16 S=1 # integer we use to test divisibility
17 isprime =1 # flag which is 1 if C is a prime , else
18 # it is 0
19 while ((++S, S*S <= C)); do
20 # loop over all S from 1 to sqrt(C)
21 if ((C%S==0)); then
22 # S divides C, hence C is not a prime
23 isprime =0
24

25 # break the inner loop: No need to
26 # keep looking for divisors of C
27 break
28 fi
29 done
30

31 # if C is a prime , print it

24

32 ((isprime ==1)) && echo $C
33 done

5_variables/sol/primes.sh

Solution to 5.4

The first version making use of a temporary file can be achieved like this
1 #!/bin/bash
2

3 # check that the argument provided is not zeros:
4 if [-z "$1"]; then
5 echo "Please␣provide␣a␣pattern␣as␣first␣arg" >&2
6 exit 1
7 fi
8

9 # delete the temporary file if it is still here:
10 rm -f tEMPorary_FIle
11

12 # create an empty temporary file
13 touch tEMPorary_FIle
14

15 # call book_parse.sh and analyse resulting table line -by-line
16 4_control_io/sol/book_parse.sh "$1" | while read FILE MATCH ↙

↪→NUMBER; do
17 # read already splits the table up into the 3 columns
18

19 # calculate the xi value:
20 XI=$(echo "$MATCH/$NUMBER" | bc -l)
21

22 # echo the xi value followed by a tab and the
23 # filename to the temporary file
24 echo -e "$XI\t$FILE" >> tEMPorary_FIle
25 done
26

27 # sort the temporary file:
28 # -n numeric sort
29 # -r reverse sort: largest values first
30 sort -nr tEMPorary_FIle | \
31 # print the three higest scoring books
32 head -n 3 tEMPorary_FIle
33

34 # remove temporary file again:
35 rm tEMPorary_FIle

5_variables/sol/book_analyse.sh

If we want to omit the reading and writing to/from disk, we have to do everything in
one pipe. One solution for this could be

1 #!/bin/bash
2

3 # check that the argument provided is not zeros:

25

4 if [-z "$1"]; then
5 echo "Please␣provide␣a␣pattern␣as␣first␣arg" >&2
6 exit 1
7 fi
8

9 # call book_parse.sh and analyse resulting table line -by-line
10 4_control_io/sol/book_parse.sh "$1" | while read FILE MATCH ↙

↪→NUMBER; do
11 # read already splits the table up into the 3 columns
12

13 # calculate the xi value:
14 XI=$(echo "$MATCH/$NUMBER" | bc -l)
15

16 # echo the xi value followed by a tab and the
17 # filename to stdout of the loop
18 echo -e "$XI\t$FILE"
19 done | \
20 # sort stdout of the loop
21 sort -nr | \
22 # filter the first three matches
23 head -n 3 | \
24 # format the output a little:
25 while read XI FILE; do
26 echo -e "$FILE␣␣\t(score:\t$XI)"
27 done

5_variables/sol/book_analyse_notemp.sh

Solution to 5.5

We first parse the arguments and check whether there is anything to do (if there are no
numbers supplied, we are done). Then we build up the expression for bc in BCLINE and
echo it to bc to get the result.

1 #!/bin/bash
2

3 MEAN=n # if y the mean should be calculated
4 # else the sum only
5

6 # first arg has to be -s or -m:
7 case "$1" in
8 -m) MEAN=y
9 ;;

10 -s) MEAN=n
11 ;;
12 *)
13 echo "Expected␣-s␣(for␣sum)␣or␣-m␣(for␣mean)␣as␣first␣arg" >&2
14 exit 1
15 esac
16 shift # remove first arg
17

18 if [-z "$1"]; then
19 # if new first arg , i.e. original second arg is empty

26

20 # we have no numbers on the commandline
21 # hence the result is 0 in both cases:
22 echo 0
23 exit 0
24 fi
25

26 # We build up the expression for bc in this variable:
27 # note that we know that $1 is nonzero and we can hence
28 # initialise BCLINE with it
29 BCLINE=$1
30

31 # count how many numbers we were given:
32 COUNT =1
33

34 # remove the arg we dealt with:
35 shift
36

37 # go over all other arguments
38 # one by one:
39 for num in $@; do
40 # build up BCLINE
41 BCLINE="$BCLINE+$num"
42 ((COUNT ++))
43 done
44

45 # amend BCLINE if we are caculating the MEAN:
46 if ["$MEAN" == "y"]; then
47 BCLINE="($BCLINE)/$COUNT"
48 fi
49

50 # calculate it with bc
51 # and print result to stdout
52 echo "$BCLINE" | bc -l
53 exit $?

