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Energy consumption of materials discovery

Current solutions limited by properties of available materials
⇒ Innovation driven by discovering new materials

Experimental research extremely energy intensive
1 fume hood ≃ 2-3 average households1

⇒ Complement experiment by computational materials discovery
1D. Wesolowski et. al. Int. J. Sustain. High. Edu. 11, 217 (2010).
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Computational materials discovery

}
DFT PBE stability

DFT PBE band gap
Hybrid-DFT band gap

Beyond DFT

Simulation-based filtering

Goal: Only promising candidates made in the lab
Systematic simulations on ≃ 104 − 106 compounds

Noteworthy share of world’s supercomputing resources

Complexity of multiscale materials modelling
Many parameters to choose (algorithms, tolerances, models)

Despite elaborate heuristics: Thousands of failed calculations

Need for robust numerical methods
Mathematical insight and analysis crucial

⇒ Here: Property simulations in density-functional theory (DFT)
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Density-functional theory
DFT approximation: Effective single-particle model

∀i ∈ 1 . . . N :
(

−1
2∆ + V (ρΦ)

)
ψi = εiψi,

V (ρ) =Vext + VHxc(ρ), where VHxc(ρ) = vCρ+ VXC(ρ)

ρΦ =
N∑
i=1

f

(
εi − εF
T

)
|ψi|2 ,

Self-consistent field procedure: Fixed-point problem
F
(
Vext + VHxc(ρSCF)

)
= ρSCF

F (V ) is the potential-to-density map (i.e. diagonalisation)

F (V ) =
∞∑
i=1

f

(
εi − εF
T

)
|ψi|2 where

(
−1

2∆ + V

)
ψi = εiψi

εF chosen such that
∫
F (V ) = N (number of electrons)

nuclear attraction Vnuc, exchange-correlation VXC, Hartree potential −∆ (vCρ) = 4πρ,
ψi orthogonal, f : Occupation function between 0 and 2
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Materials properties: Simulation ↔ experiment

DFT properties: Response of system to external changes:
Connection Theory ⇔ Experiment
Modelling: Potential V (θ, ρ) depends on parameters θ
(e.g. atomic positions, el. field)

SCF procedure yields fixed-point density ρSCF

0 = F
(
V (θ, ρSCF)

)
− ρSCF

⇒ Defines implicit function ρSCF(θ)

Properties are derivatives:
Forces (energy wrt. position), dipole moment (energy wrt. el. field),
elasticity (energy cross-response to lattice deformation), phonons,
electronic spectra, . . .

There are further interesting derivatives . . .
θ is parameter of DFT model: . . . uncertainty quantification
θ is parameter of discretisation: . . . a posteriori error estimates
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DFT derivatives: Density-functional perturbation theory

F (Vext + VHxc(ρSCF)) = ρSCF

δV : Perturbation to Vext, by chain rule
δρ = F ′(Vext + VHxc(ρSCF)) · (δV +K∗δρ)

⇔ δρ = (1 − χ0K)−1 χ0δV

where K∗ = V ′
Hxc(ρSCF), χ0 = F ′(Vext + VHxc(ρSCF))

Dyson equation: Solved by iterative methods (more on this later)

Adler-Wiser formula (using fn = f(εn)):

δρ(r) =
∞∑
n=1

∞∑
m=1

fn − fm
εn − εm

ψ∗
n(r)ψm(r) (δVmn − δεF δnm)

under the convention
fn − fn

εn − εn
= 1
T
f ′
(
εn − εF

T

)
= f ′

n

and where δVmn = ⟨ψm|δV ψn⟩, δεF has an explicit formula
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Getting rid of infinities (1)
Represent δρ by variations δψn and δfn1 (our new unknowns)

δρ(r) =
N∑
n=1

2fn Re
(
ψ∗
n(r)δψn(r)

)
+ δfn |ψn(r)|2

where δfn = f ′
n(δVnn − δεF )

Define:
P = span {ψn |n = 1, . . . , N}: Space spanned by N lowest
eigenpairs (εn, ψn) of H (occupied subspace)

ΠQ = 1 − ΠP with ΠP projector onto P .

