Efficient response property calculations for density-functional theory

Eric Cancès, Michael F. Herbst*, Gaspard Kemlin, Antoine Levitt, Benjamin Stamm

*Mathematics for Materials Modelling (matmat.org), EPFL
6 June 2023
Slides: https://michael-herbst.com/talks/2023.06.06_nmqc_response.pdf

Schur complement approach to response

Tackling to 21st century challenges

- 21st century challenges:
- Renewable energy, green chemistry, health care ...
- Current solutions limited by properties of available materials
\Rightarrow Innovation driven by discovering new materials
- Crucial tool: Computational materials discovery
- Systematic simulations on $\simeq 10^{4}-10^{6}$ compounds
- Complemented by data-driven approaches
- Noteworthy share of world's supercomputing resources

K. Alberi et. al. J. Phys. D, 52, 013001 (2019).

Sketch of high-throughput workflows

- Many parameters to choose (algorithms, tolerances, models)
- Elaborate heuristics: Failure rate $\simeq 1 \%$
- Still: Thousands of failed calculations
\Rightarrow Wasted resources \& increased human attention (limits througput)
- Goal: Self-adapting black-box algorithms
- Transform empirical wisdom to built-in convergence guarantees
- Requires: Uncertainty quantification \& error estimation
\Rightarrow Understand where and how to spend efforts best

[^0]
Error sources in DFT simulations

- Model error: Selection of DFT model
- Computational approach:
- Discretisation error: Basis size, k-point mesh
- Algorithm error: Convergence thresholds (SCF, eigensolver)
- Floating-point error: Floating-point arithmetic
- Additionally: Programming error, hardware error (not discussed further)
- Error control: Link parameter selection \leftrightarrow simulation error
- Remarkable progress in mathematical research on DFT
- Goal of this work: Reliable computation of DFT sensitivities
\Rightarrow Understand influence of DFT model on predicted properties

Density-functional theory

- Self-consistent field procedure: Fixed-point problem

$$
\begin{array}{ll}
& F\left(V_{\mathrm{ext}}+V_{\mathrm{Hxc}}\left(\rho_{\mathrm{SCF}}\right)\right)=\rho_{\mathrm{SCF}} \\
\text { where } \quad & V_{\mathrm{Hxc}}(\rho)=v_{C} \rho+V_{\mathrm{XC}}(\rho)
\end{array}
$$

- $F(V)$ is the potential-to-density map (i.e. diagonalisation)

$$
F(V)=\sum_{i=1}^{\infty} f\left(\frac{\varepsilon_{i}-\varepsilon_{F}}{T}\right)\left|\psi_{i}\right|^{2} \quad \text { where } \quad\left(-\frac{1}{2} \Delta+V\right) \psi_{i}=\varepsilon_{i} \psi_{i}
$$

- ε_{F} chosen such that $\int F(V)=N$ (number of electrons)
- nuclear attraction $V_{\text {nuc }}$, exchange-correlation $V_{X C}$, Hartree potential $-\Delta\left(v_{C} \rho\right)=4 \pi \rho$, ψ_{i} orthogonal, f : Occupation function between 0 and 2

DFT properties and sensitivities

- SCF defines mapping $V_{\text {ext }} \mapsto \rho_{\mathrm{SCF}}\left(F\left(V_{\text {ext }}+V_{\mathrm{Hxc}}(\rho \mathrm{SCF})\right)=\rho \mathrm{SCF}\right)$
- DFT properties: Response of system to external perturbation \Rightarrow (Higher-order) derivative of some function of ρ_{SCF}
- Examples: Forces (energy wrt. position), dipole moment (energy wrt. el. field), elasticity (energy cross-response to lattice deformation)
\Rightarrow Goal: Understand derivative of SCF mapping
- Density-functional perturbation theory (CP-SCF, ...)
- Link to DFT model sensitivities: Consider the $V_{\text {ext }}$ parameters:
- a : Lattice constant
- θ : DFT exchange-correlation parameters

Stress

Model sensitivity

$$
\begin{aligned}
S(a, \theta) & =\frac{\partial \mathcal{E}\left(\rho_{\mathrm{SCF}}(a, \theta)\right)}{\partial a} \\
\frac{d S}{d \theta} & =\frac{\partial S}{\partial \rho_{\mathrm{SCF}}} \frac{\partial \rho_{\mathrm{SCF}}}{\partial \theta}
\end{aligned}
$$

