A mathematical viewpoint on robustness and efficiency in first-principle simulations

Michael F. Herbst

Mathematics for Materials Modelling (matmat.org), EPFL

15 February 2024

Slides: https://michael-herbst.com/talks/2024.02.15_unifr.pdf

Energy consumption of materials discovery

- Current solutions limited by properties of available materials
 Innovation driven by discovering new materials
- Experimental research extremely energy intensive
 - 1 fume hood \simeq 2-3 average households¹
- \Rightarrow Complement experiment by computational materials discovery

¹D. Wesolowski et. al. Int. J. Sustain. High. Edu. 11, 217 (2010).

Computational materials discovery

- Goal: Only promising candidates go to the lab
- Systematic simulations on $\simeq 10^4 10^6$ compounds
 - Complemented by data-driven approaches
- Noteworthy share of world's supercomputing resources
- Growing list of data / workflow management tools

Energy consumption of computation

- Energy consumption of LUMI (one of the most efficient):
 - 60 million kWh / year \simeq 1.5 EPFLs \simeq 14000 households
- Challenge of high-throughput:
 - Many parameters to choose (algorithms, tolerances, models)
 - Despite elaborate heuristics: Failure rate $\simeq 1\%$
- Thousands of failed calculations
 - \Rightarrow Wasted resources
 - ⇒ Increased human attention (limits througput)

A focus on robust materials simulations

- Goal in Mt Mat group:
 - Obtain reliable & efficient simulations
 - Develop and employ mathematical analysis of error
 - Transform empirical wisdom to built-in convergence guarantees
- \Rightarrow Understand where and how to spend efforts best
 - Practical error indicators:
 - Automatic & robust verification
 - Multi-fidelity statistical surrogates
 - Active learning of missing physics
 - Leverage inexactness:
 - Error balancing: Optimal adaptive parameter selection
 - Adaptive tolerances & selective precision
- \Rightarrow Multidisciplinary expertise required

A focus on robust materials simulations

- Goal in Mt Mat group:
 - Obtain reliable & efficient simulations
 - Develop and employ mathematical analysis of error
 - Transform empirical wisdom to built-in convergence guarantees
- \Rightarrow Understand where and how to spend efforts best
 - Practical error indicators:
 - Automatic & robust verification
 - Multi-fidelity statistical surrogates
 - Active learning of missing physics
 - Leverage inexactness:
 - Error balancing: Optimal adaptive parameter selection
 - Adaptive tolerances & selective precision
- \Rightarrow Multidisciplinary expertise required

Opportunities for mathematical research

- Gap: Mathematical understanding & simulation practice
- Broad range of concerned mathematical fields:
 - Optimisation, numerical linear algebra, analysis of PDEs, uncertainty quantification, model order reduction, ...
- Application domain: Source for research problems
 - Large-scale eigenvalue problems (L. Lin, Y. Saad, C. Yang, ...)
 - Acceleration, fixed-point methods (T. Kelly, A. Miedlar, Y. Saad, R. Schneider, H. vd. Vorst, H. Walker, ...)
 - Non-linear PDEs

(Z. Bai, E. Cancès, G. Friesecke, M. Lewin, I. Sigal, ...)

- Application domain: Source for new methods
 - Davidson diagonalisation (H. vd. Vorst, ...)
 - Thorough exploration of Anderson-type acceleration (see above)
- 17 minisymposia at SIAM in 2021/22 (-CSE, -LA, -MS, -PP, -UQ) with contributions related to electronic-structure theory

(Exaggerative) state of codes in this field

Mathematical research

- Goal: Numerical experiments
- Scope: Reduced models
- High-level **language**: Matlab, python, ...
- Lifetime: 1 paper
- Size: < 1k lines
- Does not care about performance

