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Energy consumption of materials discovery

@ Current solutions limited by properties of available materials

= Innovation driven by discovering new materials

@ Experimental research extremely energy intensive
o 1 fume hood ~ 2-3 average households®

= Complement experiment by computational materials discovery

1D. Wesolowski et. al. Int. J. Sustain. High. Edu. 11, 217 (2010).
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Computational materials discovery
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@ Goal: Only promising candidates made in the lab
@ Systematic simulations on ~ 10* — 10% compounds
o Noteworthy share of world's supercomputing resources

@ Complexity of multiscale materials modelling

e Many parameters to choose (algorithms, tolerances, models)
o Despite elaborate heuristics: Thousands of failed calculations

@ Need for robust numerical methods
e Mathematical insight and analysis crucial

= Here: Property simulations in density-functional theory (DFT)
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Density-functional theory
@ DFT approximation: Effective single-particle model

1
Viel...N: <—2A + V(,lhp)) Vi = E; Wi,
V(p) = Vext + Vch(P), where Vch(/)) =vop + Vxc (/))

@ Self-consistent field procedure: Fixed-point problem

F(‘/ext + VHXC([)SCF)) = PSCF
@ F (V) is the potential-to-density map (i.e. diagonalisation)
o0
E; —EF 9 1
E(V) = i h — A+ V) = g0
(V) ;f( T >w| where <2+)¢ it

@ & chosen such that fF(V) = N (number of electrons)

@ nuclear attraction Vpyuc, exchange-correlation Vi, Hartree potential —A (vep) = 4mp,

; orthogonal, f: Occupation function between 0 and 2
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Materials properties: Simulation <+ experiment

@ DFT properties: Response of system to external changes:
e Connection Theory < Experiment
o Modelling: Potential V'(, p) depends on parameters 6

(e.g. atomic positions, el. field)

@ SCF procedure yields fixed-point density pscp
0= F(V(07PSCF)) — PscF
= Defines implicit function pscr(0)

@ Properties are derivatives:

e Forces (energy wrt. position), dipole moment (energy wrt. el. field),
elasticity (energy cross-response to lattice deformation), phonons,
electronic spectra, ...

@ There are further interesting derivatives . ..
@ 0 is parameter of DFT model: ...uncertainty quantification

e 0 is parameter of discretisation: ... a posteriori error estimates
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DFT derivatives: Density-functional perturbation theory

F(Vext + Viixe(pscr)) = pscr

@ 0V Perturbation to Ve, by chain rule
5p = F' (Vs + Viee pscr)) - (8V + K.6p)
& dp=(1- XOK)fl X0V
where K. = Vi, (psce), Xo = F'(Vext + Viixe(pscr))
@ Dyson equation: Solved by iterative methods (more on this later)
o Adler-Wiser formula (using f,, = f(c.,)):
() = 3 3 LI )0 5) (Vi — G
n=1m=1°n —&m

under the convention

Lmle 2y (228) =1

en—€n T T
and where 6Vinn = (¥ |0V s), der has an explicit formula
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Getting rid of infinities (1)
@ Represent 6p by variations 610, and 6 f,! (our new unknowns)
Op(r) = 3 2fnRe (U7, (r)0tbn(r) + 0fn |n(r) ]
n=1

where (S(/‘rz - (/‘r/r((“"’vmz - 651’)
@ Define:

o P=span{y,|n=1,...,N}: Space spanned by N lowest
eigenpairs (Sn,wn) of H (occupied subspace)

o llg =1—1IIp with IIp projector onto P.
@ Separate the contributions:

fn5¢n = fn5¢5 + fn()‘“ ';(;2

@ Note: We deal with the setting of many basis functions
(Plane waves, wavelets, finite elements, real-space, . ..)