5_variables/sol/sum_mean.sh

Solution to 5.6

We have to take care to exclude both the first comment line as well as the first non-
comment line from being manipulated at all. Apart from these lines all other, however,
have to be touched. This script uses a so-called firstrun flag and as well as the while
read line paradigm to achieve this:

1 #!/bin/bash
2

3 NUM=$1
4

5 if [-z "$NUM"]; then
6 echo "Need␣a␣number␣as␣first␣arg." >&2
7 exit 1
8 fi

27

9

10 # read the comment line and copy to stdout
11 read line
12 echo "$line"
13

14 # initialise a firstrun flag (see below)
15 FIRSTLINE =1
16

17 # read all remaining data from stdin using grep
18 # ignore all other comment lines but parse the
19 # non -comment ones:
20 grep -v "%" | while read ROW COL VAL; do
21 # if this is the first non -comment line
22 # then it is special , we have to copy it as is
23 if ((FIRSTLINE)); then
24 FIRSTLINE =0
25 echo "$ROW␣$COL␣$VAL"
26 continue
27 fi
28

29 # for all other rows:
30 echo "$ROW␣$COL␣$(echo␣"$NUM*$VAL"␣|␣bc␣-l)"
31 done

5_variables/sol/mtx_multiplier.sh

Solution to 5.7

One solution is:
1 #!/bin/bash
2

3 # read stdin line by line:
4 while read line; do
5 # var containing the reversed line:
6 LINEREV=""
7

8 # do the reversal in a loop from
9 # I=0 to I= length of line -1

10 for ((I=0; I < ${#line}; ++I)); do
11 # the substring expansion
12 # ${line:I:1}
13 # extracts exactly the (I+1)th
14 # character from line
15 LINEREV="${line:I:1} $LINEREV"
16 done
17 echo "$LINEREV"
18 done

5_variables/sol/rev.sh

Another solution is:
1 #!/bin/bash

28

2

3 # read stdin line by line:
4 while read line; do
5 # do the reversal in a loop from
6 # I=0 to I= length of line -1
7 LENGTH=${#line}
8 for ((I=0; I < LENGTH; ++I)); do
9 # Use again a substring expansion

10 # but instead we use the index expression
11 # LENGTH -I-1
12 # to access the characters from the RHS
13 # of the line to the LHS of the line
14 echo -n "${line:LENGTH -I -1:1}"
15 done
16 echo
17 done

5_variables/sol/rev_other.sh

Solution to 6.2

One solution is
1 #!/bin/bash
2

3 DIRECTORY=$1
4 echo "Directory:␣␣␣␣␣␣␣␣␣␣␣␣␣largest␣file"
5 echo "-----------------------------------"
6 for f in $DIRECTORY /*; do
7 # Only go through directories => skip the '$subdir '
8 # if it is not a directory
9 [! -d "$f"] && continue

10

11 (# Subshell for cd
12 cd "$f"
13

14 MAXSIZE =0
15 MAXFILE="<No␣file␣found >"
16 for file in *; do
17 # This time skip if '$file ' is not
18 # a valid file.
19 [! -f "$file"] && continue
20

21 # The filesize can be determined using
22 # wc -c == number of bytes
23 SIZE=$(wc -c "$file" | cut -f1 -d "␣")
24 if ["$SIZE" -gt "$MAXSIZE"]; then
25 MAXSIZE="$SIZE"
26 MAXFILE="$file"
27 fi
28 done
29

30 # Print the findings

29

31 echo "$f:␣␣␣␣$MAXFILE"
32)
33 done

6_functions_subshells/sol/largest_file.sh

Solution to 6.3

The script contains the following problems:
• Line 10: We alter the ERROR flag, which is checked later on to determine if the

script execution is to be aborted. This change becomes lost because it happens in
a subshell. We should use grouping { ... } instead.

• Line 31: The accumulation of matching lines happens within the implicit subshell
started by the pipe. So after the done, MATCHING is empty again. It is better to
fill MATCHING directly by a command substitution.

• Line 39: Better use echo -n "$MATCHING"| grep -c ^ instead of wc -l (See
exercise).