Separate the contributions:
fnδψn = fnδψ

P
n + fnδψ

Q
n

Note: We deal with the setting of many basis functions
(Plane waves, wavelets, finite elements, real-space, . . . )

⇒ We cannot compute all eigenpairs of H

1E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
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Getting rid of infinities (2)

N∑
n=1

2fn Re
(
ψ∗

n(r)δψP
n (r)

)
=

N∑
n=1

N∑
m=1

fn − fm

εn − εm
ψ∗

n(r)ψm(r)δVmn

occupied-occupied δψPn : Use sum over states

fnδψ
P
n =

N∑
m=1,m ̸=n

Γmnψm

where we need Γnn = 0 and

Γmn + Γ∗
nm = fn − fm

εn − εm
δVmn

Question 1: This is not unique. How to choose Γnm?
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Getting rid of infinities (3)
unocc-occ δψQn : Use Sternheimer equation

ΠQ(H − εn)ΠQδψn = −ΠQδV ψn ∀n = 1, . . . , N (∗)

Question 2: (∗) is badly conditioned if gap εN+1 − εN small
⇒ How can we make response cheaper for metals?
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Getting rid of infinities (4)
∂ρSCF
∂θ

= [1 − χ0K]−1 χ0
∂V

∂θ
(Dyson)

Dyson equation solved iteratively (e.g. GMRES)

Each matvec χ0δV requires solving N Sternheimer equations

Question 3: How to choose Sternheimer tolerance τCG

adaptively (depending on GMRES tolerance τ)

Naive strategies: τCG = τ/100 and τCG = τ/10 for τ = 10−9
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Total Hamiltonian applications (CG iterations)

Dashed: GMRES
estimated residual norm
Solid: Actual residual
norm

Fail by 3 orders (Al40 supercell)
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The bad choice: Orthogonal gauge
Recall, we need

Γmn + Γ∗
nm = ∆mn = fn − fm

εn − εm
δVmn

and additionally Γmn = ⟨ψm|fnδψn⟩ by construction

Zero temperature (insulators): δψP = 0
⇒ Orbitals can be kept orthogonal under response (for insulators)

Orthogonal gauge: Enforce orthogonality in all cases, i.e.
0 = δ ⟨ψm|ψn⟩ = ⟨δψm|ψn⟩ + ⟨ψm|δψn⟩
⇒ 0 = Γmn/fn + Γ∗

nm/fm

⇒ Γorth
mn = fn

εn − εm
δVmn

Problem: This can lead to a large contribution as εn → εm
which is almost compensated by Γorth,∗

nm

⇒ Loss of numerical precision
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The optimal choice: Minimal gauge

Minimise the size of all contributions to δψn, i.e.

min
∑
m,n

1
f2
n

|Γmn|2

s.t. Γmn + Γ∗
nm = ∆mn = fn − fm

εn − εm
δVmn

Minimal gauge: Solution to above problem

Γmn = f2
n

f2
n + f2

m

∆mn

Other gauge choices:
Quantum Espresso: Γmn = fFD

(
εn−εm

T

)
∆mn

Abinit: Γmn = 1fn>fm∆mn
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Comparison of gauges

−2 −1 0 1 2

0

2

4

6

εm

|Γ
m

n
|

Gauge comparison, εn = 0, εF = 0, T = 0.1

1
2T

simple
orthogonal
Abinit
QE
minimal

Graph investigates the growth of δρ wrt. δV
1

2T gives lower bound (from ∆mn), we don’t want to overshoot it

⇒ Orthogonal should be avoided, all others reasonable
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Extra SCF orbitals1

Each application of χ0 to a δV requires solving Sternheimer
for all n = 1, . . . , N(

H̃ − εn
)
δψQn = −ΠQ δV ψn ∀n = 1, . . . , N

H = − 1
2 ∆ + V , H̃ = ΠQHΠQ (εn, ψn) eigenpairs of H

If gap εN+1 − εN closes (metals), conditioning gets worse

But we have not used all we know:
Standard iterative diagonalisations (and thus SCFs)
yield Nex additional orbitals Φ = (ψN+1, . . . , ψN+Nex)
Notable property: ΦTHΦ = diag(εN+1, . . . , εN+Nex)

1E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
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Schur complement approach to response1

(
H̃ − εn

)
δψn = −ΠQ δV ψn ∀i = 1, . . . , N

Use Nex extra orbitals to partition H̃:

H̃ =

 Eex C

C† R

 where

Eex = diag(εN+1, . . . , εN+Nex)

