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Energy consumption of materials discovery

Current solutions limited by properties of available materials
⇒ Innovation driven by discovering new materials

Experimental research extremely energy intensive
1 fume hood ≃ 2-3 average households1

⇒ Complement experiment by computational materials discovery
1D. Wesolowski et. al. Int. J. Sustain. High. Edu. 11, 217 (2010).
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High-throughput materials screening
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High-throughput materials screening

conductivitySuitable for
solar cells?

min
Ψ

⟨Ψ, HΨ⟩

Suitable for
solar cells?

Energy consumption ?
8h of 36-core processor
≃ 4h of average household
≃ 1 CHF
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High-throughput materials screening
We can fully automate this !
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Computational materials discovery

}
DFT PBE stability

DFT PBE band gap
Hybrid-DFT band gap

Beyond DFT

Simulation-based filtering

Goal: Only promising candidates made in the lab
Systematic simulations on ≃ 104 − 106 compounds

Noteworthy share of world’s supercomputing resources

Energy consumption of LUMI (one of the most efficient):
60 million kWh / year ≃ 1.5 EPFLs ≃ 14000 households
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Challenges of high-throughput regime

Complexity of multiscale materials modelling
Many parameters to choose (algorithms, tolerances, models)

Automated workflows & data management software (see above)

Despite elaborate heuristics: Thousands of failed calculations
⇒ Wasted resources
⇒ Increased human attention (limits througput)

Traversing the design space
How to best optimise material properties
How much accuracy is needed ?
How could we explore unusual gradients ?
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A focus on robust materials simulations
Goal in group:

Obtain reliable & efficient simulations
Develop and employ mathematically sound error indicators
Transform empirical wisdom to built-in convergence guarantees

⇒ Understand where and how to spend efforts best

Practical error indicators:
Automatic & robust verification
Multi-fidelity statistical surrogates
Active learning of missing physics

Leverage inexactness:
Error balancing: Optimal adaptive parameter selection
Adaptive tolerances & selective precision

⇒ Multidisciplinary expertise required
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Difficulties of cross-disciplinary research
(A computational science point of view . . . )

Community conventions . . .
Language barriers, publication culture, speed of research, . . .

. . . that are cemented in software:
Priorities differ ⇒ What is considered “a good code” differs

Mathematical software
Goal: Numerical experiments
Scope: Reduced models
High-level language:
Matlab, python, . . .
Lifetime: 1 paper
Size: < 1k lines
Does not care about performance

Application software
Goal: Modelling physics
Scope: All relevant systems
Mix of languages:
C, FORTRAN, python, . . .
Lifetime: 100 manyears
Size: 100k – 1M lines
Obliged to write performant code
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Mathematical software
Goal: Numerical experiments
Scope: Reduced models
High-level language:
Matlab, python, . . .
Lifetime: 1 paper
Size: < 1k lines
Does not care about performance

Application software
Goal: Modelling physics
Scope: All relevant systems
Mix of languages:
C, FORTRAN, python, . . .
Lifetime: 100 manyears
Size: 100k – 1M lines
Obliged to write performant code

Working with these codes requires different skillsets
⇒ Orthogonal developer & user communities

Obstacle for knowledge transfer:
Mathematical methods never tried in practical setting
(and may well not work well in the real world)

Some issues cannot be studied with mathematical codes
(and mathematicians may never get to know of them)

Hypothesis: People compose if software composes 7 / 32



Density-functional toolkit1 — https://dftk.org

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

HΨ = EΨ

code for cross-disciplinary research:
Allows restriction to relevant model problems,
and scale-up to application regime (1000 electrons)

Sizeable feature set in 7500 lines of code
Norm-conserving pseudos, mGGA functionals, response

Integrated with high-throughput:

Fully composable due to abstractions:
Arbitrary precision (32bit, >64bit, . . . )
Algorithmic differentiation (AD)
HPC tools: GPU acceleration, MPI parallelisation

Accessible high-productivity research framework:
Key contributions by undergrads (AD, GPU, Pseudos, . . . )
Over 30 contributors in 5 years (Maths, physics, CS, . . . )

1MFH, A. Levitt, E. Cancès. JuliaCon Proc. 3, 69 (2021).
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Density-functional theory (insulators)
Goal: Understand electronic structures (Many-body quantum system)

DFT approximation: Effective single-particle model
∀i ∈ 1 . . . N :

(
−1

2∆ + V (ρΦ)
)
ψi = εiψi,

V (ρ) =Vext + VHxc(ρ),

ρΦ =
N∑
i=1

|ψi|2 ,

Self-consistent field (SCF) fixed-point problem
ρ
(
V (ρ)

)
= ρ

Density mixing (preconditioner P , damping α)

ρn+1 = ρn + αP−1 [
ρ
(
V (ρn)

)
− ρn

]
Best P & α highly system dependent (metal, insulator, . . . )

Usually chosen by trial and error (Impact on energy consumption . . . )
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Self-consistent field problem
Density-mixing SCF procedure (preconditioner P , damping α)

ρn+1 = ρn + αP−1 [
ρ

(
V (ρn)

)
− ρn

]
Near a fixed-point the error goes as

en+1 ≃
[
1 − αP−1ε†

]
en

with dielectric matrix ε† = (1 − χ0K), K(ρ) = V ′(ρ), χ0(V ) = ρ′(V )

Convergence iff −1 <
[
1 − αP−1ε†

]
< 1

Dielectric matrix ε†: Depends on physics (conduction, screening)

By second-order conditions: ε† ≥ 0 (near fixed point)

⇒ Ideal preconditioner has P−1ε† ≈ I

Note: P needs to adapt to physics of unknown system!