A better version of the script would be
1 #!/bin/bash
2 # initial note:
3 # this script is deliberately made cumbersome
4 # this script is bad style. DO NOT COPY
5 KEYWORD=$1
6

7 ERROR =0 # Error flag
8 [! -f "bash_course.pdf"] && {
9 echo "Please␣run␣at␣the␣top␣of␣the␣bash_course␣repository" >&2

10 ERROR =1
11 }
12

13 # change to the resources directory
14 if ! cd resources /; then
15 echo "Could␣not␣change␣to␣resources␣directory" >&2
16 echo "Are␣we␣in␣the␣right␣directory?"
17 ERROR =1
18 fi
19

20 [$ERROR -eq 1] && (
21 echo "A␣fatal␣error␣occurred"
22 exit 1
23)
24

25 # List of all matching files
26 # VERSION1: making minimal changes:
27 MATCHING=$(ls matrices /*.mtx gutenberg /*. txt | while read line; do
28 if < "$line" grep -q "$KEYWORD"; then
29 echo "$line"
30 fi
31 done)

30

32

33 # VERSION2: Even more simple and more reliable
34 MATCHING=$(for line in matrices /*.mtx gutenberg /*. txt; do
35 if < "$line" grep -q "$KEYWORD"; then
36 echo "$line"
37 fi
38 done)
39

40 # count the number of matches:
41 COUNT=$(echo -n "$MATCHING" | grep -c ^)
42

43 if [$COUNT -gt 0]; then
44 echo "We␣found␣$COUNT␣matches!"
45 exit 0
46 else
47 echo "No␣match" >&2
48 exit 1
49 fi

6_functions_subshells/sol/subshell_exercise_corrected.sh

Solution to 6.4

We use the function list_files that deals with a directory and all subdirectories
recursively. A little care has to be taken when printing the paths such that the “/”
appears at the right places.

1 #!/bin/bash
2

3 list_files () {
4 #$1: prefix to append when listing the files
5 DIR="$1"
6

7 # deal with all files in current directory:
8 for file in *; do
9 # file is a regular file => list it

10 if [-f "$file"]; then
11 # print prepending prefix
12 echo "DIRfile"
13 elif [-d "$file"]; then
14 # file is a directory:
15 # recursively call this fctn:
16 (
17 # go into subshell
18 # this keeps track of
19 # the working directory
20 cd "$file"
21 list_files "DIRfile/"
22)
23 fi
24 # do nothing for all other types of
25 # files
26 done

31

27 }
6_functions_subshells/sol/find_file.sh

Solution to 6.5

Instead of using one single line with all commands, we use functions to split the tasks
up into logical parts and name these parts sensibly.

1 #!/bin/bash
2

3 # check that the argument provided is not zeros:
4 if [-z "$1"]; then
5 echo "Please␣provide␣a␣pattern␣as␣first␣arg" >&2
6 exit 1
7 fi
8

9 calculate_xi () {
10 # analyse the output from book_parse.sh
11 # calculate the xi values and print a table
12 # of xi values followed by a tab and the filename to stdout
13

14 while read FILE MATCH NUMBER; do
15 # read already splits the table up into the 3 columns
16

17 # calculate the xi value:
18 XI=$(echo "$MATCH/$NUMBER" | bc -l)
19

20 # echo the xi value followed by a tab and the
21 # filename to stdout of the loop
22 echo -e "$XI\t$FILE"
23 done
24 }
25

26 filter_3_largest () {
27 # filter the output of calculate_xi such that only the 3
28 # books with the largest xi values are passed from stdin
29 # to stdout
30

31 # sort stdin and filter for first 3 matches
32 sort -nr | head -n 3
33 }
34

35 print_results () {
36 # Take a table in the format produced by calculate_xi and
37 # print the rows is a formatted way
38

39 while read XI FILE; do
40 echo -e "$FILE␣␣\t(score:\t$XI)"
41 done
42 }
43

44 #---

32

45

46 4_control_io/sol/book_parse.sh "$1" | \
47 calculate_xi | filter_3_largest | print_results

6_functions_subshells/sol/book_analyse_fun.sh

Solution to 6.6

After the subtract operation has been implemented as well, we arrive at
1 #!/bin/bash
2

3 # global variable SEL to make selection between
4 # addition and multiplication
5 SEL=
6

7 #--
8

9 add() {
10 # add two numbers
11 # $1: first number
12 # $2: second number
13 # echos result on stdout
14 echo $(($1+$2))
15 }
16

17 multiply () {
18 # multiply two numbers
19 # $1: first number
20 # $2: second number
21 # echos result on stdout
22 echo $(($1*$2))
23 }
24

25 subtract () {
26 # Subtract two numbers
27 # $1: first number
28 # $2: number subtracted from first number
29 # echos result on stdout
30 echo $(($1-$2))
31 }
32