= We cannot compute all eigenpairs of H

1E. Cancés, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
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Getting rid of infinities (2)

N

ZZ/,, Re( () ()z b (T Z f” — m' (1) (1) Vi

n=1 n=1m=1

@ occupied-occupied (Mf: Use sum over states

N

m=1m#n
where we need I';,,, = 0 and

Cpn + T, = M(gvmn

€n — Em

@ Question 1: This is not unique. How to choose I';,;,,?
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Getting rid of infinities (3)
@ unocc-occ 91/¢: Use Sternheimer equation

HQ(H — En)HQ(Slpn = —H@(SVdJn Vn = 1, PN N (*)

@ Question 2: (x) is badly conditioned if gap enx+1 — en small
= How can we make response cheaper for metals?

direct

D
o
T

Fe,MnAl Heusler alloy
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Getting rid of infinities (4)

Opscr 1 oV
=[1—-xoK — D
20 [ X0 } X0 90 ( yson)

@ Dyson equation solved iteratively (e.g. GMRES)

@ Each matvec xgdV requires solving N Sternheimer equations

@ Question 3: How to choose Sternheimer tolerance 7¢€

adaptively (depending on GMRES tolerance 7)

e Naive strategies: 7°¢ = 7/100 and 7““ = 7/10 for 7 = 107
TSN @
10° hi\‘“‘s:\ ~
10 S @ Dashed: GMRES
w0 S estimated residual norm
10° ,,\,f5“\
10° ) “\\\\,\,\
10 Iy =

5.00x10° 1.00x107 1.50x10” 2.00x10”

Total Hamiltonian applications (CG iterations)

o Fail by 3 orders (Al supercell)
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Getting rid of infinities (4)

Opscr 1 oV
=[1—-xoK — D
20 [ X0 } X0 90 ( yson)

@ Dyson equation solved iteratively (e.g. GMRES)

@ Each matvec xgdV requires solving N Sternheimer equations

@ Question 3: How to choose Sternheimer tolerance 7¢€

adaptively (depending on GMRES tolerance 7)

e Naive strategies: 7°¢ = 7/100 and 7““ = 7/10 for 7 = 107

@ Dashed: GMRES
estimated residual norm

@ Solid: Actual residual
norm

5.00x10° 1.00x107 1.50%10 2.00x107
Total Hamiltonian applications (CG iterations)

o Fail by 3 orders (Al supercell)
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The bad choice: Orthogonal gauge

@ Recall, we need

Jn— Im
Pmn + F:Lm = Amn = 5an
En —Em
and additionally Ty, = (¢, | frn0s) by construction

@ Zero temperature (insulators): 6¢pf =0
= Orbitals can be kept orthogonal under response (for insulators)

@ Orthogonal gauge: Enforce orthogonality in all cases, i.e.
0=19 <z-'rr)‘lj/'11,> - <51A‘;1n,‘13‘n> + <U‘m ‘51~'11,>
= () - 1_‘77},71,/.](:71 + F:::“n/f}ﬂ

S LI

@ Problem: This can lead to a large contribution as €, — &,
which is almost compensated by T'orth*

= Loss of numerical precision
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The optimal choice: Minimal gauge

@ Minimise the size of all contributions to d1,, i.e.

. 1
min Z - Ty |2
myn Jn

st Do + T80 = Ay = o = Jm gy,
En — Em

e Minimal gauge: Solution to above problem

R

an =
fa+ fm

@ Other gauge choices:
o Quantum Espresso: I'y, = frp (227°2) Ay

o Abinit: I'pyp = 15,57, Amn

12/35



Comparison of gauges

Gauge comparison, €, =0, ep =0, T = 0.1

T T T T T
6 P 8
—_1
L i 2T
4 —— simple
E ------ orthogonal
(= Abinit
2| | |- aE
- - - minimal
0 [ ,
| | | | |
-2 -1 0 1 2
g’ﬂl

@ Graph investigates the growth of §p wrt. 6V
° % gives lower bound (from A,,,,), we don't want to overshoot it

= Orthogonal should be avoided, all others reasonable
13/35
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Extra SCF orbitals?

