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Energy consumption of materials discovery

@ Current solutions limited by properties of available materials

= Innovation driven by discovering new materials

@ Experimental research extremely energy intensive
o 1 fume hood ~ 2-3 average households®

= Complement experiment by computational materials discovery

1D. Wesolowski et. al. Int. J. Sustain. High. Edu. 11, 217 (2010).
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Computational materials discovery
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@ Goal: Only promising candidates go to the lab
@ Systematic simulations on ~ 10* — 10° compounds
e Complemented by data-driven approaches

@ Noteworthy share of world’s supercomputing resources
e Growing list of data / workflow management tools
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Energy consumption of computation

@ Energy consumption of LUMI (one of the most efficient):
e 60 million kWh / year ~ 1.5 EPFLs ~ 14000 households

@ Challenge of high-throughput:
e Many parameters to choose (algorithms, tolerances, models)

o Despite elaborate heuristics: Failure rate ~ 1%

@ Thousands of failed calculations
= Wasted resources
= Increased human attention (limits througput)
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A focus on robust materials simulations

e Goal in %’M group:

e Obtain reliable & efficient simulations
o Develop and employ mathematical analysis of error
e Transform empirical wisdom to built-in convergence guarantees

= Understand where and how to spend efforts best
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A focus on robust materials simulations

o Goal in #Atmat group:

e Obtain reliable & efficient simulations
o Develop and employ mathematical analysis of error
e Transform empirical wisdom to built-in convergence guarantees

= Understand where and how to spend efforts best

@ Practical error indicators:
e Automatic & robust verification
e Multi-fidelity statistical surrogates

e Active learning of missing physics

@ Leverage inexactness:
e Error balancing: Optimal adaptive parameter selection
e Adaptive tolerances & selective precision

= Multidisciplinary expertise required
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Opportunities for mathematical research

@ Gap: Mathematical understanding & simulation practice

@ Broad range of concerned mathematical fields:

e Optimisation, numerical linear algebra, analysis of PDEs,
uncertainty quantification, model order reduction, ...

@ Application domain: Source for research problems

o Large-scale eigenvalue problems
(L. Lin, Y. Saad, C. Yang, ...)

o Acceleration, fixed-point methods
(T. Kelly, A. Miedlar, Y. Saad, R. Schneider, H. vd. Vorst, H. Walker, ...)

e Non-linear PDEs
(Z. Bai, E. Cances, G. Friesecke, M. Lewin, I. Sigal, ...)
@ Application domain: Source for new methods
e Davidson diagonalisation (H. vd. Vorst, ...)

e Thorough exploration of Anderson-type acceleration (see above)

@ 17 minisymposia at SIAM in 2021/22 (-CSE, -LA, -MS, -PP, -UQ)

with contributions related to electronic-structure theory 5/32



(Exaggerative) state of codes in this field

Mathematical research Application research
@ Goal: Numerical experiments @ Goal: Modelling physics
@ Scope: Reduced models @ Scope: All relevant systems
@ High-level language: @ Mix of languages:
Matlab, python, ... C, FORTRAN, python, ...
@ Lifetime: 1 paper @ Lifetime: 100 manyears
@ Size: < 1k lines @ Size: 100k — 1M lines
@ Does not care about performance @ Obliged to write performant code

@ Working with these codes requires different skillsets

= Orthogonal developer & user communities

@ Obstacle for knowledge transfer:

@ Mathematical methods never tried in practical setting
(and may well not work well in the real world)

@ Some issues cannot be studied with mathematical codes
(and mathematicians may never get to know of them)
@ What about emerging hardware, accelerators, performance?

@ Should be the regime of Computer Science (yet another community) 6/32



Difficulties of interdisciplinary research

@ A social problem ...
@ Community conventions (e.g. language, publication culture)
@ Speed of research (development of model vs. its analysis)

@ ... cemented in software:
) @ Priorities differ = What is considered a “good code” differs
performance materials . . .
computing simulations @ Substantial obstacle for integration

@ Hypothesis: People compose if software composes

novel = %t"_at goal: Software to foster cross-community research
scientific
models

_ @ ) @ DFTK, the Density-Functional ToolKit
| TR

oy @ Allows restriction to relevant model problems,

numerical
analysis

@ and scale-up to application regime (1000 electrons)

MARVEL .
@ Integrated with high-throughput: Ceoo® SSAIDA
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DFT model classes

@ DFT energy minimisation problem:
min€(p) = min [Ecore(p) + Epr(p) + Exc(p)]

@ DFT model hierarchy for E,.: Jacob’s ladder
e Each rung defines (parametrised) model class

