
Fostering interdisciplinary research by
composable software

Michael F. Herbst

Mathematics for Materials Modelling (matmat.org), EPFL

20 February 2024
Slides: https://michael-herbst.com/talks/2024.02.20_elstruct_code_workshop.pdf

DFT poten�als MD KMC fluids

QuantumESPRESSO
Terachem

VASP
ExaSim

beyond DFT

Q-Chem, Molpro

C/C++ or
FORTRAN

DFTK.jl
KMC.jl

Atomis�c.jlInteratomicPoten�als.jl

Poten�alLearning.jl

OpenCilk

increasing length/�me scales→

(based on Tapir/LLVM)

UQ for KMC (future)

hardware

QuantumInterfaces.jl

Molly.jl

LAMMPS.jl

FluxRM.jluses

+ Enzyme
+ Tiramisu

ML-POD

LAMMPS

ACE.jlACG.jl

UQ for DFT (in prototyping)

Real-world multi-physics
software stack for materials modelling

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

Stress =

1

det(L)

∂E
[
P∗, (I +M)L

]

∂M

∣∣∣∣∣
M=0

Run SCF, get P*
scfres = self_consistent_field(basis)

L = basis.model.lattice
stress = 1/det(L) * gradient(

M -> recompute_energy(
scfres, (I + M) * L),

zero(L)
)

vision: Math ≡ code

https://matmat.org
https://michael-herbst.com/talks/2024.02.20_elstruct_code_workshop.pdf

Tackling 21st century challenges
21st century challenges:

Renewable energy, green chemistry, health care . . .

Current solutions limited by properties of available materials
⇒ Innovation driven by discovering new materials

Crucial tool: Computational materials discovery
Systematic simulations on ≃ 104 − 106 compounds
Complemented by data-driven approaches
Noteworthy share of world’s supercomputing resources

K. Alberi et. al. J. Phys. D, 52, 013001 (2019). 1 / 23

http://dx.doi.org/10.1088/1361-6463/aad926

Tackling 21st century challenges
21st century challenges:

Renewable energy, green chemistry, health care . . .

Current solutions limited by properties of available materials
⇒ Innovation driven by discovering new materials

Crucial tool: Computational materials discovery
Systematic simulations on ≃ 104 − 106 compounds
Complemented by data-driven approaches
Noteworthy share of world’s supercomputing resources

Multi-disciplinary effort: Software takes a key role
E.g. growing list of data / workflow management tools

Challenges of combining efforts & integrating communities

1 / 23

A focus on robust materials simulations
Goal in group:

Obtain reliable & efficient simulations
Develop and employ mathematical analysis of error
Transform empirical wisdom to built-in convergence guarantees

⇒ Understand where and how to spend efforts best

Practical error indicators:
Automatic & robust verification
Multi-fidelity statistical surrogates
Active learning of missing physics

Leverage inexactness:
Error balancing: Optimal adaptive parameter selection
Adaptive tolerances & selective precision

⇒ Multidisciplinary expertise required
2 / 23

A focus on robust materials simulations
Goal in group:

Obtain reliable & efficient simulations
Develop and employ mathematical analysis of error
Transform empirical wisdom to built-in convergence guarantees

⇒ Understand where and how to spend efforts best

Practical error indicators:
Automatic & robust verification
Multi-fidelity statistical surrogates
Active learning of missing physics

Leverage inexactness:
Error balancing: Optimal adaptive parameter selection
Adaptive tolerances & selective precision

⇒ Multidisciplinary expertise required
2 / 23

(Exaggerative) state of codes in this field

Mathematical research
Goal: Numerical experiments
Scope: Reduced models
High-level language:
Matlab, python, . . .
Lifetime: 1 paper
Size: < 1k lines
Does not care about performance

Application research
Goal: Modelling physics
Scope: All relevant systems
Mix of languages:
C, FORTRAN, python, . . .
Lifetime: 100 manyears
Size: 100k – 1M lines
Obliged to write performant code

Working with these codes requires different skillsets
⇒ Orthogonal developer & user communities

Obstacle for knowledge transfer:
Mathematical methods never tried in practical setting
(and may well not work well in the real world)

Some issues cannot be studied with mathematical codes
(and mathematicians may never get to know of them)

What about emerging hardware, accelerators, performance?
Should be the regime of Computer Science (yet another community) 3 / 23

Difficulties of interdisciplinary research

Community conventions (e.g. publication culture)

Language barriers and context-sensitive terms
Speed of research (development of model vs. its analysis)

A social problem . . .
(Communication, convention, compromises, . . .)