33 operation () {
34 # selects for add or multiply depending on
35 # SEL
36 # $1: first operand for operator (add or multiply)
37 # $2: second operand for operator (add or multiply)
38 # echos the result on stdout
39

40 # this will call add if $SEL == "add"
41 # or it will call multiply if $SEL == "multiply"
42 # or subtract if $SEL == "subtract"
43 local FIRST=$1

33

44 local SECOND=$2
45 $SEL $FIRST $SECOND
46 }
47

48 calculate3 () {
49 # it calls operation with 3 and $1
50 # such that we either add , subtract or multiply (depending on ↙

↪→SEL) 3 and $1
51 # echos the result on stdout
52

53 operation $1 3
54 }
55

56 map() {
57 # $1: a command
58

59 local COMMAND=$1
60 shift
61

62 # loop over all arguments left on the commandline
63 # and execute the command in COMMAND with this
64 # arguement
65 for val in $@; do
66 $COMMAND $val
67 done
68 }
69

70 usage () {
71 echo "$0␣␣[␣-h␣|␣--help␣|␣--add3␣|␣--multiply3␣]␣␣<arguments >␣"
72 echo "Script␣to␣do␣some␣operation␣to␣all␣arguments"
73 echo
74 echo "Options:"
75 echo "--add3␣␣␣␣␣␣␣␣␣␣adds␣3␣to␣all␣arguments"
76 echo "--multiply3␣␣␣␣␣multiplies␣3␣to␣all␣arguments"
77 echo "--subtract3␣␣␣␣␣subtracts␣3␣from␣all␣arguments"
78 }
79

80 #--
81

82 # $1 selects method
83

84 case "$1" in
85 --help|-h)
86 usage
87 exit 0
88 ;;
89 --add3)
90 SEL=add
91 ;;
92 --multiply3)
93 SEL=multiply
94 ;;
95 --subtract3)

34

96 SEL=subtract
97 ;;
98 *)
99 echo "Unknown␣argument:␣\"$1\"" >&2

100 echo "Usage:␣" >&2
101 usage >&2
102 exit 1
103 esac
104

105 # remove the first arg we dealt with
106 shift
107

108 # deliberatly no quotes below to get rid of linebreak
109 # in the results:
110 echo $(map calculate3 $@)

6_functions_subshells/sol/functional.sh

It takes very little effort to add extra operators, since the script only needs to be changed
at two places: We need to add the function and we need to add an extra case in order
to get SEL set accordingly.

One could go even further: The functions add, multiply and subtract are very
similar. So one could use the tool eval in order to write a generating function which
automatically defines these aforementioned functions. Then we arrive at

1 #!/bin/bash
2

3 # global variable SEL to make selection between
4 # addition and multiplication
5 SEL=
6

7 #--
8

9 generator () {
10 # function to generate a function that takes
11 # two numbers and echos the result of applying
12 # an operation to these numbers on stdout
13 #
14 # $1: name of the function to generate
15 # $2: operator to use in the operation
16 NAME=$1
17 OP=$2
18

19 eval "${NAME }()␣{␣ONE=\$1;␣TWO=\$2;␣echo␣\$((ONE␣$OP␣TWO));␣}"
20 }
21

22 generator "add" "+" # generate add function
23 generator "multiply" "*" # generate multiply
24 generator "subtract" "-" # generate subtract
25

26 operation () {
27 # selects for add or multiply depending on
28 # SEL
29 # $1: first operand for operator (add or multiply)

35

30 # $2: second operand for operator (add or multiply)
31 # echos the result on stdout
32

33 # this will call add if $SEL == "add"
34 # or it will call multiply if $SEL == "multiply"
35 # or subtract if $SEL == "subtract"
36 local FIRST=$1
37 local SECOND=$2
38 $SEL $FIRST $SECOND
39 }
40

41 calculate3 () {
42 # it calls operation with 3 and $1
43 # such that we either add , subtract or multiply (depending on ↙

↪→SEL) 3 and $1
44 # echos the result on stdout
45

46 operation $1 3
47 }
48

49 map() {
50 # $1: a command
51

52 local COMMAND=$1
53 shift
54

55 # loop over all arguments left on the commandline
56 # and execute the command in COMMAND with this
57 # arguement
58 for val in $@; do
59 $COMMAND $val
60 done
61 }
62