C = ΦΦ†H̃
(
1 − ΦΦ†

)
R =

(
1 − ΦΦ†

)
H̃
(
1 − ΦΦ†

)
⇒ Typical Schur complement setting:

Solve for ΦΦ†δψn exactly
x =

(
1 − ΦΦ†) δψn obtained by (b appropriate RHS)(

R − C†Eex
−1C − εn

)
x = b

Smallest eigenvalue about εN+Nex − εN

⇒ Conditioning improved, savings on CG iterations
1E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
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Schur-based response: Numerical examples1

Al40 rattled supercell
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40% less iterations

40% less iterations

Largest reduction in iterations
near Fermi level (n = 58)
(where gap is smallest)

Overall 17% less iterations
⇒ Improvement comes for free

(extra bands needed during SCF)

Relevant materials class with unusual
magnetic properties
Translates to challenging numerical
behaviour
Schur-based approach tames CG
ca. 40% less iterations

1E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
17 / 35

https://doi.org/10.1007/s11005-023-01645-3


aM tM t

Contents

1 Gauge choices

2 Sternheimer with a Schur complement

3 Adaptive Sternheimer tolerance

4 Errors and sensitivities

18 / 35



Choosing the Sternheimer tolerance
∂ρSCF

∂θ
= [1 − χ0K]−1

χ0
∂V

∂θ

(
H̃ − εn

)
δψn = −P δV ψn ∀i = 1, . . . , N

GMRES tolerance τ CG tolerance τCG
i,n

Dyson + Sternheimer: Nested iteratively solved problems
Tolerance for CGs when applying χ0 ?
Naive strategies: τCG

i,n = τ/100 and τCG
i,n = τ/10 for τ = 10−9
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Fail by 3 orders (Al40 supercell)
⇒ Need adaptive & guaranteed strategy for τCG

i,n

19 / 35



Inexact GMRES1

Inexact application: (A+ Ek)vk
Inexact Arnoldi decomposition

AVm + [E1v1, E2v2, · · · , Emvm] = Vm+1Hm

GMRES terminates with exact residual ∥rm∥ ≤ τ if

∥Ekvk∥ ≤ σm(Hm)
3m

τ

∥r̃k−1∥

where
∥r̃i−1∥: GMRES estimated residual norm
σm(Hm): m-th condition number of GMRES Hessenberg
m: GMRES maximal subspace size

1V. Simonicini, D. Szyld. SIAM J. Sci. Comput., 25, 454 (2003).
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Dyson equation case
∂ρSCF

∂θ
= [1 − χ0K]−1

χ0
∂V

∂θ

(
H̃ − εn

)
δψn = −P δV ψn ∀i = 1, . . . , N

GMRES tolerance τ CG tolerance τCG
i,n

δρ(r) =
N∑

n=1

2fn Re
(
ψ

∗
n(r)δψn(r)

)
+ δfn |ψn(r)|2

Operator A = 1 − χ0K, inexact operator Ã = 1 − χ̃0K (using
CG tolerance τCG

i,n)

Then (without Schur complement trick):

∥∥∥(A− Ã) vi
∥∥∥ ≲ √

N ∥Kvi∥ · max
x∈Ω

max
c∈RN

∥c∥=1

∣∣∣∣∣
N∑
n=1

2 Re
(
cn ψn(x)

)∣∣∣∣∣
· max
n=1,··· ,N

fn
εN+1 − εn

τCG
i,n k

√
Ecut3/2

where k are system-size independent constants

⇒ Combine with inexact GMRES to adaptively determine τCG
i,n
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Inexact Krylov methods for response1

Theorem: Guaranteed convergence of GMRES to τ when

τCG
i,n ≲

1
k C

√
|Ω|

N Ecut3/4
1
fn

s

3m ∥r̃i−1∥
τ

∥r̃i−1∥: GMRES estimated residual norm
s: Estimate for cond. num. of GMRES Hessenberg matrix
(updated on the fly)

m: GMRES maximal subspace size
k: Constants of order 1
C: System size-indep. const. (includes blue from prev. slide)

Main features:
Looser tolerance closer to convergence (as r̃i−1 → 0)

Looser tolerance for small fn (when Sternheimer worst conditioned)

Tighter tolerance for larger systems (as
√

|Ω|
N

↘)