. . . that is cemented in software:
Priorities differ ⇒ What is considered “a good code” differs
Insurmountable obstacles to integrate codes
Collaborations can stop before they begin . . .

Hypothesis: People compose if software composes

4 / 23

Density-functional toolkit (DFTK) — https://dftk.org

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

HΨ = EΨ

-based DFT code in 7500 lines
Cross-community: Mathematical research & applications

Allows restriction to relevant model problems,
and scale-up to application regime (1000 electrons)

Integrated with high-throughput:

Lessons learned:
Software integration is hard work
Unexpected catalytic effects from integration discussions
Parties understand their role, change of viewpoint

⇒ As software composes, communities compose

Central: How can we lower the barrier to integrate?

5 / 23

https://dftk.org

We already want a lot from good software . . .

Integration across communities (users, developers, scientists)
Maintainability
Reproducibility
Documentation / Accessibility
Portability (future technologies & hardware)
Performance
. . .

Can we the get the best in each category?
Probably not . . .

To maximise integration: Where should we compromise?

6 / 23

aM tM t

Contents

1 Composability aspects of

2 DFTK and related efforts

7 / 23

Separating the what from the how
Why is this separation so important . . .

. . . for composable software?

. . . for multidisciplinary research?

Consider the goal: Modelling a physical system
Traditionally users code in detail how the computation should
proceed (Imperative programming)

How = architecture
How = algorithm
How = memory layout
How = discretisation
. . .

But all this has nothing to do with physics!
Can the how be abstracted away?

such that CS / Math can deal with it independently

Let’s see some developments 8 / 23

HPC abstractions

 OneAPI.jl

Accelerators Shared Mem Distributed

CUDA.jl

function power_method(A, x; niter=100)
for i = 1:niter

x = A * x
x ./= norm(x)

end
x

end

A = rand(10, 10); A = A + A' + 10I; x = rand(10)

using LinearMaps, IterativeSolvers
itinv(A) = LinearMap(x -> cg(A, x), size(A)...)

using CUDA
power_method(itinv(CuArray(A)), CuArray(x))

using AMDGPU
power_method(itinv(ROCArray(A)), ROCArray(x))

9 / 23

Code reinterpretation & self-implementing features
using OrdinaryDiffEq, Plots

Half-life of Carbon-14 is 5730 years.
c = 5.730

Setup
u0 = 1.0
tspan = (0.0, 1.0)

Define the problem
radioactivedecay(u, p, t) = -c*u

Pass to solver
prob = ODEProblem(radioactivedecay, u0, tspan)
sol = solve(prob, Tsit5();

reltol=1e-8, abstol=1e-8)

plot(sol.t, sol.u;
ylabel="u(t)", xlabel="t", lw=2, legend=false)

User says: I want to track measurement error
Numerics adapts, plotting adapts

No prior discussion with/amongst package maintainers to
“make this happen”

Measurement.jl reinterprets floating-point operations
In some sense this feature “implemented itself”

10 / 23

Code reinterpretation & self-implementing features
using OrdinaryDiffEq, Measurements, Plots

Half-life of Carbon-14 is 5730 years.
c = 5.730 ± 2

Setup
u0 = 1.0 ± 0.1
tspan = (0.0, 1.0)

Define the problem
radioactivedecay(u, p, t) = -c*u

Pass to solver
prob = ODEProblem(radioactivedecay, u0, tspan)
sol = solve(prob, Tsit5();

reltol=1e-8, abstol=1e-8)

plot(sol.t, sol.u;
ylabel="u(t)", xlabel="t", lw=2, legend=false)

User says: I want to track measurement error
Numerics adapts, plotting adapts

No prior discussion with/amongst package maintainers to
“make this happen”

Measurement.jl reinterprets floating-point operations
In some sense this feature “implemented itself”

10 / 23

Aside: package manager and binary dependencies

makes no compromises in reproducibility
Package environments automatically tracked in plain-text files
(Can be committed along code)

Includes python & foreign-code binaries

Difficulty: Integration with HPC clusters:
E.g. making use of vendor-specific MPI / BLAS libraries

solution: trampoline libraries
BLAS & MPI libraries can be switched at runtime

⇒ Sane defaults for laptops & flexibility

Some pain points remain:
Default binaries cannot make full use of hardware
Automatic detection of vendor libraries

11 / 23

and composable software

Magic of :
Painless generics and abstractions
Enables unusual code reinterpretation
(Algorithmic differentiation, symbolics, cross-platform compilation)

⇒ Separation of what and how:
Hardware & architecture (Computer Science)
Algorithms (Mathematics)
Model building (Physics)
Interactive scripting (Application scientists)