63 usage () {
64 echo "$0␣␣[␣-h␣|␣--help␣|␣--add3␣|␣--multiply3␣]␣␣<arguments >␣"
65 echo "Script␣to␣do␣some␣operation␣to␣all␣arguments"
66 echo
67 echo "Options:"
68 echo "--add3␣␣␣␣␣␣␣␣␣␣adds␣3␣to␣all␣arguments"
69 echo "--multiply3␣␣␣␣␣multiplies␣3␣to␣all␣arguments"
70 echo "--subtract3␣␣␣␣␣subtracts␣3␣from␣all␣arguments"
71 }
72

73 #--
74

75 # $1 selects method
76

77 case "$1" in
78 --help|-h)
79 usage
80 exit 0
81 ;;

36

82 --add3)
83 SEL=add
84 ;;
85 --multiply3)
86 SEL=multiply
87 ;;
88 --subtract3)
89 SEL=subtract
90 ;;
91 *)
92 echo "Unknown␣argument:␣\"$1\"" >&2
93 echo "Usage:␣" >&2
94 usage >&2
95 exit 1
96 esac
97

98 # remove the first arg we dealt with
99 shift

100

101 # deliberatly no quotes below to get rid of linebreak
102 # in the results:
103 echo $(map calculate3 $@)

6_functions_subshells/sol/functional_generator.sh

Note, however, that eval is a dangerous command and should never be used on anything
that contains data, which the user of your script can set. In other words: Only use it if
you know what it does and how it works!

Solution to 6.7

In order to make the script from the other exercise sourcable, we just need to insert the
code

1 return 0 &>/dev/null

before the case statement, e.g. in line 80 (of the version not using the generator). The
script, which is sourcable, can be found in 6_functions_subshells/sol/
functional_sourcable.sh. Note that it still can be executed normally and runs as
expected.

If we want to use functional_sourcable.sh in the script 6_functions_subshells/
source_exercise.sh, we need to change it slightly:

1 #!/bin/bash
2

3 # check first if sourced script exists:
4 if [! -f 6_functions_subshells/sol/functional_sourcable.sh]; then
5 echo "This␣script␣only␣works␣if␣executed␣from␣the␣top␣↙

↪→directory" >&2
6 echo "of␣the␣tarball␣containing␣the␣solution␣scripts." >&2
7 echo "Please␣change␣the␣working␣directory␣accordingly␣and" >&2
8 echo "execute␣again." >&2
9 exit 1

37

10 fi
11

12 # source the other script
13 . 6_functions_subshells/sol/functional_sourcable.sh
14

15 # add 4 and 5 and print result to stdout:
16 add 4 5
17

18 # multiply 6 and 7 and print result to stdout:
19 multiply 6 7

6_functions_subshells/sol/source_exercise_amended.sh

Due to the relative path to the sourced script we used in this modified version of
6_functions_subshells/ source_exercise.sh, the script only works if executed from
the top directory of the tarball, which contains the solution scripts.

Solution to 7.2

The matching part:
• .. matches any string that contains any two character substring, i.e. any string

with two or more letters. This is everything except g and the empty string.
• ^..$ matches a string with exactly two characters, i.e. ab and 67.
• [a-e] matches any string that contains at least one of the characters a to e, i.e.

ab and 7b7.
• ^.7*$ matches any string which starts with an arbitrary character and then has

zero or more 7s following. This is g, 67, 67777, 7777 and 77777.
• ^(.7)*$ matches any string which has zero or more consecutive substrings con-

sisting of an arbitrary character and a 7. This is 67, o7x7g7, 7777 and the empty
string. Note that e.g. 77777 does not match: If we “use” the pattern .7 three
times we get ^.7.7.7$ and 77777 has one character too little to be a match for
this.

Solution to 7.3

The crossword:
a?[3[:space:]]+b? b[^eaf0-2]

[a-f][0-3] a3 b3
[[:xdigit:]]b+ 3b bb

Solution to 7.4

a) ab*c or c$ or c
b) ab+c or bc$ or bc
c) ^a.*c or c$

38

d) ^␣*q or q..
e) ^a|w or or r|w

Solution to 7.5

• A single digit can be matched by the regex [0-9].
• The list of digits we get by running

1 < resources/digitfile grep -o '[0-9]'

is just the list of all digits which are contained in the file resources/digitfile
in exactly the order they occur.

• We can run
1 < resources/digitfile grep -o '[0-9]' | sort -n | uniq -c

to get the required table

1 ␣␣␣␣␣␣1␣0
2 ␣␣␣␣␣␣7␣1
3 ␣␣␣␣␣␣2␣2
4 ␣␣␣␣␣␣3␣3
5 ␣␣␣␣␣␣3␣4
6 ␣␣␣␣␣␣7␣5
7 ␣␣␣␣␣␣1␣7
8 ␣␣␣␣␣␣3␣9

In other words there is 1 zero, 7 ones, 2 twos, . . . , 3 nines.