Application research

- Goal: Modelling physics
- Scope: All relevant systems
- Mix of languages: C, FORTRAN, python, ...
- Lifetime: 100 manyears
- Size: 100k 1M lines
- Obliged to write performant code
- Working with these codes requires different skillsets
 - ⇒ Orthogonal developer & user communities
- Obstacle for knowledge transfer:
 - Mathematical methods never tried in practical setting (and may well not work well in the real world)
 - Some issues cannot be studied with mathematical codes (and mathematicians may never get to know of them)
- What about emerging hardware, accelerators, performance?
 - Should be the regime of Computer Science (yet another community)

Difficulties of interdisciplinary research

- A social problem ...
 - Community conventions (e.g. language, publication culture)
 - Speed of research (development of model vs. its analysis)
 - ... cemented in software:
 - $\bullet~$ Priorities differ $\Rightarrow~$ What is considered a "good code" differs
 - Substantial obstacle for integration
- Hypothesis: People compose if software composes
 Mt Mat goal: Software to foster cross-community research
- DFTK, the Density-Functional ToolKit
 - Allows restriction to relevant model problems,
 - and scale-up to application regime (1000 electrons)
 - Integrated with high-throughput:

DFT model classes

- DFT energy minimisation problem: $\min_{\rho} \mathcal{E}(\rho) = \min_{\rho} \left[E_{\mathsf{core}}(\rho) + E_{H}(\rho) + E_{\mathsf{xc}}(\rho) \right]$
- DFT model hierarchy for $E_{\rm xc}$: Jacob's ladder
 - Each rung defines (parametrised) model class
- Higher rungs (think hybrid DFT):
 - Generally more expensive, but also more accurate
 - But: DFT is a non-variational approximation to exact physics
 - \Rightarrow Should not impose accuracy order in statistical learning
- **Guiding idea:** Can we combine information from different functionals to balance accuracy / cost / deviating predictions?
- \Rightarrow Goals:
 - Reduce data generation cost
 - Dataset of opportunity

DFT model classes

- DFT energy minimisation problem: $\min_{\rho} \mathcal{E}(\rho) = \min_{\rho} \left[E_{\mathsf{core}}(\rho) + E_{H}(\rho) + E_{\mathsf{xc}}(\rho) \right]$
- DFT model hierarchy for E_{xc} : Jacob's ladder
 - Each rung defines (parametrised) model class
- Higher rungs (think hybrid DFT):
 - Generally more expensive, but also more accurate
 - But: DFT is a non-variational approximation to exact physics
 - \Rightarrow Should not impose accuracy order in statistical learning
- **Guiding idea:** Can we combine information from different functionals to balance accuracy / cost / deviating predictions?

\Rightarrow Goals:

- Reduce data generation cost
- Dataset of opportunity

Test problem: Ionisation potentials of organic molecules

- Dataset: $\simeq 3000$ small organic molecules¹
 - ANI-1 subset (2–5 heavy atoms, a few with 6 heavies)
- Targeted quantity: Ionisation potential
 - Note: A challenging quantity for DFT
- Considered models:

	density-functional theory (DFT)			coupled cluster
model	PBE	PBE0	PBE0_DH	CCSD(T)
scaling	$O(N^3)$	$O(N^3)$	$O(N^3)$	$O(N^7)$
advantage	cheap	cheapish	cheapish	accurate
rung	$2nd \ ({\sf GGA})$	4th (Hybrid)	6th (double Hybrid)	Reference

• Goal: Surrogate for CCSD(T) but mostly use DFT data

¹C. Duan, F. Fang, A. Nandy, H. Kulik. J. Chem. Theo. Comput. 16, 4373 (2020).