⇒ Cross-disciplinary expertise can compose in one code

Modelling and algorithm code stays high-level
Appropriate specialisations unlock performance
We can add them gradually as needed (Iterative optimisation)

12 / 23

aM tM t

Contents

1 Composability aspects of

2 DFTK and related efforts

13 / 23

Density-functional toolkit1 — https://dftk.org

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

HΨ = EΨ

code for cross-disciplinary research:
Allows restriction to relevant model problems,
and scale-up to application regime (1000 electrons)

Sizeable feature set in 7500 lines of code
Including some unique features (Self-adapting algorithms)

Integrated with high-throughput:

Fully composable due to abstractions:
Arbitrary precision (32bit, >64bit, . . .)
Algorithmic differentiation (AD)
HPC tools: GPU acceleration, MPI parallelisation

Accessible high-productivity research framework:
Key contributions by undergrads (AD, GPU, Pseudos, . . .)
Over 30 contributors in 5 years (Maths, physics, CS, . . .)

14 / 23

https://dftk.org

DFTK design: Keeping code concise & accessible

Stress =

1

det(L)

∂E
[
P∗, (I +M)L

]

∂M

∣∣∣∣∣
M=0

Run SCF, get P*
scfres = self_consistent_field(basis)

L = basis.model.lattice
stress = 1/det(L) * gradient(

M -> recompute_energy(
scfres, (I + M) * L),

zero(L)
)

Stress computation (Definition vs. code)1

Post-processing step ⇒ Not performance critical

Comparison of implementation complexity:
DFTK : 20 lines1 (forward-mode algorithmic differentiation)

Quantum-Espresso: 1700 lines2

≃ 10-week GSoC project

⇒ No performance impact & accessible code

1https://github.com/JuliaMolSim/DFTK.jl/blob/master/src/postprocess/stresses.jl
2https://github.com/QEF/q-e/blob/develop/PW/src

15 / 23

https://github.com/JuliaMolSim/DFTK.jl/blob/3c9f1f8d7cf6bf9ac6fee298e0cd65e18d8f2285/src/postprocess/stresses.jl
https://github.com/QEF/q-e/blob/develop/PW/src

New features from generic code: Sensitivity analysis
function dft_energy(a, θ)

model = Model(a, PbeExchange(θ), ...)

scf(model).energies.total

end

optimise_lattice(θ) = optimise(a -> dft_energy(a, θ))

sensitivities =

ForwardDiff.gradient(optimise_lattice, θ)

a∗ = arg min
a

E(a, θ)

sensitivities = da∗

dθ

Arbitrary, user-desired derivatives in one line of code
Breaks “one PhD student per derivative” paradigm

⇒ New properties/derivatives by non-DFT experts!

Avoids combinatorial explosion
Unusual derivatives equally supported

⇒ Setting the scene for new approaches:
Sensitivity analysis & UQ
Combined analytical and statistical error estimation

16 / 23

Support of a posteriori error analysis

Γ XX WW KK ΓΓ LL UU WW LL K|U X
−0.2

−0.1

0.0

0.1

0.2

Band structure with guaranteed errors1
Estimation of basis set error in ρ

Momentum towards error estimators for DFT
Focus on basis set error (some also tackle floating-point, SCF convergence)
Estimate numerical error for modelled system (e.g. for density and forces2)

Results promising, but many challenges & caveats remain
Crucial to play with simplifications / numerics etc.

⇒ DFTK is major research tool for this development1-4

1MFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).
2E. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).
3E. Cancès, G. Kemlin, A. Levitt. J. Matrix Anal. Appl., 42, 243 (2021).
4E. Cancès, G. Kemlin, A. Levitt. J. Sci. Comput., 98, 25 (2024) 17 / 23

https://doi.org/10.1039/D0FD00048E
https://doi.org/10.1137/21M1456224
https://doi.org/10.1137/20M1332864
https://doi.org/10.1007/s10915-023-02421-0

Robust & efficient algorithms

Fe2MnAl Heusler alloy

standard approach

0 50 100 150 200 250 300

20

40

60

80

100

120

k-points

nu
m

be
r

of
ite

ra
tio

ns

Schur

↑
↓

0 50 100 150 200 250 300

20

40

60

80

100

120

k-points

nu
m

be
r

of
ite

ra
tio

ns

direct

↑
↓

Schur complement

0 50 100 150 200 250 300

20

40

60

80

100

120

k-points

nu
m

be
r

of
ite

ra
tio

ns

Schur

↑
↓

0 50 100 150 200 250 300

20

40

60

80

100

120

k-points

nu
m

be
r

of
ite

ra
tio

ns

direct

↑
↓

40% less iterations

40% less iterations

LDOS mixing for inhomogeneous
systems1 (surfaces, clusters, . . .)