No such P available: Choose α appropriately (Trial and error)
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Illustration: Guessing a suitable damping α can be hard

damping
α

Inefficient standard damping
(0.6 − 0.8)
Surprisingly small damping for
smooth convergence

Heusler alloy: Materials class with unusual
magnetic properties

⇒ Numerically challenging behaviour
SCF irregular: α versus convergence
Usual heuristics breaks:
Larger damping is better
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Self-adapting black-box algorithms

Preconditioning inhomogeneous
systems (surfaces, clusters, . . . )

LDOS preconditioner1:
Parameter-free and self-adapting
ca. 50% less iterations

Damping α adapted in each step
(using tailored quadratic model)

Avoids trial and error
(but may have a small overhead)

Safeguard with theoretical guarantees2

⇒ Maths / physics collaboration:
Exchange of ideas between simplified & practical settings crucial

1MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
2MFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).
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Response, properties and algorithmic differentiation

DFT properties: Response of system to external changes:
Connection Theory ⇔ Experiment
Modelling: Potential V (θ, ρ) depends on parameters θ
(e.g. atomic positions, el. field)

SCF procedure yields fixed-point density ρ∗

0 = ρ
(
V (θ, ρ∗)

)
− ρ∗

⇒ Defines implicit function ρ∗(θ)

Properties are derivatives:
Forces (energy wrt. position), dipole moment (energy wrt. el. field),
elasticity (energy cross-response to lattice deformation), phonons,
electronic spectra, . . .

⇒ Great application for algorithmic differentiation !
Byproduct: Arbitrary derivatives

Sensitivities, improved training of surrogates . . .
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AD for stresses keeps code accessible

Stress =

1

det(L)

∂E
[
P∗, (I +M)L

]

∂M

∣∣∣∣∣
M=0

# Run SCF, get P*
scfres = self_consistent_field(basis)

L = basis.model.lattice
stress = 1/det(L) * gradient(

M -> recompute_energy(
scfres, (I + M) * L),

zero(L)
)

Stress computation (Definition vs. code)1

Post-processing step ⇒ Not performance critical

Comparison of implementation complexity:
DFTK : 20 lines1 (forward-mode algorithmic differentiation)

Quantum-Espresso: 1700 lines2

Initial version: ≃ 10-week GSoC project

1https://github.com/JuliaMolSim/DFTK.jl/blob/master/src/postprocess/stresses.jl
2https://github.com/QEF/q-e/blob/develop/PW/src
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Arbitrary derivatives: Need efficient response

Full DFT equivalent is density-functional perturbation theory

∂ρ∗

∂θ
= [1 − χ0K]−1 χ0

∂V

∂θ
(2)

Challenge: Need many applications of χ0:
Each requires solving N Sternheimer equations(

H̃ − εi

)
δψi = −P δV ψi ∀i = 1, . . . , N

H = − 1
2 ∆ + V , H̃ = PHP and P some projector (εi, ψi) eigenpairs of H

⇒ Nested iterative problem . . . which can be ill-conditioned
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Sternheimer equations
Product χ0δV requires solving Sternheimer equations(

H̃ − εi
)
δψi = −P δV ψi ∀i = 1, . . . , N

H = − 1
2 ∆ + V , H̃ = PHP and P some projector

(εi, ψi) eigenpairs of H

⇒ Badly conditioned for metallic systems (εi near eigenvalue of H̃)
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Fe2MnAl Heusler alloy
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Schur complement approach to response1

Numerics of eigensolver:
We have Nex “extra” bands

Use these to partition H̃:

H̃ =

 Eex C

C† R


Eex = diag(εN+1, . . . , εN+Nex)
& C, R projections of H̃

⇒ Use Schur complement:
Better-conditioned systems

(R − εi)x = b

Fe2MnAl Heusler alloy

standard approach
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40% less iterations

40% less iterations

Schur-based approach tames CG
ca. 40% less iterations

Development guided using a
“real material”

1E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
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WIP: Inexact Krylov methods

DFPT + Sternheimer: Nested linear problems

Inexact Krylov methods:1 Framework to tolerate less tight
solutions of Sternheimer

First results indicate 25%–50% less Hamiltonian applications
(the expensive step)

Bonan Sun
1V. Simonicini, D. Szyld. SIAM J. Sci. Comput., 25, 454 (2003).
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Case for error control: Error comes in different flavours

More accurate numerics

Be
tt

er
ph

ys
ic

al
m

od
el

s

Ideally want to balance errors
⇒ Need reliable error indicators !
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Numerical error: Analytical techniques