@ Higher rungs (think hybrid DFT):
e Generally more expensive, but also more accurate
e But: DFT is a non-variational approximation to exact physics

= Should not impose accuracy order in statistical learning
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DFT model classes

@ DFT energy minimisation problem:
min€(p) = min [Ecore(p) + Epr(p) + Exc(p)]

@ DFT model hierarchy for E,.: Jacob’s ladder
e Each rung defines (parametrised) model class

@ Higher rungs (think hybrid DFT):
e Generally more expensive, but also more accurate
e But: DFT is a non-variational approximation to exact physics

= Should not impose accuracy order in statistical learning

@ Guiding idea: Can we combine information from different
functionals to balance accuracy / cost / deviating predictions?

= Goals:
e Reduce data generation cost

e Dataset of opportunity
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Test problem: lonisation potentials of organic molecules

@ Dataset: ~ 3000 small organic molecules!

@ ANI-1 subset (2-5 heavy atoms, a few with 6 heavies)

@ Targeted quantity: lonisation potential
o Note: A challenging quantity for DFT

@ Considered models:

density-functional theory (DFT) coupled cluster
model PBE PBEO PBEO_DH CCSD(T)
scaling O(N?) O(N?) O(N?) O(NT)
advantage cheap cheapish cheapish accurate
rung 2nd (GGA) | 4th (Hybrid) | 6th (double Hybrid) Reference

e Goal: Surrogate for CCSD(T) but mostly use DFT data

Ic. Duan, F. Fang, A. Nandy, H. Kulik. J. Chem. Theo. Comput. 16, 4373 (2020).
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http://dx.doi.org/10.1021/acs.jctc.0c00358

Delta learning: Learning to correct the error

o ldea: Surrogate for difference between high- & low-fidelity
e Gaussian Process (GP) ansatz:
|pCCSD(T) _ |pDFT _ FE) +e
e~ N(0,0%) (Gaussian noise)
f~GP(u,Kg)  (GP prior)
&: vector of molecular descriptors, I*: vector of simulated data,
Kp: Kernel (e.g. polynomial, sq. exponential), &, i, 0: hyperparameters
e Training: Need DFT & CCSD(T) data
@ Prediction: Add DFT simulation to predicted mean of GP

@ Apply recursively: Multiple levels

@ Disadvantages:
o Ordering imposed

e Data of all lower levels need to be available
11/32



Multitasking: All DFT models are equal

@ Asymmetric multitasking?:
e p: Correlation between CCSD(T) and low-fidelity
0%: Disparity of low-fidelity models

GP prior on f* & §¢ of different kernel, mean, variance

€% is iid noise

IPY = f*(&) 4 €%  for model a € {CCSD(T), PBE, PBEO, ...}

fPBE(ﬁ) _ pPBEfCCSD(T)(g) _’_5PBE(€)
fPBEO(g) —_ pPBEOfCCSD(T)<£) + 5PBEO(§)

@ Remarks:
e Allows model discrepancies
o Keeps analytical formula for posterior

o Calibration set: Fix p® by Pearson correlation, optimise
hyperparameters

1G. Leen, J. Peltonen, S. Kaski. Mach. Learn. 89, 157 (2012)
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http://dx.doi.org/10.1007/s10994-012-5302-y

Multitasking: IP results?

| Ci | Additional |
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@ Goal: Prediction of T systems at CCSD(T) level
e Here: DFT predictions of T supplied (optional in our setup)
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C and A data not shared between tasks C and A data fully shared between tasks

(worst case) (best case)

1K. Fisher, MFH, Y. Marzouk Multitask meth. to predict molec. prop. from heterogeneous data arXiv 2401.17898 13/32


https://arxiv.org/abs/2401.17898

Multitasking: Comparison to A for water!

Mean Absolute Error [eV]

o Different test case:
Water 3-body energy

@ Multitask
A (3 levels)
® A2 levels)
Multitask A
—— CCSD(T) Only

@ Model differences smoother (smaller

« \ \ mean and variances)
\ \ \ = Bare multitask worse then
\ A learning
Ll @ Combination of both ideas:
il Multitask-A
Y 10 o Keeps flexibility improvements of
Cost [s]

multitask approaches

K. Fisher, MFH, Y. Marzouk Multitask meth. to predict molec. prop. from heterogeneous data arXiv 2401.17898
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Density-functional theory (insulators)

@ DFT approximation: Non-linear eigenvalue problem

1
Viel...N: <—2A+V([)q))> i = €,

V(P) =Vhue +vep + VXC(p)v

N

z: 2
[)(1): |l'/| )