ca. 50% less iterations
Automatic & system-adapted
selection of damping2

First-principle properties of metals
Schur-complement approach to
perturbation theory2

ca. 40% less iterations

⇒ Maths / physics collaboration:
Exchange of ideas between simplified & practical settings crucial

1MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
2MFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).
3E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023). 18 / 23

https://doi.org/10.1088/1361-648X/abcbdb
https://doi.org/10.1016/j.jcp.2022.111127
https://doi.org/10.1007/s11005-023-01645-3

Integration with AiiDA
Integration with high-throughput workflow manager

https://github.com/aiidaplugins/aiida-dftk

Used in automated verification tests: (rcut = ∞)

⇒ Excellent agreement Quantum-Espresso vs. DFTK
19 / 23

https://github.com/aiidaplugins/aiida-dftk

Integration with AiiDA
Integration with high-throughput workflow manager

https://github.com/aiidaplugins/aiida-dftk

Used in automated verification tests: (rcut = 10a.u.)

⇒ Excellent agreement Quantum-Espresso vs. DFTK
19 / 23

https://github.com/aiidaplugins/aiida-dftk

Quick overview of materials codes

Some materials science codes:
github.com/ACEsuit: Atomic Cluster Expansion (ML potential)
JuliaMolSim/Molly.jl: Molecular dynamics
qiaojunfeng/Wannier.jl: Wannierisation
JuliaMolSim/DFTK.jl: Density-functional theory

Community desire for common interfaces across materials ecosystem
AtomsBase.jl & AtomsCalculators.jl
E.g. compatibility of structural representations across codes

⇒ Link within ecosystem, but also link to external codes
(e.g. ASE, Quantum Espresso, LAMMPS)

⇒ Generic & re-usable utility packages:
AtomsIO.jl: File parsing
AtomsView.jl: Structure viewing
Many just slim bindings to existing foreign-language codes . . .

Overview talk: Julia for Materials Modelling:
https://michael-herbst.com/julia-for-materials (youtube recording)

20 / 23

https://github.com/ACEsuit/
https://github.com/JuliaMolSim/Molly.jl
https://github.com/qiaojunfeng/Wannier.jl
https://github.com/JuliaMolSim/DFTK.jl
https://github.com/JuliaMolSim/AtomsBase.jl
https://github.com/JuliaMolSim/AtomsCalculators.jl
https://github.com/mfherbst/AtomsIO.jl
https://github.com/mfherbst/AtomsView.jl
https://michael-herbst.com/julia-for-materials
https://michael-herbst.com/julia-for-materials
https://www.youtube.com/watch?v=dujepKxxxkg

Summary

People compose if software composes
Key ingredient: Separating what and how

⇒ Better collaboration by separation of concern

What makes codes so composable?
Specialisation: Performance & hardware specifics
Abstraction: Code becomes the math
Multiple dispatch: Repurpose existing code (e.g. AD)

-based materials codes: Bridging communities
Multiple cross-disciplinary projects: Maths ↔ applications
Community emphasis on composable interfaces
(e.g. AtomsBase.jl & AtomsCalculators.jl)

Details: michael-herbst.com/julia-for-materials

21 / 23

https://github.com/mfherbst/AtomsBase.jl
https://github.com/JuliaMolSim/AtomsCalculators.jl
https://michael-herbst.com/julia-for-materials

Acknowledgements

Alan Edelman (MIT)
Valentin Churavy (MIT)
Antoine Levitt (Université Paris-Saclay)

All DFTK contributors

Joe Greener (Cambridge)
Rachel Kurchin (CMU)
Christoph Ortner (UBC)
Spencer Wyatt (MIT)
Pablo Zubieta (Chicago)

Summer of code

22 / 23

aM tM t

Questions?

https://matmat.org

� mfherbst

 michael.herbst@epfl.ch

B https://michael-herbst.com/talks/2024.02.
20_elstruct_code_workshop.pdf

DFTK https://dftk.org

https://michael-herbst.com/julia-for-materials

23 / 23

https://matmat.org
https://github.com/mfherbst
michael.herbst@epfl.ch
https://michael-herbst.com/talks/2024.02.20_elstruct_code_workshop.pdf
https://michael-herbst.com/talks/2024.02.20_elstruct_code_workshop.pdf
https://dftk.org
https://michael-herbst.com/julia-for-materials

	Motivation
	Composability aspects of [height=1.2em]img/julia.pdf
	[height=1.4em]img/DFTK3to1.pdf and related [height=1.2em]img/julia.pdf efforts
	Outro
	A & Q
	