@ Each application of xq to a dV requires solving Sternheimer
foralln=1,...,N

(ﬁ—an) oY@ = —11,6Vey,  Wn=1,...,N
H = 7%A +V, H= MoHTIg  (en,%n) eigenpairs of H

o If gap eny1 — en closes (metals), conditioning gets worse

@ But we have not used all we know:

e Standard iterative diagonalisations (and thus SCFs)
yield Ne additional orbitals © = (U 1,....UN1N,,)

o Notable property: ®" H® = diag(eny1,....enin.,)

1E. Cancés, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
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Schur complement approach to response?

(ﬁ - en) St = —11, 6Vap, Vi=1,...,N

e Use N, extra orbitals to partition H:

Fey = (ha‘g(gNJrl-, cees 51\'+1\f'ex)
C ~ .

H= N\ where C=00'H (1 - <I><I>')

R=(1-o07) # (1-oaf)

= Typical Schur complement setting:

e Solve for ddTdep, exactly
o x = (1 — q)q)’i') 01, obtained by (b appropriate RHS)

R-C'E.'C—e,)z=0b

@ Smallest eigenvalue about eny N, —en

=- Conditioning improved, savings on CG iterations

1E. Cancés, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
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Schur-based response: Numerical examples?

Al,, rattled supercell

Fe,MnAl Heusler alloy
k-point [0.333,0.0,0.0]
- - - - - standard approach Schur complement
10% | 1 T T T T
120 1| }, o
- % L
101 4 [Asaurn=1" 40 gl
_ -2 direct n = 1
£ —+ Schur n = 43 50 1
Z 101t o |-+ direct n =43
= %= Schur n = 58 o 1
ol | [ direct n = 58 I |
< S 20 —
0710 . , ! T ; T ; ST
0 20 10 60 30 0 50 100 150 200 250 3 0 50 100 150 200 250 300
iterations k-points k-points
@ Largest reduction in iterations @ Relevant materials class with unusual
near Fermi level (n = 58) magnetic properties

(where gap is smallest) @ Translates to challenging numerical

@ Overall 17% less iterations behaviour

= Improvement comes for free @ Schur-based approach tames CG

(extra bands needed during SCF) @ ca. 40% less iterations

= Cancés, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
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Choosing the Sternheimer tolerance

O pscr 1 ov . o .
=[1 - oK H—ep) 00 =PV Vi=1,...,N
==K T X0 (H—en) v W Vi
GMRES tolerance 7

G
CG tolerance 7,7,

@ Dyson + Sternheimer: Nested iteratively solved problems

@ Tolerance for CGs when applying xo ?

for 7 =10"°

o Naive strategies: 75 = 7/100 and

@ Dashed: GMRES
estimated residual norm

@ Solid: Actual residual

10
-10 norm
10
5.00x10° 1.00x107 1.50x107 2.00x107
Total Hamiltonian applications (CG iterations)
o Fail by 3 orders (Al supercell)
CG

= Need adaptive & guaranteed strategy for 7,7
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Inexact GMRES!

@ Inexact application: (A + Ej)vg

@ Inexact Arnoldi decomposition

AVm + [El’ljl, EQ’UQ, cee ,Em’l)m] = Vm+1Hm

e GMRES terminates with exact residual ||7y, || < 7 if

om(Hyp) T
3m. [P

| Erog|l <

where

o ||7i—1]|: GMRES estimated residual norm
o 0y (Hp,): m-th condition number of GMRES Hessenberg

e m: GMRES maximal subspace size

1V, Simonicini, D. Szyld. SIAM J. Sci. Comput., 25, 454 (2003).
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Dyson equation case

dpscr v o )
90 =[1—xoK]" XOTO ( _5n) 0ty = =P oVap, Vi=1,...,N

GMRES tolerance 7 CG tolerance 'rfi

N
5p() = 2 Re (V1. (1)60n (1)) + 6 [ ()

@ Operator A = 1= x0K, inexact operator A =1 — Yo K (using

CG tolerance 71¢)

@ Then (without Schur complement trick):

H(A A)v;

. max max
e ¢

Z 2Re (Cn wn( ))|
feizt n=1
max L Tch kv Ecut®/?

