Towards robust error control for high-throughput materials simulations

Michael F. Herbst

Mathematics for Materials Modelling (matmat.org), EPFL

21 November 2023

Slides: https://michael-herbst.com/talks/2023.11.21_theory_lunch.pdf

Tackling 21st century challenges

- 21st century challenges:
 - Renewable energy, green chemistry, health care ...
- Current solutions limited by properties of available materials
 Innovation driven by discovering new materials
- Crucial tool: Computational materials discovery
 - Systematic simulations on $\simeq 10^4 10^6 \ {\rm compounds}$
 - Complemented by data-driven approaches
 - Noteworthy share of world's supercomputing resources

Tackling 21st century challenges

- 21st century challenges:
 - Renewable energy, green chemistry, health care ...
- Current solutions limited by properties of available materials
 Innovation driven by discovering new materials
- Crucial tool: Computational materials discovery
 - Systematic simulations on $\simeq 10^4 10^6 \ {\rm compounds}$
 - Complemented by data-driven approaches
 - Noteworthy share of world's supercomputing resources

K. Alberi et. al. J. Phys. D, 52, 013001 (2019).

Tackling 21st century challenges

- 21st century challenges:
 - Renewable energy, green chemistry, health care ...
- Current solutions limited by properties of available materials
 Innovation driven by discovering new materials
- Crucial tool: Computational materials discovery
 - Systematic simulations on $\simeq 10^4 10^6 \ {\rm compounds}$
 - Complemented by data-driven approaches
 - Noteworthy share of world's supercomputing resources
- Multi-disciplinary effort: Software takes a key role
 - $\bullet\,$ E.g. growing list of data / workflow management tools
 - Challenges of combining efforts & integrating communities

Sketch of high-throughput workflows

Workflow for computing elasticity tensors

- Many parameters to choose (algorithms, tolerances, models)
 - $\bullet\,$ Elaborate heuristics: Failure rate $\simeq 1\%$
 - Still: Thousands of failed calculations
 - \Rightarrow Wasted resources & increased human attention (limits througput)
- Goal 1 in Mt Mat group: Self-adapting black-box algorithms
 - Parameter-free automatically adapt to simulated system
 - Transform empirical wisdom to built-in convergence guarantees

G. Hautier Comput. Mater. Sci. 164, 108 (2019); L. Himanen et. al. Adv. Science 6, 1900808 (2019).

Broader vision: Robust & error-controlled simulations

- Error control = Track simulation uncertainties:
 - Self-adapting simulations with mathematical guarantees
 - \Rightarrow Byproducts: Data quality control, accelerated design
- Error control = Learn missing physics:
 - Data-enhanced models, active learning
 - \Rightarrow "Patch up" low-fidelity simulations by select high-fidelity data
- Error control = Leverage inexactness:
 - Error balancing: Optimal adaptive parameter selection
 - Adaptive tolerances & selective precision (16-bit, FPGA)
- Goal 2 in Mt Mat group: Estimate and control simulation error
 - Understand where and how to spend efforts best
 - Realm of mathematical research

(Exaggerative) state of codes in this field

Mathematical research

- Goal: Numerical experiments
- Scope: Reduced models
- High-level **language**: Matlab, python, ...
- Lifetime: 1 paper
- Size: < 1k lines
- Does not care about performance

Application research

- Goal: Modelling physics
- Scope: All relevant systems
- Mix of languages: C, FORTRAN, python, ...
- Lifetime: 100 manyears
- Size: 100k 1M lines
- Obliged to write performant code
- Working with these codes requires different skillsets
 - ⇒ Orthogonal developer & user communities
- Obstacle for knowledge transfer:
 - Mathematical methods never tried in practical setting (and may well not work well in the real world)
 - Some issues cannot be studied with mathematical codes (and mathematicians may never get to know of them)
- What about emerging hardware, accelerators, performance?
 - Should be the regime of Computer Science (yet another community)

Difficulties of interdisciplinary research

- Community conventions (e.g. publication culture)
- Language barriers and context-sensitive terms
- Speed of research (development of model vs. its analysis)
- A social problem ...
 - (Communication, convention, compromises, ...)
- ... that is cemented in software:
 - $\bullet~\mbox{Priorities differ} \Rightarrow \mbox{What is considered "a good code" differs$
 - Insurmountable obstacles to integrate codes
 - Collaborations can stop before they begin
- Hypothesis: People compose if software composes

Density-functional toolkit (DFTK) — https://dftk.org

• Foster cross-community research & fertilisation

6 / 29

1 Model error & multi-task surrogates

Bow does The provide the second se

DFT model classes

• DFT energy minimisation problem:

 $\min_{D \in \mathcal{P}} \mathcal{E}(D) = \min_{D \in \mathcal{P}} \left[\operatorname{tr}(H_0 D) + E_H(\operatorname{diag} D) + E_{\mathsf{xc}}(\operatorname{diag} D) \right]$

- DFT model hierarchy for *E*_{xc}: Jacob's ladder
 - LDA, GGA, meta-GGA, Hybrid, RPA-like, Double Hybrid, ...
 - Each rung defines (parametrised) model class
- Higher rungs:
 - Generally more expensive, but also more accurate
 - But: DFT is a non-variational approximation to exact physics
 - \Rightarrow No guaranteed accuracy order
- **Guiding idea:** Can we combine information from different functionals to balance accuracy / cost / deviating predictions?
- Important: We should not impose an order!

DFT model classes

• DFT energy minimisation problem:

 $\min_{D \in \mathcal{P}} \mathcal{E}(D) = \min_{D \in \mathcal{P}} \left[\operatorname{tr}(H_0 D) + E_H(\operatorname{diag} D) + E_{\mathsf{xc}}(\operatorname{diag} D) \right]$

- DFT model hierarchy for *E*_{xc}: Jacob's ladder
 - LDA, GGA, meta-GGA, Hybrid, RPA-like, Double Hybrid, ...
 - Each rung defines (parametrised) model class
- Higher rungs:
 - Generally more expensive, but also more accurate
 - But: DFT is a non-variational approximation to exact physics
 - \Rightarrow No guaranteed accuracy order
- **Guiding idea:** Can we combine information from different functionals to balance accuracy / cost / deviating predictions?
- Important: We should not impose an order!

Test problem: Ionisation potentials of organic molecules

- Dataset: $\simeq 3000$ small organic molecules¹
 - ANI-1 subset (2-5 heavy atoms, a few with 6 heavies)
- Targeted quantity: Ionisation potential
 - Note: A challenging quantity for DFT
- Considered models:

	densi	coupled cluster			
model	PBE	PBE0	PBE0_DH	CCSD(T)	
scaling	$O(N^3)$	$O(N^3)$	$O(N^3)$	$O(N^7)$	
advantage	cheap	cheapish	cheapish	accurate	
rung	2nd (GGA)	4th (Hybrid)	6th (double Hybrid)	Reference	

• Goal: Surrogate for CCSD(T) but mostly use DFT data

¹C. Duan, F. Fang, A. Nandy, H. Kulik. J. Chem. Theo. Comput. 16, 4373 (2020).

Delta learning: Learning to correct the error

- Idea: Surrogate for difference between high- & low-fidelity
- Gaussian Process (GP) ansatz: $I^{\text{CCSD}(\mathsf{T})} - I^{\text{DFT}} = f(\xi) + \varepsilon$ $\varepsilon \sim \mathcal{N}(0, \sigma^2 I) \qquad \text{(Gaussian noise)}$ $f \sim \mathcal{GP}(\mu, K_{\theta}) \qquad \text{(GP prior)}$

 ξ : vector of molecular descriptors, I^x : vector of simulated data, K_{θ} : Kernel (e.g. polynomial, sq. exponential), σ , μ , θ : hyperparameters

- Training: Need DFT & CCSD(T) data
- Prediction: Add DFT simulation to predicted mean of GP
- Apply recursively: Multiple levels
- Disadvantages:
 - Ordering imposed
 - All lower levels need to be available

Multitasking: All DFT models are equal

- Asymmetric multitasking¹:
 - ρ^{α} : Correlation between CCSD(T) and low-fidelity
 - δ^{α} : Disparity of low-fidelity models

 $I^{\alpha} = f^{\alpha}(\xi) + \varepsilon^{\alpha} \quad \text{for model } \alpha \in \{\text{CCSD}(\mathsf{T}), \text{PBE}, \text{PBE0}, \ldots\}$ $f^{\text{PBE}}(\xi) = \rho^{\text{PBE}} f^{\text{CCSD}(\mathsf{T})}(\xi) + \delta^{\text{PBE}}(\xi)$ $f^{\text{PBE0}}(\xi) = \rho^{\text{PBE0}} f^{\text{CCSD}(\mathsf{T})}(\xi) + \delta^{\text{PBE0}}(\xi)$

GP prior on f^α & δ^α of different kernel, mean, variance (hyperparams), ε^α is iid noise

- Rationale:
 - Allow model discrepancies, keep analytical formula for posterior
- Based on small set of calibration data:
 - Fix ρ^{α} by Pearson correlation
 - Optimise hyperparameters