Solution to 7.6

• Regexes for the parts:
– sign: “[+-]”
– prefactor: “[01]\.[0-9]*”
– exponent: “[0-9]+”

• So altogether the scientific numbers need to match:
1 ([+ -]?) ([01]\.[0 -9]*)e([+ -]?) ([0 -9]+)

where the parenthesis () are only provided to show the individual parts, i.e.
1 [+ -]?[01]\.[0 -9]*e[+ -]?[0 -9]+

would be valid as well. Executing this on the digitfile gives

$ < resources/digitfile grep -E ↙
↪→ '[+ -]?[01]\.[0 -9]*e[+-]?[0 -9]+ '

39

1 1.759e+15
2 1.5e+5da␣is␣a␣scientific␣number
3 -1.34e+04

• Introducing the fault tolerance implies:
– We replace the plain requirement for “e” by the bracket expansion “[eEdD]”.
– Instead of “[01]\.[0-9]*”, we require a number with an optional decimal

part, i.e. “[0-9]+(\.[0-9]*)?”
Hence overall

1 [+ -]?[0 -9]+(\.[0 -9]*) ?[eEdD][+ -]?[0 -9]+

$ < resources/digitfile grep -E ↙
↪→ '[+ -]?[0 -9]+(\.[0 -9]*)?[eEdD][+ -]?[0 -9]+ '

1 1.759e+15
2 -9.3e-5
3 19e-5␣is␣not␣properly␣formatted␣either.
4 1.5e+5da␣is␣a␣scientific␣number
5 -1.34e+04

Solution to 7.7

By running
1 < resources/matrices/bcsstm01.mtx grep -E ↙

↪→ '[+ -]?[0 -9]+(\.[0 -9]*)?[eEdD][+ -]?[0 -9]+ '

we can easily verify that the proposed pattern gives indeed the values in the third column.
As usually we get the largest of these values by piping the result to sort -r -n | head
-n1:

1 < resources/matrices/bcsstm01.mtx grep -E ↙
↪→ '[+ -]?[0 -9]+(\.[0 -9]*)?[eEdD][+ -]?[0 -9]+ ' | sort -r | head ↙
↪→-n1

Solution to 7.8

The whole problem can be solved using the command lines
1 < resources/chem_output/qchem.out head -n48 > file
2 < file sed -r '/Q-Chem/d; s/[A-Z]\. -?//g; s/,/\n/g' | sed ↙

↪→'s/^[[: space :]]*//; /^$/d' | sort

The sed commands in more detail:
• /Q-Chem/d: Delete all lines containing Q-Chem

40

• s/[A-Z]\.-?//g: Replace all initials by nothing. Since sed tries to match as much
as possible, the -? makes sure that first names with a “-” are removed completely
as well. E.g.

1 T.-C.

gets replaced by the empty string by the means of two substitutions in this step.
• s/,/\n/g: All commas get replaced by a line break.
• s/^[[:space:]]*//: Replace leading whitespace by nothing, i.e. remove it.
• /^$/d: Remove empty lines.

Note that we need two sed invocations here because sed does take proper note of the
extra line break we introduce with the substitution s/,/\n/g. This can be explained as
follows:

sed processes all rules for each line going from top to bottom, right to left. So even
though we introduce new line breaks by the substitution, sed considers the resulting
string still as a logical line and all regexes are applied to the logical line instead of the
actual lines. Using such the procedure, which was suggested by the exercise, we cannot
deal with this in any other way but piping it to another sed, which now honours the
new line breaks.
Note that a careful inspection of the problem reveals that the one-liner

1 < file sed -r '/Q-Chem|^$/d; s/(*[A-Z]\.-? ?|, *$)//g; ↙
↪→s/,/\n/g'

does the trick as well, just using a single sed.

Solution to 8.2

One possible solution is:
1 #!/bin/bash
2

3 if [! -r "$1"]; then
4 echo "Cannot␣read␣file:␣$1" >&2
5 exit 1
6 fi
7

8 < "$1" awk '{ print $2 "␣+␣" $3 "␣=␣" $2+$3 }'
8_awk/sol/print_add.sh

If we execute this like
1 < resources/matrices /3. mtx 8_awk/sol/print_add.sh

or like
1 < resources/matrices/lund_b.mtx 8_awk/sol/print_add.sh

it prints the correct results, thus dealing well with the multiple separators in resources/
matrices/lund_b.mtx.