TL:1,~~~,N 8N+1 — &

where k are system-size independent constants

= Combine with inexact GMRES to adaptively determine 7'5,?

21/35



Inexact Krylov methods for response!

@ Theorem: Guaranteed convergence of GMRES to 7 when
6o 1 1 Q] 1 s
i~ B0 NEut¥t fo 3m Fial

|7i—1|l: GMRES estimated residual norm

e s: Estimate for cond. num. of GMRES Hessenberg matrix
(updated on the fly)

e m: GMRES maximal subspace size
e k: Constants of order 1

e (' System size-indep. const. (includes blue from prev. slide)

@ Main features:
e Looser tolerance closer to convergence (as 71 — 0)

e Looser tolerance for small f, (when Sternheimer worst conditioned)

e Tighter tolerance for larger systems (as @ )

1MFH, B. Sun, in preparation.
22/35



Inexact Krylov methods for response

PDI0
| —— 0100/PD100
010.0/PD10.0

2.500%10° 5.000x10° 7.500%10° 1.000x107 1250%107 1.500x10” 1.750x10" 10 20 30
# CG iterations GMRES iteration number i

e Guaranteed (grt) computes C exactly

@ Balanced (hdmd) sets C' =1
o Requires a good preconditioner for metals (since || Kv;|| dropped)

= We employ standard Kerker preconditioner also in GMRES

e Aggressive (agr) drops even more constants
e Even faster than hdmd, but can be a factor 10 off

@ From about 20M to 12M Hamiltonian applications

(the expensive step)

= Superlinear convergence Bonan Sun

IMFH, B. Sun, in preparation. 23/35
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DFT error: Computing model sensitivities

@ DFT models usually contain parameters 6
e Natural question: How sensitive are results ?

25/35



DFT error: Computing model sensitivities

@ DFT models usually contain parameters 6
e Natural question: How sensitive are results ?

e Consider model sensitivity of force F(p, 6):
df 8]: ()/)SCF 8.F
i il 1
df Opscg 00 + 00 (1)

@ Computed by response theory (we've seen this before !):

dpscr ~1

@ We know how to solve this (previous section)

= Should be easy, right ?
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Computing sensitivities

oV

dF oF Opscr oOF Opscr
= ' X5

(1) 9 dpsce D0 00’ 00

=[1—xoK]™"

@ Obstacle: Parameters are in innermost layer (model definition)
e Each DFT model: Different derivatives ‘())—‘9 (can be horrible)
e Each quantity of interest: Different sensitivity expression (1)
= Combinatorial explosion

e Use algorithmic differentiation (AD) (= automatic derivatives)
o Generic framework for DFT derivatives / response properties
= Breaks “one PhD student per derivative” paradigm
= New properties/derivatives by non-DF T experts!
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Sensitivities in practice

function dft_forces(f)
system = ...
model = model DFT(system, PbeExchange(6))

basis = PlaneWaveBasis(model; Ecut=..., kgrid=... ) df 8f ()/)SCF af

scfres = self_consistent_field(basis).energies.total —
compute_forces_cart (scfres) de 8pSCF ()H 80
end -

sensitivities = ForwardDiff.gradient(dft_forces, 6)

@ AD saves manual coding: Request gradient (1), AD delivers
@ AD orchestrates calculation, i.e. constructs RHS for
0pscr -1 OV
=[1—yoK —
oo = L= x0K] X075,

@ ...and expression to compute do 7 from it

Hard to achieve in traditional electronic structure codes
Readily available in ¢'¢ DFTK (https://dftk.org)