¹G. Leen, J. Peltonen, S. Kaski. Mach. Learn. **89**, 157 (2012)

Multitasking: IP results

	Core	Additional	Target
CCSD(T)	•••••		********
PBE0_DH	••••		
PBE0	•• ••	•• ••	
PBE	•• ••	•• ••	
BLYP	•• ••	•• ••	•••••

• Goal: Prediction of **T** systems at CCSD(**T**) level

Multitasking: Comparison

- Multitask performance depends on correlation between methods
- Different test case (water 3-body energy)
- Δ methods outperforms as difference smoother
- \bullet Solution: Multitask- Δ
- \Rightarrow Multitask is additional ingredient

1 Model error & multi-task surrogates

Bow does The provide the second se

14 / 29

Density-functional theory (insulators)

• Energy minimisation problem:

$$\min_{D \in \mathcal{P}} \mathcal{E}(D) = \min_{D \in \mathcal{P}} \left[\operatorname{tr}(H_0 D) + E_{\mathsf{Hxc}}(\operatorname{diag} D) \right]$$

with $\mathcal{P} = \left\{ D \in \mathfrak{S}_1(L^2) \mid 0 \le D \le 1, \operatorname{tr}(D) = N, \operatorname{tr}(-\Delta D) < \infty \right\}$, $[\operatorname{diag} D](\underline{r}) = D(\underline{r}, \underline{r})$

• DFT approximation: Effective single-particle model

$$\begin{cases} \forall i \in 1 \dots N : \left(-\frac{1}{2} \Delta + V(\rho_{\Phi}) \right) \psi_{i} = \varepsilon_{i} \psi_{i}, \\ V(\rho) = V_{\text{nuc}} + v_{C} \rho + V_{\text{XC}}(\rho), \\ \rho_{\Phi} = \sum_{i=1}^{N} |\psi_{i}|^{2}, \\ \Phi = (\psi_{1}, \dots, \psi_{N}) \in \left(L^{2}(\mathbb{R}^{3}, \mathbb{C}) \right)^{N} \text{orthogonal} \end{cases}$$

nuclear attraction V_{nuc} , exchange-correlation V_{XC} , Hartree potential $-\Delta (v_C \rho) = 4\pi \rho$

 \Rightarrow Self-consistent field (SCF) problem: $\rho(V(\rho)) = \rho$ with

$$\rho(V) = \operatorname{diag}\left[\mathbbm{1}_{(-\infty,\varepsilon_F]}\left(-\frac{1}{2}\Delta + V\right)\right] \quad \text{and } \varepsilon_F \text{ s. t. } \int \rho(V) = N$$

15 / 29

Self-consistent field problem

• Density-mixing SCF procedure (preconditioner *P*, damping *α*)

$$\rho_{n+1} = \rho_n + \alpha P^{-1} \left[\rho(V(\rho_n)) - \rho_n \right]$$

Near a fixed-point the error goes as

$$e_{n+1} \simeq \left[1 - \boldsymbol{\alpha} P^{-1} \varepsilon^{\dagger}\right] e_n$$

with dielectric matrix $\varepsilon^{\dagger} = (1 - \chi_0 K)$, $K(\rho) = V'(\rho)$, $\chi_0(V) = \rho'(V)$

- Convergence iff $-1 < \left[1 \alpha P^{-1} \varepsilon^{\dagger}\right] < 1$
 - Dielectric matrix ε: Depends on physics (conduction, screening)
 - By second-order conditions: $\varepsilon \geq 0$ (near fixed point)
- \Rightarrow Crucial to design preconditioner such that $P^{-1}\varepsilon\approx I$
 - Note: *P* need to adapt to physics of unknown system!

LDOS preconditioning (examples)¹

- Inhomogeneous material: Aluminium metal + Insulator
- LDOS automatically interpolates between Kerker mixing (suitable for metals) and no mixing (suitable for insulators)
 - \Rightarrow Based on mathematical understanding of screening
 - ⇒ Parameter-free and black-box

¹MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).

Robust & efficient algorithms

- Black-box SCF damping α^1
- α adapted *in each step* using line search & quadratic model
- Novelty: Reuse of expensive quantities in next SCF step
- Reduces trial and error

- First-principle properties of metals
- Schur-complement approach to perturbation theory² (exploits partially converged states)
- ca. 40% less iterations
- ⇒ Maths / physics collaboration: Exchange of ideas between simplified & practical settings crucial

¹MFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).

²E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).

DEMO

How did **TK** help us to get there?

https://michael-herbst.com/talks/2023.11.21_theory_lunch.html

1 Model error & multi-task surrogates

Bow does The provide the second se

20 / 29

How does 😵 DFTK achieve this?