41

Solution to 8.3

We use echo in order to transfer the numbers to awk, let awk do the computation and
print the result on stdout (straight from awk itself):

1 #!/bin/bash
2

3 # global variable SEL to make selection between
4 # addition and multiplication
5 SEL=
6

7 #--
8

9 add() {
10 # add two numbers
11 # $1: first number
12 # $2: second number
13 # echos result on stdout
14 echo "$1␣$2" | awk '{ print $1+$2 }'
15 }
16

17 multiply () {
18 # multiply two numbers
19 # $1: first number
20 # $2: second number
21 # echos result on stdout
22 echo "$1␣$2" | awk '{ print $1*$2 }'
23 }
24

25 subtract () {
26 # Subtract two numbers
27 # $1: first number
28 # $2: number subtracted from first number
29 # echos result on stdout
30 echo "$1␣$2" | awk '{ print $1-$2 }'
31 }
32

33 operation () {
34 # selects for add or multiply depending on
35 # SEL
36 # $1: first operand for operator (add or multiply)
37 # $2: second operand for operator (add or multiply)
38 # echos the result on stdout
39

40 # this will call add if $SEL == "add"
41 # or it will call multiply if $SEL == "multiply"
42 # or subtract if $SEL == "subtract"
43 local FIRST=$1
44 local SECOND=$2
45 $SEL $FIRST $SECOND
46 }
47

48 calculate3 () {
49 # it calls operation with 3 and $1

42

50 # such that we either add , subtract or multiply (depending on ↙
↪→SEL) 3 and $1

51 # echos the result on stdout
52

53 operation $1 3
54 }
55

56 map() {
57 # $1: a command
58

59 local COMMAND=$1
60 shift
61

62 # loop over all arguments left on the commandline
63 # and execute the command in COMMAND with this
64 # arguement
65 for val in $@; do
66 $COMMAND $val
67 done
68 }
69

70 usage () {
71 echo "$0␣␣[␣-h␣|␣--help␣|␣--add3␣|␣--multiply3␣]␣␣<arguments >␣"
72 echo "Script␣to␣do␣some␣operation␣to␣all␣arguments"
73 echo
74 echo "Options:"
75 echo "--add3␣␣␣␣␣␣␣␣␣␣adds␣3␣to␣all␣arguments"
76 echo "--multiply3␣␣␣␣␣multiplies␣3␣to␣all␣arguments"
77 echo "--subtract3␣␣␣␣␣subtracts␣3␣from␣all␣arguments"
78 }
79

80 #--
81 # make script sourcable:
82 return 0 &>/dev/null
83 #--
84

85 # $1 selects method
86

87 case "$1" in
88 --help|-h)
89 usage
90 exit 0
91 ;;
92 --add3)
93 SEL=add
94 ;;
95 --multiply3)
96 SEL=multiply
97 ;;
98 --subtract3)
99 SEL=subtract

100 ;;
101 *)

43

102 echo "Unknown␣argument:␣\"$1\"" >&2
103 echo "Usage:␣" >&2
104 usage >&2
105 exit 1
106 esac
107

108 # remove the first arg we dealt with
109 shift
110

111 # deliberatly no quotes below to get rid of linebreak
112 # in the results:
113 echo $(map calculate3 $@)

8_awk/sol/functional_awk.sh

Solution to 8.4

The BEGIN rule initialises the variable c to zero, which is the default anyway. Therefore
it can be omitted.

1 #!/bin/bash
2 awk '
3 # BEGIN { count =0 }
4 { count=count + 1 }
5 END { print count }
6 '

8_awk/sol/awk_wc.sh

Solution to 8.5

One possible solution is:
1 #/bin/bash
2 awk '
3 # initialise inside_table
4 # the flag we use to keep track whether we are inside or outside
5 # of a Davidson table
6 BEGIN { inside_table =0 }
7

8 # whenever we encounter the " Starting Davidson", we
9 # change the flag to indicate that we are inside the table.