1MFH, B. Sun, in preparation.
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Inexact Krylov methods for response1
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Balanced (hdmd) sets C = 1

Requires a good preconditioner for metals (since ∥Kvi∥ dropped)

⇒ We employ standard Kerker preconditioner also in GMRES

Aggressive (agr) drops even more constants
Even faster than hdmd, but can be a factor 10 off

From about 20M to 12M Hamiltonian applications
(the expensive step)

⇒ Superlinear convergence Bonan Sun

1MFH, B. Sun, in preparation. 23 / 35
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DFT error: Computing model sensitivities

DFT models usually contain parameters θ
Natural question: How sensitive are results ?

Consider model sensitivity of force F(ρ, θ):

dF
dθ

= ∂F
∂ρSCF

∂ρSCF
∂θ

+ ∂F
∂θ

(1)

Computed by response theory (we’ve seen this before !):

∂ρSCF
∂θ

= [1 − χ0K]−1 χ0
∂V

∂θ

We know how to solve this (previous section)

⇒ Should be easy, right ?
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Computing sensitivities

(1) dF
dθ

= ∂F
∂ρSCF

∂ρSCF

∂θ
+ ∂F
∂θ

; ∂ρSCF

∂θ
= [1 − χ0K]−1 χ0

∂V

∂θ

Obstacle: Parameters are in innermost layer (model definition)
Each DFT model: Different derivatives ∂V

∂θ (can be horrible)

Each quantity of interest: Different sensitivity expression (1)
⇒ Combinatorial explosion

Use algorithmic differentiation (AD) (≈ automatic derivatives)
Generic framework for DFT derivatives / response properties

⇒ Breaks “one PhD student per derivative” paradigm
⇒ New properties/derivatives by non-DFT experts!
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Sensitivities in practice
function dft_forces(θ)

system = ...

model = model_DFT(system, PbeExchange(θ))
basis = PlaneWaveBasis(model; Ecut=..., kgrid=... )

scfres = self_consistent_field(basis).energies.total

compute_forces_cart(scfres)

end

sensitivities = ForwardDiff.gradient(dft_forces, θ)

dF
dθ

= ∂F
∂ρSCF

∂ρSCF
∂θ

+ ∂F
∂θ

AD saves manual coding: Request gradient (1), AD delivers
AD orchestrates calculation, i.e. constructs RHS for

∂ρSCF
∂θ

= [1 − χ0K]−1 χ0
∂V

∂θ

. . . and expression to compute dF
dθ from it

Hard to achieve in traditional electronic structure codes
Readily available in DFTK (https://dftk.org)

Niklas Schmitz
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Outlook: Pseudopotential sensitivities

Pseudopotential sensitivity of electronic density
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Outlook: A posteriori error estimation

Estimation of basis set error in ρ

Suppose an SCF is solved in a small basis to obtain ρ
⇒ Obtain estimate of error in ρ by solving a response problem !

Basis of recent practical error bound for forces1

(Development & testing has been performed in DFTK )

1E. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).
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Closing the gap between maths and high-throughput

DFTK plugin for workflow manager

Goal: Simplify automated testing of novel algorithms

Verification study Quantum-Espresso vs. DFTK
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Density-functional toolkit1 — https://dftk.org

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

HΨ = EΨ

code for cross-disciplinary research:
Allows restriction to relevant model problems,
and scale-up to application regime (1000 electrons)

Sizeable feature set in 7500 lines of code
Including some unique features (Self-adapting algorithms)

Integrated with high-throughput:

Fully composable due to abstractions:
Arbitrary precision (32bit, >64bit, . . . )
Algorithmic differentiation (AD)
HPC tools: GPU acceleration, MPI parallelisation

Accessible high-productivity research framework:
Key contributions by undergrads (AD, GPU, Pseudos, . . . )
Over 30 contributors in 5 years (Maths, physics, CS, . . . )
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Advertisement break

Open PostDoc in the group

Your new officeYour new office

Topic: Efficient inverse materials design

Interdisciplinary environment
Bayesian optimisation
AD & gradient approaches
See https://matmat.org/jobs/

Psi-k workshop (with A. Levitt, J. Haegeman):
“Julia for numerical problems in quantum and solid-state physics”

26–28 November 2024 at EPFL, CECAM-HQ, Lausanne
Targets people from linear algebra, physics and computer science
Techniques & collaborations enabled by