Density-functional perturbation theory

$$
F\left(V_{\mathrm{ext}}+V_{\mathrm{Hxc}}\left(\rho_{\mathrm{SCF}}\right)\right)=\rho_{\mathrm{SCF}}
$$

- δV : Perturbation to $V_{\text {ext }}$, by chain rule

$$
\begin{aligned}
& \delta \rho
\end{aligned}=F^{\prime}\left(V_{\mathrm{ext}}+V_{\mathrm{Hxc}}\left(\rho_{\mathrm{SCF}}\right)\right) \cdot\left(\delta V+K_{*} \delta \rho\right)
$$

$$
\text { where } K_{*}=V_{\mathrm{Hxc}}^{\prime}\left(\rho_{\mathrm{SCF}}\right), \chi_{0}=F^{\prime}\left(V_{\mathrm{ext}}+V_{\mathrm{Hxc}}\left(\rho_{\mathrm{SCF}}\right)\right)
$$

- Dyson equation: Solved by iterative methods
- Adler-Wiser formula (using $f_{n}=f\left(\varepsilon_{n}\right)$):

$$
\delta \rho(r)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{f_{n}-f_{m}}{\varepsilon_{n}-\varepsilon_{m}} \psi_{n}^{*}(r) \psi_{m}(r)\left(\delta V_{m n}-\delta \varepsilon_{F} \delta_{n m}\right)
$$

under the convention

$$
\frac{f_{n}-f_{n}}{\varepsilon_{n}-\varepsilon_{n}}=\frac{1}{T} f^{\prime}\left(\frac{\varepsilon_{n}-\varepsilon_{F}}{T}\right)=f_{n}^{\prime}
$$

and where $\delta V_{m n}=\left\langle\psi_{m} \mid \delta V \psi_{n}\right\rangle, \delta \varepsilon_{F}$ has an explicit formula

Getting rid of infinities (1)

- Represent $\delta \rho$ by variations $\delta \psi_{n}$ and $\delta f_{n}{ }^{1}$ (our new unknowns)

$$
\delta \rho(r)=\sum_{n=1}^{N} 2 f_{n} \operatorname{Re}\left(\psi_{n}^{*}(r) \delta \psi_{n}(r)\right)+\delta f_{n}\left|\psi_{n}(r)\right|^{2}
$$

where $\delta f_{n}=f_{n}^{\prime}\left(\delta V_{n n}-\delta \varepsilon_{F}\right)$

- Define:
- $P=\operatorname{span}\left\{\psi_{n} \mid n=1, \ldots, N\right\}$: Space spanned by N lowest eigenpairs $\left(\varepsilon_{n}, \psi_{n}\right)$ of H (occupied subspace)
- $\Pi_{Q}=1-\Pi_{P}$ with Π_{P} projector onto P.
- Separate the contributions:

$$
f_{n} \delta \psi_{n}=f_{n} \delta \psi_{n}^{P}+f_{n} \delta \psi_{n}^{Q}
$$

- Note: We deal with the setting of many basis functions (Plane waves, wavelets, finite elements, real-space, ...)
\Rightarrow We cannot compute all eigenpairs of H

[^1]
Getting rid of infinities (2)

- occupied-occupied $\delta \psi_{n}^{P}$: Use sum over states

$$
f_{n} \delta \psi_{n}^{P}=\sum_{m=1, m \neq n}^{N} \Gamma_{m n} \psi_{m}
$$

where we need $\Gamma_{n n}=0$ and

$$
\Gamma_{m n}+\Gamma_{n m}^{*}=\frac{f_{n}-f_{m}}{\varepsilon_{n}-\varepsilon_{m}} \delta V_{m n}
$$

- Question 1: This is not unique. How to choose $\Gamma_{n m}$?

Getting rid of infinities (3)

- unocc-occ $\delta \psi_{n}^{Q}$: Use Sternheimer equation

$$
\begin{equation*}
\Pi_{Q}\left(H-\varepsilon_{n}\right) \Pi_{Q} \delta \psi_{n}=-\Pi_{Q} \delta V \psi_{n} \quad \forall n=1, \ldots, N \tag{*}
\end{equation*}
$$

- Question 2: $(*)$ is badly conditioned if gap $\varepsilon_{N+1}-\varepsilon_{N}$ small
\Rightarrow How can we make response cheaper for metals?