Delta learning: Learning to correct the error

• Idea: Surrogate for difference between high- & low-fidelity

• Gaussian Process (GP) ansatz:

$$\begin{split} \mathsf{IP}^{\mathsf{CCSD}(\mathsf{T})} - \mathsf{IP}^{\mathsf{DFT}} &= f(\xi) + \varepsilon \\ \varepsilon \sim \mathcal{N}(0, \sigma^2 I) & \text{(Gaussian noise)} \\ f \sim \mathcal{GP}\left(\mu, K_{\theta}\right) & \text{(GP prior)} \end{split}$$

 ξ : vector of molecular descriptors, I^x : vector of simulated data, K_{θ} : Kernel (e.g. polynomial, sq. exponential), σ , μ , θ : hyperparameters

- Training: Need DFT & CCSD(T) data
- Prediction: Add DFT simulation to predicted mean of GP
- Apply recursively: Multiple levels
- Disadvantages:
 - Ordering imposed
 - Data of all lower levels need to be available

Multitasking: All DFT models are equal

- Asymmetric multitasking¹:
 - ρ^{α} : Correlation between CCSD(T) and low-fidelity
 - δ^{α} : Disparity of low-fidelity models
 - $\bullet~{\rm GP}$ prior on $f^{\alpha}~\&~\delta^{\alpha}$ of different kernel, mean, variance
 - ε^{α} is iid noise

$$\begin{split} \mathsf{IP}^{\alpha} &= f^{\alpha}(\xi) + \varepsilon^{\alpha} \quad \text{for model } \alpha \in \{\mathsf{CCSD}(\mathsf{T}), \mathsf{PBE}, \mathsf{PBE0}, \ldots\} \\ f^{\mathsf{PBE}}(\xi) &= \rho^{\mathsf{PBE}} f^{\mathsf{CCSD}(\mathsf{T})}(\xi) + \delta^{\mathsf{PBE}}(\xi) \\ f^{\mathsf{PBE0}}(\xi) &= \rho^{\mathsf{PBE0}} f^{\mathsf{CCSD}(\mathsf{T})}(\xi) + \delta^{\mathsf{PBE0}}(\xi) \end{split}$$

- Remarks:
 - Allows model discrepancies
 - Keeps analytical formula for posterior
 - $\bullet\,$ Calibration set: Fix ρ^{α} by Pearson correlation, optimise hyperparameters

¹G. Leen, J. Peltonen, S. Kaski. Mach. Learn. **89**, 157 (2012)

Multitasking: IP results¹

	Core	Additional	Target
CCSD(T)	•••••		********
PBE0_DH	••••		
PBE0	•• ••	•• ••	
PBE	•• ••	•• ••	
BLYP	•• ••	•• ••	•••••

• Goal: Prediction of **T** systems at CCSD(T) level

• Here: DFT predictions of **T** supplied (optional in our setup)

 ${\bf C}$ and ${\bf A}$ data fully shared between tasks $({\tt best\ case})$

¹K. Fisher, MFH, Y. Marzouk Multitask meth. to predict molec. prop. from heterogeneous data arXiv 2401.17898

Multitasking: Comparison to Δ for water¹

- Different test case: Water 3-body energy
- Model differences smoother (smaller mean and variances)
- $\Rightarrow \text{ Bare multitask worse then } \\ \Delta \text{ learning}$
 - Combination of both ideas: Multitask- Δ
 - Keeps flexibility improvements of multitask approaches

¹K. Fisher, MFH, Y. Marzouk Multitask meth. to predict molec. prop. from heterogeneous data arXiv 2401.17898

Density-functional theory (insulators)

• DFT approximation: Non-linear eigenvalue problem

$$\begin{cases} \forall i \in 1 \dots N : \left(-\frac{1}{2} \Delta + V(\rho_{\Phi}) \right) \psi_{i} = \varepsilon_{i} \psi_{i}, \\ V(\rho) = V_{\text{nuc}} + v_{C} \rho + V_{\text{XC}}(\rho), \\ \rho_{\Phi} = \sum_{i=1}^{N} |\psi_{i}|^{2}, \\ \Phi = (\psi_{1}, \dots, \psi_{N}) \in \left(L^{2}(\mathbb{R}^{3}, \mathbb{C}) \right)^{N} \text{orthogona} \end{cases}$$

nuclear attraction $V_{\rm nuc},$ exchange-correlation $V_{\rm XC},$ Hartree potential $-\Delta\left(v_C\rho\right)=4\pi\rho$