⇒ https://www.cecam.org/workshop-details/1355
Deadline: 20th Sep
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Summary

Challenges of response calculations for metals
Closing gap worsens conditioning of linear system
Ambiguity in representing density response (gauge freedom)

Mathematical analysis of DFPT
Schur-complement approach to response
Adaptive Krylov methods
Preconditioning strategies for Dyson equation in metals
∼ 80% faster, while no additional cost
Readily available in DFTK

Enables fast & robust derivative computations (in combination with AD)

Fast properties
Fast error estimates
Fast sensitivities
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How does algorithmic differentiation (AD) work?
function F(x)

y1 = x[1] + x[2] # F1 = sum
y2 = 2 * p # F2 = double
return y2

end

Goal: Compute derivative of this code

Function F : R2 → R with F (x) = double(sum(x1, x2))
Derivative at x̃ is characterised by its Jacobian matrix

[JF (x̃)]ij =
(
∂F

∂x

∣∣∣∣
x=x̃

)
ij

= ∂Fi
∂xj

∣∣∣∣∣
x=x̃

Finite differences: Simple, one column at a time:

[JF (x̃)]:,j = F (x̃+ αej) − F (x̃)
α

(with ei unit vectors)

⇒ Inaccurate and slow (O(N) times primal cost)
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Chain rule to the rescue!
function F(x)

y1 = x[1] + x[2] # F1 = sum
y2 = 2 * p # F2 = double
return y2

end

F (x) = double(sum(x1, x2))

“double” and “sum” are simple and frequent primitives
⇒ Key idea of AD:

Compose the derivative of F from the Jacobians of primitives

Assumed to be known and already implemented

Use chain rule as glue, e.g. for a Jacobian element at x̃:

∂Fi
∂xj

= ∂double(a)
∂a

(
∂sum(c, d)

∂c

∂x1
∂xj

+ ∂sum(c, d)
∂d

∂x2
∂xj

)

More compact: eTi JF ej = eTi JdoubleJsumej

Note: Jdouble is needed at sum(x̃1, x̃2)
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Forward-mode algorithmic differentiation

function F(x)
y1 = x[1] + x[2] # F1 = sum
y2 = 2 * p # F2 = double
return y2

end

F (x) = double(sum(x1, x2))
eTi JF ej = eTi JdoubleJsumej

Forward-diff: Evaluate in order with primal F :
1 Set y0 = (x1, x2), ẏ0 = ej

2 Compute y1 = sum(y0) and ẏ1 = Jsum(y0)ẏ0

3 Compute y2 = double(y1) and ẏ2 = Jdouble(y1)ẏ1

4 Obtain F (x1, x2) as y2 and [JF ]:,j = ẏ2

⇒ Again one column of JF at a time

Implementation: Numbers → dual numbers

Vectorisation & other tricks: Usually faster than finite diff.

But: Still O(N) times primal cost
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Optimal cost for differentiation (1)
function F(x)

y1 = x[1] + x[2] # F1 = sum
y2 = 2 * p # F2 = double
return y2

end

F (x) = double(sum(x1, x2))
eTi JF ej = eTi JdoubleJsumej

Proposition
If f : RN → R is a differentiable function, computing ∇f = Jf is
asymptotically not more expensive than f itself.

⇒ This is violated for finite diff and forward diff.

Let’s try to be more clever:
We could write F (x) = bTAx for appropriate (sparse) A, b

Equivalent formulation: F (x) = (AT b)Tx
Differentiate that: ∇F = AT b ⇒ costs the same as F .

To generalise this idea note that (for scalar functions)
F (x) = bTJFx+ O(x2) 40 / 35



Optimal cost for differentiation (2)
function F(x)

y1 = x[1] + x[2] # F1 = sum
y2 = 2 * p # F2 = double
return y2

end

F (x) = double(sum(x1, x2))
eTi JF ej = eTi JdoubleJsumej

Let’s try to be more clever:
We could write F (x) = bTAx for appropriate (sparse) A, b

Equivalent formulation: F (x) = (AT b)Tx
Differentiate that: ∇F = AT b ⇒ costs the same as F .