- The magic of **julia**:
 - Separating the what from the how
- Clear design, inspired by mathematical structure
 ⇒ Self-explaining code (a clear what)
- Focus on keeping code accessible (7500 lines)
 - Started in 2018, already 30 contributors
 - Key features by undergrads & outsiders
- ⇒ High-productivity research framework
 ⇒ Supports joint research across discipling
- \Rightarrow Supports joint research across disciplines

Separating the what from the how

- Why is this separation so important ...
 - ... for composable software?
 - ... for multidisciplinary research?
- Consider the goal: Modelling a physical system
- Traditionally users code in detail how the computation should proceed (Imperative programming)
 - How = architecture
 - How = linear algebra primitive (e.g. orthogonalisation)
 - How = memory layout
 - ...
- But all this has nothing to do with physics!
- Can the how be abstracted away?
 - such that CS / Math can deal with it independently
- Let's see julia's HPC developments ...

julia HPC abstractions

A = rand(10, 10); A = A + A' + 10I; x = rand(10)

```
function power_method(A, x; niter=100)
for i = 1:niter
    x = A * x
    x ./= norm(x)
end
    x
end
```

```
using LinearMaps, IterativeSolvers
itinv(A) = LinearMap(x -> cg(A, x), size(A)...)
```

```
using CUDA
power_method(itinv(CuArray(A)), CuArray(x))
```

```
using AMDGPU
power_method(itinv(ROCArray(A)), ROCArray(x))
```

🔁 DFTK design: Keeping code concise & accessible

- Stress computation (Definition vs. julia code)¹
- Post-processing step \Rightarrow Not performance critical
- Comparison of implementation complexity:
 - 🐺 DFTK: 20 lines¹ (forward-mode algorithmic differentiation)
 - Quantum-Espresso: 1700 lines²
 - $\bullet~\simeq$ 10-week GSoC project

\Rightarrow No performance impact & accessible code

¹https://github.com/JuliaMolSim/DFTK.jl/blob/master/src/postprocess/stresses.jl

²https://github.com/QEF/q-e/blob/develop/PW/src

Support of a posteriori error analysis

- Albeit the HPC capabilities: Numerical experiments are feasible
- E.g. fully guaranteed error bounds for band structures¹
- Deals with a reduced Kohn-Sham model and requires interval arithmetic
- Captures basis set error, floating-point error, convergence error
- Recent work based on 🚯 DFTK considers also property errors²

¹MFH, A. Levitt, E. Cancès. Faraday Discus. **223**, 227 (2020).

²E. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).

Integration with AiiDA

- Integration with &AiiDA high-throughput workflow manager
 - https://github.com/aiidaplugins/aiida-dftk
- Currently used for automated verification tests:

ε for DFTK@PW|PseudoDojo-v0.5 vs. Quantum ESPRESSO@PW|PseudoDojo-v0.4

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Ho	Er	Тm	Yb
Ac	Th	Ра	U	Np	Pü	Am	Cm	Bk	Cf	Es	Fm	Md	No

Summary

- Research in the Mat group
 - Motivated by high-throughput materials design
 - Need for robust, error-controlled simulation methods
- Multi-tasking surrogate models
 - $\bullet~$ No need to impose model ordering \Rightarrow Well-suited for DFT setting
 - Can use cheap model data to compensate for expensive simulations
 - Promising to exploit existing data sets (highly heterogeneous!)
- Black-box strategies for SCF damping & preconditioning
 - Build on combining mathematical and physical insight
 - Safeguard mechanism: Increase robustness for hard cases
- **W**DFTK : Multidisciplinary software development
 - julia-based framework for new DFT algorithms
 - In one code: Reduced problems and high-throughput problems
 - High-productivity research framework
 - Overcome disciplinary barriers: People compose if software composes

Acknowledgements

- Niklas Schmitz (<u>Mt Mat</u>)
- Cédric Travelletti (Mt Mat)
- Yihan Wu (EPFL)
- Austin Zadoks (EPFL)
- All 🚯 DFTK contributors

- Eric Cancès (École des Ponts)
- Katharine Fisher (MIT)
- Antoine Levitt (Université Paris-Saclay)
- Youssef Marzouk (MIT)
- Giovanni Pizzi (PSI)
- Guillaume Vigne (Mines Paris)

Questions?

Mt Mat https://matmat.org
 mfherbst
 michael.herbst@epfl.ch

https://michael-herbst.com/talks/2023.11. 21_theory_lunch.pdf

DFTK https://dftk.org

julia https://michael-herbst.com/learn-julia