• Solved as self-consistent field (SCF) problem:

 $\rho\big(V(\rho)\big) = \rho$

• Hits plenty of "non-"s: Non-convex, non-linear, non-local, non-smooth

Self-consistent field problem

• Density-mixing SCF procedure (preconditioner *P*, damping *α*)

$$\rho_{n+1} = \rho_n + \alpha P^{-1} \left[\rho(V(\rho_n)) - \rho_n \right]$$

Near a fixed-point the error goes as

$$e_{n+1} \simeq \left[1 - \boldsymbol{\alpha} P^{-1} \varepsilon^{\dagger}\right] e_n$$

with dielectric matrix $\varepsilon^{\dagger} = (1 - \chi_0 K)$, $K(\rho) = V'(\rho)$, $\chi_0(V) = \rho'(V)$

- Convergence iff $-1 < \left[1 \alpha P^{-1} \varepsilon^{\dagger}\right] < 1$
 - Dielectric matrix ε^{\dagger} : Depends on physics (conduction, screening)
 - By second-order conditions: $\varepsilon^{\dagger} \geq 0$ (near fixed point)
- \Rightarrow Crucial to design preconditioner such that $P^{-1}\varepsilon^{\dagger}\approx I$
 - Note: *P* need to adapt to physics of unknown system!

Black-box P: Local density of states (LDOS) mixing¹

- Bulk preconditioner (e.g. Kerker) neglect local structure of ε^{\dagger}
- We propose to employ $\varepsilon^{\dagger} = (1 \chi_0 K)$
- $\chi_0(r,r')$ unit-cell internal fluctuations, diagonal dominant:

- Tackle charge sloshing: Consider large-scale variations of χ_0 : $\chi_0(r, r') \simeq -LDOS(r)\delta(r, r')$ (homogenisation $LDOS(r) \approx \int \chi_0(r, r') dr'$)
- Apply preconditioner iteratively: $P^{-1}\rho_n = [1 - \widetilde{\chi_0}K)]^{-1}\rho_n, \qquad \widetilde{\chi_0}(r, r') = -\text{LDOS}(r)\delta(r, r')$

¹MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).

LDOS preconditioning (examples)¹

- Inhomogeneous material: Aluminium metal + Insulator
- LDOS automatically interpolates between Kerker mixing (suitable for metals) and no mixing (suitable for insulators)
 - \Rightarrow Based on mathematical understanding of screening
 - ⇒ Parameter-free and black-box

¹MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).

Black-box α : Adaptive damping¹

- Theorem: SCF convergence guaranteed if α small enough (see paper)
- α adapted in each step using line search & quadratic model
- Novelty: Reuse of expensive quantities in next SCF step
 ⇒ No overhead if line search immediately successful
- For tricky systems: Adaptive damping has an overhead
 - But: Avoids trial and error
 - Mathematically motivated safeguard mechanism

¹MFH, A. Levitt. J. Comput. Phys. **459**, 111127 (2022).

DEMO

How did **TK** help us to get there?

https://michael-herbst.com/talks/2024.02.15_2024.02.15_unifr.html

How does 😯 DFTK achieve this?

- The magic of **julia**:
 - Separating the what from the how
- Clear design, inspired by mathematical structure
 ⇒ Self-explaining code (a clear what)
- Focus on keeping code accessible (7500 lines)
 - Started in 2018, already 30 contributors
 - Key features by undergrads & outsiders
- ⇒ High-productivity research framework
- \Rightarrow Supports joint research across disciplines