To generalise this idea note that (for scalar functions)

F (x) = bTJFx+ O(x2) with b = e1 = 1

⇒ Focus on computing adjoint of Jacobian:

eTi JF ej =
(
JTF ei

)T
ej =

(
JTsumJ

T
doubleei

)T
ej
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Adjoint-mode algorithmic differentiation

function F(x)
y1 = x[1] + x[2] # F1 = sum
y2 = 2 * p # F2 = double
return y2

end

F (x) = double(sum(x1, x2))

eTi JF ej =
(
JTsumJ

T
doubleei

)T
ej

Adjoint-mode AD: Derivative in reverse instruction order.
Forward pass:

1 Set y0 = (x1, x2)
2 Compute y1 = sum(y0) and store it
3 Compute y2 = double(y1) and store it

Reverse pass:
1 Set ȳ2 = ei

2 Compute ȳ1 = [Jdouble(y1)]T ȳ2

3 Compute ȳ0 = [Jsum(y0)]T ȳ1

Obtain [JF ]i,: as ȳT0 =⇒ One row at a time
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Adjoint-mode algorithmic differentiation (2)

Given f : RN → R there is only one ei = 1
⇒ Only one reverse pass computes full gradient ∇f

⇒ O(1) times primal cost
Many names:

Adjoint trick, back propagation, reverse-mode AD

Some difficulties / challenges:
Reverse control flow required!

(Hurts your heads sometimes)

Storage / memory costs

All mutation is bad . . .

One has to be a bit more clever for iterative algorithms . . .
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Sternheimer equations

∂ρSCF

∂θ
= [1 − χ0K]−1 χ0

∂V

∂θ
(2)

Solving (2) (Dyson equation) is not cheap

Each application of χ0 to a δV requires iteratively solving (3)
(Sternheimer equation) for all n = 1, . . . , N

ΠQ(H − εn)ΠQδψn = −ΠQδV ψn (3)

where
δψn: Orbital perturbation (to be determined)

P = span {ψn |n = 1, . . . , N}: Space spanned by N lowest
eigenpairs (εn, ψn) of H (occupied subspace)

ΠQ = 1 − ΠP with ΠP projector onto P .

Caveat: (3) is badly conditioned if gap εN+1 − εN small
⇒ Response can be expensive for metals
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Schur-complement approach1 (1)

×× ×××
1

×
N

P

×
N + 1

T R

× ××× ×

Q

×
N +Nex

×××

SCF diagonalisations yield Nex additional orbitals
Φ = (ψN+1, . . . , ψN+Nex) spanning T .

Not fully converged, i.e. Hψn ̸= εnψn for n = N + 1, . . . , N +Nex

But: Φ†HΦ = diag(εN+1, . . . , εN+Nex)

Split orbital perturbation ΠQδψn = Φαn + ΠRδψ
R
n to obtain:

ΠQ(H − εn)Φαn + ΠQ(H − εn)ΠRδψ
R
n = −ΠQδV ψn︸ ︷︷ ︸

:=bn

Schur complement: Solve component in T (along Φ) explicitly:

αn =
(
Φ†HΦ

)−1

︸ ︷︷ ︸
=D−1

(
Φ†bn − Φ† (H − εn) ΠR︸ ︷︷ ︸

=h†
RT

δψRn

)
1E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
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Schur-complement approach1 (2)

×× ×××
1

×
N

P

×
N + 1

T R

× ××× ×

Q

×
N +Nex

×××

ΠQ(H − εn)Φαn

+ ΠQ(H − εn)ΠRδψ
R
n = bn

αn = D−1
(

Φ†bn − h†
RT δψ

R
n

)
It only remains to iteratively solve the component δψRn :[

ΠR(H − εn)ΠR − hRTD
−1h†

RT

]
ΠRδψ

R
n =

[
ΠR − hRTD

−1Φ†
]
bn

ΠR almost removes small eigenmodes of H − εn

⇒ Smallest eigenvalue of ΠR(H − εN )ΠR is about εN+Nex − εN

For metals: Substantially larger than εN+1 − εN

⇒ Improved conditioning

1E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
47 / 35

https://doi.org/10.1007/s11005-023-01645-3

	Gauge choices
	Sternheimer with a Schur complement
	Adaptive Sternheimer tolerance
	Errors and sensitivities
	Outro
	A & Q
	

	Appendix
	Algorithmic differentiation
	Details on Schur complement approach


	anm0: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