Niklas Schmitz
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Outlook: Pseudopotential sensitivities

@ Pseudopotential sensitivity of electronic density

Sensitivity of BCC-Li w.r.t. hgh/Ida/li-q1 at x = 0.00

P Ap/ 0T cu
10 0.010 10 0.0100
g:g: 0.0075
> o007 > 0.0050
3 o006 E 0.0025
S o5 0.005 S o5 o
o 0.004 o _y
g oos & s
0.002
0.001 ~0.0075
(e o (e
%% os 10 %% 05 10
fractional z fractional z
, ,
dp/aC, Ap/aC,
10 0.0100 10 0.0100
0.0075 M 0.0075
> 00050 > 0.0050
E 0.0025 E 0.0025
S os 0 S os 0
] 00025 G ~0.0025
= -0.0050 & -0.0050
~0.0075 ~0.0075
%0 05 0 %0 05 10
fractional z fractional z
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Outlook: A posteriori error estimation

SiPD_NC, Correlation between err. @Ecut
and norm of 8p_schur (Ecut->Ecut+30)

@  Points for each Ecut
—— Linear fit

010
107

1072

estimate via Schur residual

©22
0239

1037 10390 10

relerror@Ecut

275

Estimation of basis set error in p
@ Suppose an SCF is solved in a small basis to obtain p
= Obtain estimate of error in p by solving a response problem !

@ Basis of recent practical error bound for forces!
(Development & testing has been performed in @ DFTK)

1E. Cancés, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).
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Closing the gap between maths and high-throughput

° @ DFTK plugin for ¢5AiiDA workflow manager

@ Goal: Simplify automated testing of novel algorithms

@ Verification study Quantum-Espresso vs. @ DFTK

¢ for DFTK@PW|PseudoDojo-v0.5|rcut=10 vs. QE@PW|PseudoDojo-v0.5
X,0,

rE e mx
.. XO; | XO 0.8
EANNEFESEN S ANEEENE
REIFAFFEES. - IIEEEE
EN-ENNEEEENEEEEE-E -

Fr Ra Lr Rf Db Sg Bh Hs| Mt Ds Rg Cn Nh Fl Mc Lv|Ts Og

X205

.Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm| Yb

Ac Th/ Pa U Np Pu Am Cm Bk Cf Es Fm Md No I“‘1
0
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Density-functional toolkit! — https://dftk.org

@ julia code for cross-disciplinary research:
@ Allows restriction to relevant model problems,

@ and scale-up to application regime (1000 electrons)

@ Sizeable feature set in 7500 lines of code

g materials @ Including some unique features (Self-adapting algorithms)

computing simulations MARVEL .
@ Integrated with high-throughput: Ceoo® S5AIDA

@ Fully composable due to julia abstractions:
novel @ Arbitrary precision (32bit, >64bit, ...)
scientific

models @ Algorithmic differentiation (AD)
@ HPC tools: GPU acceleration, MPI parallelisation

numerical
analysis

@ Accessible high-productivity research framework:
@ Key contributions by undergrads (AD, GPU, Pseudos, ...)

HY = EV

@ Over 30 contributors in 5 years (Maths, physics, CS, ...)
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Advertisement break

Open PostDoc in the EPFL #At#Hat group
Topic: Efficient inverse materials design

@ Interdisciplinary environment

@ Bayesian optimisation

@ AD & gradient approaches

@ See https://matmat.org/jobs/

Psi-k workshop (with A. Levitt, J. Haegeman):

“Julia for numerical problems in quantum and solid-state physics”

@ 26—28 November 2024 at EPFL, CECAM-HQ, Lausanne
@ Targets people from linear algebra, physics and computer science
@ Techniques & collaborations enabled by julia

= https://www.cecam.org/workshop-details/1355
Deadline: 20th Sep
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Summary

@ Challenges of response calculations for metals
o Closing gap worsens conditioning of linear system

@ Ambiguity in representing density response (gauge freedom)

@ Mathematical analysis of DFPT

@ Schur-complement approach to response

Adaptive Krylov methods

e Preconditioning strategies for Dyson equation in metals
o ~ 80% faster, while no additional cost

Readily available in @ DFTK

@ Enables fast & robust derivative computations (in combination with AD)

o Fast properties
o Fast error estimates

o Fast sensitivities
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Questions?