Separating the what from the how

- Why is this separation so important ...
 - ... for composable software?
 - ... for multidisciplinary research?
- Consider the goal: Modelling a physical system
- Traditionally users code in detail how the computation should proceed (Imperative programming)
 - How = architecture
 - How = linear algebra primitive (e.g. orthogonalisation)
 - How = memory layout
 - ...
- But all this has nothing to do with physics!
- Can the how be abstracted away?
 - such that CS / Math can deal with it independently
- Let's see julia's HPC developments ...

julia HPC abstractions

A = rand(10, 10); A = A + A' + 10I; x = rand(10)

```
function power_method(A, x; niter=100)
for i = 1:niter
    x = A * x
    x ./= norm(x)
end
    x
end
```

using LinearMaps, IterativeSolvers
itinv(A) = LinearMap(x -> cg(A, x), size(A)...)

```
using CUDA
power_method(itinv(CuArray(A)), CuArray(x))
```

```
using AMDGPU
power method(itinv(ROCArray(A)), ROCArray(x))
```

🔁 DFTK design: Keeping code concise & accessible

- Stress computation (Definition vs. julia code)¹
- Post-processing step \Rightarrow Not performance critical
- Comparison of implementation complexity:
 - 🐺 DFTK: 20 lines¹ (forward-mode algorithmic differentiation)
 - Quantum-Espresso: 1700 lines²
 - $\bullet~\simeq$ 10-week GSoC project

\Rightarrow No performance impact & accessible code

¹https://github.com/JuliaMolSim/DFTK.jl/blob/master/src/postprocess/stresses.jl

²https://github.com/QEF/q-e/blob/develop/PW/src

Support of a posteriori error analysis

- Albeit the HPC capabilities: Numerical experiments are feasible
- E.g. fully guaranteed error bounds for band structures¹
- Deals with a reduced Kohn-Sham model and requires interval arithmetic
- Captures basis set error, floating-point error, convergence error

¹MFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).

Outlook towards DFT properties

- Based on recent perturbative error estimates¹
- Towards a posteriori error estimates for density and forces

¹E. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).

Integration with AiiDA

- Integration with &AiiDA high-throughput workflow manager
 - https://github.com/aiidaplugins/aiida-dftk
- Used in automated verification tests: $(r_{cut} = \infty)$

v for DFTK@PW|PseudoDojo-v0.5 vs. QE@PW|PseudoDojo-v0.5

⇒ Excellent agreement QE vs. 🚯 DFTK

Integration with AiiDA

- Integration with &AiiDA high-throughput workflow manager
 - https://github.com/aiidaplugins/aiida-dftk
- Used in automated verification tests: $(r_{cut} = 10a.u.)$

ε for DFTK@PW|PseudoDojo-v0.5|rcut=10 vs. QE@PW|PseudoDojo-v0.5

⇒ Excellent agreement QE vs. 🐳 DFTK

Summary

- Research in the Mat group
 - Motivated by high-throughput materials design
 - Understand simulation error (numerics, models)
 - Facilitate cross-community interaction
- Black-box strategies for SCF damping & preconditioning
 - Build on combining mathematical and physical insight
 - Safeguard mechanism: Increase robustness for hard cases
- **W**DFTK : Multidisciplinary software development
 - julia-based framework for new DFT algorithms
 - In one code: Reduced problems and high-throughput problems
 - High-productivity research framework
 - Overcome disciplinary barriers: People compose if software composes

Acknowledgements

- Niklas Schmitz (<u>Mt Mat</u>)
- Cédric Travelletti (Mt Mat)
- Yihan Wu (EPFL)
- Austin Zadoks (EPFL)
- All 😽 DFTK contributors

- Eric Cancès (École des Ponts)
- Katharine Fisher (MIT)
- Antoine Levitt (Université Paris-Saclay)
- Youssef Marzouk (MIT)
- Giovanni Pizzi (PSI)

Questions?

Mat https://matmat.org

https://michael-herbst.com/talks/2024.02. 15_unifr.pdf

DFTK https://dftk.org

julia https://michael-herbst.com/learn-julia https://michael-herbst.com/julia-for-materials