=1

« ‘\v
b = ('l,)l S 2\) S (LZ(R&, C)) orthogonal

nuclear attraction Vj,c, exchange-correlation Vixc, Hartree potential —A (vop) = 4mwp

@ Solved as self-consistent field (SCF) problem:

p(Vp) =»
@ Hits plenty of “non-“s:  Non-convex, non-linear, non-local, non-smooth
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Self-consistent field problem

@ Density-mixing SCF procedure (preconditioner P, damping )
Pn+1 = Pn + P! [IO(V(Pn)) - pn]
@ Near a fixed-point the error goes as
entl {1 — P_leq en
with dielectric matrix ' = (1 — xoK), K(p) = V'(p), xo(V) = p'(V)

e Convergence iff —1 < [1 — P‘laq <1
o Dielectric matrix et: Depends on physics (conduction, screening)

o By second-order conditions: £t > 0 (near fixed point)

= Crucial to design preconditioner such that P~1ef ~ T

o Note: P need to adapt to physics of unknown system!
17/32



Black-box P: Local density of states (LDOS) mixing!
@ Bulk preconditioner (e.g. Kerker) neglect local structure of &f

@ We propose to employ ¢ = (1 — yoK)
@ xo(r,r") unit-cell internal fluctuations, diagonal dominant:

= gr0-00100
I 0.00075
0.00050
0.00025
0
-0.00025

—0.00050
I —0.00075
—0.00100

@ Tackle charge sloshing: Consider large-scale variations of x(:

position normal to surface r' (bohr)

0 20 40 60 80
position normal to surface r (bohr)

XO(T, 7“/) ~ fLDOS(T)(s(T‘, 7’/) (homogenisation LDOS(r) = fw(r. r’)dr’)

@ Apply preconditioner iteratively:
P oy =[1=X0K)| " pn,  Xo(r,r') = —LDOS(r)(r,r")

IMFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021). 1832


https://doi.org/10.1088/1361-648X/abcbdb

LDOS preconditioning (examples)®

Estimated SCF error

(a) Al+vacuum

Estimated SCF error

(b) AHSIO2

Yoy ! {- None
A-LDOS
<~ Kerker
V- TFW

0 1DV 20 30 40 50

Iteration

@ Inhomogeneous material: Aluminium metal + Insulator

e LDOS automatically interpolates between Kerker mixing
(suitable for metals) and no mixing (suitable for insulators)

= Based on mathematical understanding of screening

= Parameter-free and black-box

1MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
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Black-box cv: Adaptive damping?

Fe2CrGa (Kerker, Anderson)

10

4
®

o
o

10.4

Total energy absolute error
Damping parameter

0 10 20 30 40
Number of Hamiltonian diagonalizations

@ Theorem: SCF convergence guaranteed if v small enough (see paper)

@ «v adapted in each step using line search & quadratic model

@ Novelty: Reuse of expensive quantities in next SCF step
= No overhead if line search immediately successful

@ For tricky systems: Adaptive damping has an overhead
e But: Avoids trial and error
e Mathematically motivated safeguard mechanism

IMFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).
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How did @ DFTK help us to get there?
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How does @ DFTK achieve this?

e The magic of julia:
e Separating the what from the how

@ Clear design, inspired by mathematical structure
= Self-explaining code (a clear what)

performance
computing

materials
simulations

novel
scientific
models

@ Focus on keeping code accessible (7500 lines)
e Started in 2018, already 30 contributors
o Key features by undergrads & outsiders

@ = High-productivity research framework

=- Supports joint research across disciplines
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Separating the what from the how

@ Why is this separation so important ...
e ...for composable software?

e ...for multidisciplinary research?

Consider the goal: Modelling a physical system

Traditionally users code in detail how the computation should
proceed (Imperative programming)

e How = architecture
e How = linear algebra primitive (e.g. orthogonalisation)
e How = memory layout

But all this has nothing to do with physics!
Can the how be abstracted away?
e such that CS / Math can deal with it independently

Let's see julia's HPC developments . . .

24 /32



julia HPC abstractions

JuliaFolds/FLoops.i & JuliaParallel/MPLjl

, - WP wrappers for ula ®
Julia
CUDAI AMDGPU,jl|  OneAPLjl [ .
i Base / Multi-Threading JuliaParallel/ ...
JuliaGPU/ _ ) Dagger.jl cece
GPUArrays.jl Multi-Threading » Aframework for out-of-core and paralel execution

le array functionality for Julia's various GPU Sase. Threads ethreads — Macro || Standard Library Distributed Computing

backends.