Γ XX WW KK ΓΓ LL UU WW LL K|U X
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Band structure with guaranteed errors1

Estimation of basis set error in ρ2

Momentum towards numerical error estimators for DFT
Focus on basis set error (some also tackle floating-point, SCF convergence)

Results promising, but many challenges & caveats remain
Numerical experiments & problem simplifications crucial

⇒ DFTK is major research tool for this development1-4

Techniques for DFT error less developed (and hard to tackle analytically)

1MFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).
2E. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).
3E. Cancès, G. Kemlin, A. Levitt. J. Matrix Anal. Appl., 42, 243 (2021).
4E. Cancès, G. Kemlin, A. Levitt. J. Sci. Comput., 98, 25 (2024) 21 / 32
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WIP: Heteroscedastic regression models

Lattice constant a
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(a
)

−7.935

−7.930

−7.925

−7.920
Homoscedastic GP: Only high-accuracy
Homoscedastic GP: All data
Heteroscedastic GP: All data
High-accuracy discretisation basis
Low-accuracy discretisation basis
Converged discretisation basis

1D proof of principle: energy-volume curve (Equation of state)

High-dimensional regression problems: Data is scarce

Error δi can be estimated ⇒ supply to GP

For example: Heteroscedastic model:

Ei = DFT(ai) + εi εi ∼ N (0, δi)

Anna Paulish
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DFT error: Computing model sensitivities

Consider model sensitivity of force F(ρ∗(θ)):

dF
dθ

= ∂F
∂ρSCF

∂ρ∗
∂θ

(1)

Computed by response theory (we’ve seen this before !):

∂ρ∗
∂θ

= [1 − χ0K]−1 χ0
∂V

∂θ

Parameters appear in innermost layer (model definition)
Each DFT model: Different derivatives ∂V

∂θ (can be horrible)

Each quantity of interest: Different sensitivity expression (1)
⇒ Combinatorial explosion
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WIP: Sensitivity analysis in one line of code
DFTK : Algorithmic differentiation (AD)
Generic framework for derivatives: Request gradient, AD delivers

⇒ New properties/derivatives by non-DFT experts!

⇒ Setting for uncertainty quantification:
Pseudopotential sensitivity of electronic density

Niklas Schmitz
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High-level structure of density-functional theory
Energy minimisation problem (discretised setting):

min
D∈P

E(D) = min
D∈P

[tr(H0D) + EHxc(D)]

Non-linear, non-convex Riemannian optimisation (P: Grassmanian)

What we care about: Illustration on model problem x∗ = min
x∈RN

E(x)

Numerical methods: xk+1 = xk − α∇E(xk) (SCF, direct min.)

Convergence depends on 1 − α∇2E(x∗)
Need to understand ∇2E(x∗) for preconditioning

Response, properties and algorithmic differentiation
Solution to minxE(x, θ) satisfies
x(θ) ≈ x∗ − θ∇2E(x∗, 0)−1 ∂

∂θ∇E(x∗, 0)
Changing θ: This is how experiments explore physics
Sensitivities & model uncertainties

A posteriori error: x− x∗ ≈ −∇2E(x∗)−1 ∇E(x)
Estimate accuracy of simulations
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WIP: Integration into high-throughput frameworks
Algorithms are only useful if they work in practice !

DFTK plugin for workflow manager
Goal: Automated testing of algorithms and error estimates

Verification study Quantum-Espresso vs. DFTK

⇒ Results agree, algorithms can outperform QE

Bruno Ploumhans
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DEMO

DEMO

DFTK interface and ecosystem integration

→ https://github.com/mfherbst/demo-molssi-workshop-dftk
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Advertisement break

Open PostDoc in the group

Your new officeYour new office

Topic: Efficient inverse materials design
Bayesian optimisation
AD & gradient approaches
Interdisciplinary environment of :
Reproducible workflows, sustainable software,
computational materials discovery, statistical learning

See https://matmat.org/jobs/

Psi-k workshop (M. F. Herbst, A. Levitt, J. Haegeman):
“Julia for numerical problems in quantum and solid-state physics”

26–28 November 2024 at , CECAM-HQ, Lausanne
Targets: Linear algebra, physics and communities

⇒ https://www.cecam.org/workshop-details/1355 (Deadline: 20th Sep)
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Summary and outlook
Current state of DFTK :

Unique robust material-adapting DFT algorithms
ForwardDiff to setup & solve response problems
Reduced settings (error analysis) and high-throughput testing

Future work:
Explore error control & sensitivity (inverse design, surrogates)

Employ as frontend for domain-specific libraries (SIRIUS)
Composability with JuliaMolSim (structure opt., surrogates, . . . )

Bring methods to (for adoption and testing !)

Where you can help:
Improve GPU performance (Hackaton anyone ?)

Parallelisation & performance bottle necks in AD / response
Explore alternative AD backends (Enzyme)

Use DFTK & JuliaMolSim, report bugs, enhance docs
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Questions?

https://matmat.org

� mfherbst

 michael.herbst@epfl.ch

B
https://michael-herbst.com/talks/2024.10.21_JuliaMolSim_DFTK.pdf

DFTK https://dftk.org
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