;&J@i https://matmat.org
) mfherbst

¥ michael.herbst@epfl.ch

L= https://michael-herbst.com/talks/2024.09.
18_MANUEL_Stuttgart.pdf

@ DFTK https://dftk.org

EPEL WXt Mat
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Contents

© Algorithmic differentiation

@ Details on Schur complement approach

cP=L MXt Mat
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How does algorithmic differentiation (AD) work?

function F(x)
y1 = x[1] + x[2]
y2 =2 +%*p
return y2

um

# s
# double

F1
F2

end

Goal: Compute derivative of this code

e Function F': R? — R with F(z) = double(sum(x1, z2))

Derivative at T is characterised by its Jacobian matrix

oF ) _OF;
x=&/ ij Ox;

7@ = (5
o Finite differences: Simple, one column at a time:
- F(z+ae;)) — F(%
(@), = Do) F)

T=T

(with e; unit vectors)

= Inaccurate and slow (O(N) times primal cost)
37/35



Chain rule to the rescue!

function F(x)
yi = x[1] + x[2] # F1 = sum N
2 =2 +p £ F2 - double F(x) = double(sum(x1, x2))
return y2

end

@ “double” and “sum” are simple and frequent primitives
= Key idea of AD:

e Compose the derivative of F' from the Jacobians of primitives

e Assumed to be known and already implemented

@ Use chain rule as glue, e.g. for a Jacobian element at Z:

OF; _ Odouble(a) ( dsum(c,d) dz1 N dsum(c, d) Oz
or; Oa Jc  Oxj od  Ox;

@ More compact: e;fFJFej = e;fFJdouuerumej

e Note: Jyouble is needed at sum(Zy, Z2)
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Forward-mode algorithmic differentiation

function F(x)

F(x) = double(sum(zy, x2))

yl = x[1] + x[2] # F1 = sum
y2=2%p # F2 = double T, 7
return y2 €; /F(/ =€ ']doublerum(/J

end

e Forward-diff: Evaluate in order with primal F':
Q Set yo = (v1,22), Yo =€
@ Compute y1 = sum(yo) and §1 = Joum(Y0)¥o
© Compute yo = double(y:) and g2 = Juouble(y1)91
@ Obtain F(z1,x2) as y2 and [Jr]. ; = U2
= Again one column of Jr at a time
@ Implementation: Numbers — dual numbers
@ Vectorisation & other tricks: Usually faster than finite diff.
e But: Still O(N) times primal cost
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Optimal cost for differentiation (1)

function F(x)

F(x) = double(sum(zy, x2))

yl = x[1] + x[2] # F1 = sum
y2=2*p # F2 = double T T ‘
return y2 €; ']/"(/’.J' =€ Jdoub|e']sum(f,].
end
Proposition

If f: RN — R is a differentiable function, computing Vf = Jyis
asymptotically not more expensive than f itself.

= This is violated for finite diff and forward diff.

@ Let's try to be more clever:
o We could write F(x) = bT Az for appropriate (sparse) A, b
o Equivalent formulation: F(z) = (ATh)Tz

o Differentiate that: VF = ATb = costs the same as F.