Reus:

ipsgithub.com  JulsGPU » KemelAbstractions |

jl- in Julia
I Distributed Computing
A = rand(10, 10); A = A + A' + 10I; x = rand(10)
funczlon'pfwi%_!fl:thod(A, x; niter=100) using LinearMaps, IterativeSolvers
or 1 = liniter itinv(A) = LinearMap(x -> cg(A, x), size(d)...)
x = A *x
., x ./= norm(x) using CUDA
in power_method (itinv(Culrray(A)), CuArray(x))
end using AMDGPU

power_method (itinv(ROCArray(A)), ROCArray(x))
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@ DFTK design: Keeping code concise & accessible

# Run SCF, get Px*
Stress = scfres = self_consistent_field(basis)
L = basis.model.lattice

1 OF [P* (I +M) L] stress = 1/det(L) * gradient(
> / M -> recompute_energy(
det(L) oM scfres, (I + M) * L),
M=0 zero(L)

)

@ Stress computation (Definition vs. julia code)?
@ Post-processing step = Not performance critical

@ Comparison of implementation complexity:
o Q¥DFTK: 20 lines! (forward-mode algorithmic differentiation)
o Quantum-Espresso: 1700 lines?
o ~ 10-week GSoC project

= No performance impact & accessible code

https://github.com/JuliaMolSim/DFTK. j1/blob/master/src/postprocess/stresses. j1
2https://github.com/QEF/q-e/blob/develop/PH/src
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Support of a posteriori error analysis

0.1}
0.0

—0.1 |

~0.2 L1 . R T T
r X WK T L UW L KU X

@ Albeit the HPC capabilities: Numerical experiments are feasible

@ E.g. fully guaranteed error bounds for band structures?
@ Deals with a reduced Kohn-Sham model and requires interval arithmetic

@ Captures basis set error, floating-point error, convergence error

IMFH, A. Levitt, E. Cances. Faraday Discus. 223, 227 (2020).
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Outlook towards DFT properties

@ Based on recent perturbative error estimates’
@ Towards a posteriori error estimates for density and forces

SiPD_NC, Correlation between err. @Ecut
and norm of 8p_schur (Ecut->Ecut+30)

@ Points for each Ecut
Linear fit

010

o016~

10733 L

estimate via Schur residual

1073.00 1072 75

relerror@Ecut

1E. Cancés, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).
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Integration with AiiDA

@ Integration with ¢>AiiDA high-throughput workflow manager
e https://github.com/aiidaplugins/aiida-dftk

@ Used in automated verification tests: (re: = o)

v for DFTK@PW|PseudoDojo-v0.5 vs. QE@PW|PseudoDojo-v0.5

Ll | oo e T il
14

X205 | X,0s

X0, | X0
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L] ] il P | 1 [ [
FEAAS AN IR
I EEEEEEEEEEEEE N

Fr | Ra Lt Rf Db/ Sg Bh Hs Mt Ds Rg Cnhn Nh Fl Mc Lv Ts Og 0.6

.Ce Pr /Nd Pm Sm Eu Gd Th Dy Ho Er Tm Yb

02
Ac| Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No I

= Excellent agreement QE vs. @ DFTK
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Integration with AiiDA

@ Integration with ¢>AiiDA high-throughput workflow manager
e https://github.com/aiidaplugins/aiida-dftk

@ Used in automated verification tests:  (re: = 10a.u.)
¢ for DFTK@PW|PseudoDojo-v0.5|rcut=10 vs. QE@PW|PseudoDojo-v0.5

. X,05 | X,0¢

X,0 | X0,
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Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No IO'l

= Excellent agreement QE vs. @ DFTK
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Summary

@ Research in the #AtMat group
o Motivated by high-throughput materials design
@ Understand simulation error (numerics, models)

o Facilitate cross-community interaction

@ Black-box strategies for SCF damping & preconditioning
@ Build on combining mathematical and physical insight

o Safeguard mechanism: Increase robustness for hard cases

° @ DFTK: Multidisciplinary software development
o julia-based framework for new DFT algorithms

@ In one code: Reduced problems and high-throughput problems
e High-productivity research framework

o Overcome disciplinary barriers: People compose if software composes
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Questions?

;&1&1 https://matmat.org
) mfherbst

¥ michael.herbst@epfl.ch

e https://michael-herbst.com/talks/2024.02.
15_unifr.pdf

ngDFTK https://dftk.org

juﬁh https://michael-herbst.com/learn-julia

https://michael-herbst.com/julia-for-materials

=peL wXt Hat
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