10 /^[[: space :]]* Starting Davidson/ { inside_table =1; itercount =0 }
11

12 # save current iteration number in itercount
13 # but only if the first field contains a digit.
14 # and we are not in the "Guess" step
15 $1 ~ /[0 -9]/ && inside_table == 1 && $0 !~ /Guess/ { ↙

↪→itercount=$1 }
16

17 # here the last stored itercount is the actual number
18 # of iteration steps performed

44

19 # we print it and reset the flag to 0
20 /^[[: space :]]* Davidson Summary :/ { inside_table =0; print ↙

↪→itercount }
21 '

8_awk/sol/davidson_extract.sh

Solution to 8.9

The uniq command can be implemented like this:
1 #!/bin/bash
2 awk '
3 $0 != prev { print $0; }
4 { prev=$0 }
5 '

8_awk/sol/awk_uniq_2line.sh

or alternatively one line shorter:
1 #!/bin/bash
2 awk '
3 $0 != prev {print $0; prev=$0 }
4 '

8_awk/sol/awk_uniq.sh

A solution, which implements uniq -c is
1 #!/bin/bash
2 awk '
3 # initialise prev on first run:
4 prev == "" { prev=$0; c=1; next }
5

6 # current line is same as previous:
7 # increase counter by one:
8 $0 == prev { c++ }
9

10 # current line is not same as previous:
11 # print the statistics for previous line and
12 # reset prev and c
13 $0 != prev {print c "␣" prev; prev=$0; c=1 }
14

15 # print statistics for the last set of
16 # equal lines:
17 END { print c "␣" prev }
18 '

8_awk/sol/awk_uniqc.sh

Solution to 8.10

One possible solution is:

45

1 #/bin/bash
2 awk '
3 # initialise inside_block
4 # the flag we use to keep track whether we are inside or outside
5 # an excited states block
6 BEGIN { inside_block =0 }
7

8 # whenever we encounter the " Excited state ", we
9 # change the flag to indicate that we are inside the table.

10 # also we store the state number , which sits in the third field
11 /^ *Excited state [0 -9]+/ { inside_block =1; state_number=$3 }
12

13 # if we find the "Term symbol" line inside the block , we store
14 # the term symbol which sits in $3 $4 and $5
15 inside_block ==1 && /^ *Term symbol/ { term_symbol=$3 "␣" $4 "␣↙

↪→" $5 }
16

17 # if we find the "Excitation energy" line , we store the ↙
↪→excitation energy

18 # and print the table , since we do not care about the rest of the
19 # block. Next we reset the inside_block flag for the next ↙

↪→block to come.
20 inside_block ==1 && /^ *Excitation energy/ {
21 excitation_energy=$3
22

23 # print the data tab -separated (for analysis with e.g. cut)
24 print state_number "\t" term_symbol "\t" excitation_energy
25

26 inside_block =0
27 }
28 '

8_awk/sol/exstates_extract.sh

46

Licensing and redistribution

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Inter-
national License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-sa/4.0/.

An electronic version of this document is available from https://michael-herbst.com/
teaching/advanced-bash-scripting-2017/. If you use any part of my work, please
include a reference to this URL and as well cite

Michael F. Herbst. Advanced bash scripting 2017. November 2017. URL
http://doi.org/10.5281/zenodo.1045332.

47

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://michael-herbst.com/teaching/advanced-bash-scripting-2017/
https://michael-herbst.com/teaching/advanced-bash-scripting-2017/
http://doi.org/10.5281/zenodo.1045332

	Contents
	Solutions to the exercises
	Solution to 1.6
	Solution to 1.7
	Solution to 1.8
	Solution to 2.1
	Solution to 2.2
	Solution to 2.3
	Solution to 2.4
	Solution to 2.5
	Solution to 2.6
	Solution to 2.7
	Solution to 2.8
	Solution to 2.9
	Solution to 2.10
	Solution to 3.2
	Solution to 3.3
	Solution to 3.4
	Solution to 3.8
	Solution to 3.9
	Solution to 3.10
	Solution to 3.11
	Solution to 4.1
	Solution to 4.2
	Solution to 4.4
	Solution to 4.5
	Solution to 4.6
	Solution to 4.7
	Solution to 4.8
	Solution to 4.13
	Solution to 4.14
	Solution to 4.15
	Solution to 4.16
	Solution to 4.17
	Solution to 4.18
	Solution to 4.19
	Solution to 5.1
	Solution to 5.2
	Solution to 5.3
	Solution to 5.4
	Solution to 5.5
	Solution to 5.6
	Solution to 5.7
	Solution to 6.2
	Solution to 6.3
	Solution to 6.4
	Solution to 6.5
	Solution to 6.6
	Solution to 6.7
	Solution to 7.2
	Solution to 7.3
	Solution to 7.4
	Solution to 7.5
	Solution to 7.6
	Solution to 7.7
	Solution to 7.8
	Solution to 8.2
	Solution to 8.3
	Solution to 8.4
	Solution to 8.5
	Solution to 8.9
	Solution to 8.10

	Licensing and redistribution