@ To generalise this idea note that (for scalar functions)

N 1T 1 2N 40 /35



Optimal cost for differentiation (2)

function F(x)
yi = x[1] + x[2] # F1 = sum F(x) = double(sum(x1, )
y2 =2 * p # F2 = double

T T
€; JFej =€ JdoubIerumej

return y2
end

@ Let's try to be more clever:
e We could write F(x) = bl Ax for appropriate (sparse) A, b
e Equivalent formulation: F(z) = (ATh)Tz

e Differentiate that: VF = ATb = costs the same as F.

@ To generalise this idea note that (for scalar functions)

F(x) = b Jpx + O(2?) with b=e; =1
= Focus on computing adjoint of Jacobian:

T T
T _ (T, _ (4T 4T A A
e; Jre; = (JFGZ) €; = (Jsudeouueez) €j
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Adjoint-mode algorithmic differentiation

F(x) = double(sum(z1, lg))

function F(x)
y1 = x[1] + x[2] # F1 = sum
y2 =2 *p # F2 = double T T T 1
return y2 e; Jrej = (JSL,deoumee,j) e;
end

@ Adjoint-mode AD: Derivative in reverse instruction order.

o Forward pass:
@ Set Yo = (.’L‘l,xg)
@ Compute y; = sum(yp) and store it

© Compute yo = double(y;) and store it

@ Reverse pass:

Q Set iy, =¢;
@ Compute 71 = [Jaouble(y1)]T 2 ¢—

@ Compute §o = [Jaum (y0)] 51—

e Obtain [Jp];. as yd" = One row at a time
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Adjoint-mode algorithmic differentiation (2)

e Given f:RY — R thereis only one ¢; = 1
= Only one reverse pass computes full gradient V f
= (O(1) times primal cost

@ Many names:

e Adjoint trick, back propagation, reverse-mode AD

e Some difficulties / challenges:
e Reverse control flow required!
o (Hurts your heads sometimes)
e Storage / memory costs
o All mutation is bad ...

@ One has to be a bit more clever for iterative algorithms . ..
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© Algorithmic differentiation

@ Details on Schur complement approach

cP=L MXt Mat
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Sternheimer equations

oV

op _
L e Ch e)

00

@ Solving (2) (Dyson equation) is not cheap

e Each application of xo to a §V requires iteratively solving (3)
(Sternheimer equation) for allm =1,..., N

MQ(H — En)11(25¢n = —ll(gden (3)
where

@ 01, Orbital perturbation (to be determined)

o P=span{y,|n=1,...,N}: Space spanned by N lowest
eigenpairs (Em’(/Jn) of H (occupied subspace)

o Il =1—1IIp with IIp projector onto P.

e Caveat: (3) is badly conditioned if gap en41 — en small
= Response can be expensive for metals
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Schur-complement approach® (1)

P

1
|
1 '
| |
1 1

1 NN +1 N+chm

e SCF diagonalisations yield Nex additional orbitals
O = (Yny1,... NN, ) spanning 1.

o Not fully converged, ie. I, # b, forn =N +1,...,1 N + Nex

o But: ®'H® = diag(ent1,.--,EN+N,,)
e Split orbital perturbation 11,81, = ®ay, + [R5 to obtain:
1o(H — en)Pay 4+ 1o (H — e,)[IgdpE = —1156V iy,
—_—
=bp,
@ Schur complement: Solve component in 7" (along ®) explicitly:
_1 1 4
n = (@THq)) (<1>'bn — ol (H —¢,) g 51/;5)
——— —_—

_pt
=D =hpr 46 /35
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Schur-complement approach® (2)

T R H(}(H - En)(I)Oén
! + 110 (H — en)IRSYE = by
1

rP
l
1
1 NN N + Nex an =D (0Tby — hl,008)

e It only remains to iteratively solve the component §1/%:
|Hr(H — &0l = hr D™ by | st} = [l = hpr D~ 01 b,

o Il almost removes small eigenmodes of H — ¢,
= Smallest eigenvalue of I1z(H — en)IlR is about eyt N, — €N

o For metals: Substantially larger than ey —en
= Improved conditioning

LE. Cancés, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
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