Contents

(1) Gauge choices
(2) Sternheimer with a Schur complement
(3) Routine computation of model sensitivities

EPFL M X tMat

The bad choice: Orthogonal gauge

- Recall, we need

$$
\Gamma_{m n}+\Gamma_{n m}^{*}=\Delta_{m n}=\frac{f_{n}-f_{m}}{\varepsilon_{n}-\varepsilon_{m}} \delta V_{m n}
$$

and additionally $\Gamma_{m n}=\left\langle\psi_{m} \mid f_{n} \delta \psi_{n}\right\rangle$ by construction

- Zero temperature (insulators): $\delta \psi^{P}=0$
\Rightarrow Orbitals can be kept orthogonal under response (for insulators)
- Orthogonal gauge: Enforce orthogonality in all cases, i.e.

$$
\begin{aligned}
0 & =\delta\left\langle\psi_{m} \mid \psi_{n}\right\rangle=\left\langle\delta \psi_{m} \mid \psi_{n}\right\rangle+\left\langle\psi_{m} \mid \delta \psi_{n}\right\rangle \\
& \Rightarrow \quad 0=\Gamma_{m n} / f_{n}+\Gamma_{n m}^{*} / f_{m} \\
& \Rightarrow \quad \Gamma_{m n}^{\mathrm{orth}}=\frac{f_{n}}{\varepsilon_{n}-\varepsilon_{m}} \delta V_{m n}
\end{aligned}
$$

- Problem: This can lead to a large contribution as $\varepsilon_{n} \rightarrow \varepsilon_{m}$ which is almost compensated by $\Gamma_{n m}^{o r t h, *}$
\Rightarrow Loss of numerical precision

The optimal choice: Minimal gauge

- Minimise the size of all contributions to $\delta \psi_{n}$, i.e.

$$
\begin{aligned}
& \min \sum_{m, n} \frac{1}{f_{n}^{2}}\left|\Gamma_{m n}\right|^{2} \\
& \text { s.t. } \Gamma_{m n}+\Gamma_{n m}^{*}=\Delta_{m n}=\frac{f_{n}-f_{m}}{\varepsilon_{n}-\varepsilon_{m}} \delta V_{m n}
\end{aligned}
$$

- Minimal gauge: Solution to above problem

$$
\Gamma_{m n}=\frac{f_{n}^{2}}{f_{n}^{2}+f_{m}^{2}} \Delta_{m n}
$$

- Other gauge choices:
- Quantum Espresso: $\Gamma_{m n}=f_{\mathrm{FD}}\left(\frac{\varepsilon_{n}-\varepsilon_{m}}{T}\right) \Delta_{m n}$
- Abinit: $\Gamma_{m n}=\mathbb{1}_{f_{n}>f_{m}} \Delta_{m n}$

Comparison of gauges

- Graph investigates the growth of $\delta \rho$ wrt. δV
- $\frac{1}{2 T}$ gives a lower bound (from $\Delta_{m n}$)
\Rightarrow Orthogonal should be avoided, all others reasonable

Contents

(1) Gauge choices
(2) Sternheimer with a Schur complement
(3) Routine computation of model sensitivities

EPFL M X tMat

Extra SCF orbitals ${ }^{1}$

- Each application of χ_{0} to a δV requires solving Sternheimer for all $n=1, \ldots, N$

$$
\Pi_{Q}\left(H-\varepsilon_{n}\right) \Pi_{Q} \delta \psi_{n}=-\Pi_{Q} \delta V \psi_{n}
$$

- If gap $\varepsilon_{N+1}-\varepsilon_{N}$ closes (metals), conditioning gets worse

[^2]
Extra SCF orbitals ${ }^{1}$

- Each application of χ_{0} to a δV requires solving Sternheimer for all $n=1, \ldots, N$

$$
\Pi_{Q}\left(H-\varepsilon_{n}\right) \Pi_{Q} \delta \psi_{n}=-\Pi_{Q} \delta V \psi_{n}
$$

- If gap $\varepsilon_{N+1}-\varepsilon_{N}$ closes (metals), conditioning gets worse
- But we have not used all we know:
- Standard iterative diagonalisations (and thus SCFs) yield $N_{\text {ex }}$ additional orbitals $\Phi=\left(\psi_{N+1}, \ldots, \psi_{N+N_{\text {ex }}}\right)$
- Notable property: $\Phi^{T} H \Phi=\operatorname{diag}\left(\varepsilon_{N+1}, \ldots, \varepsilon_{N+N_{\text {ex }}}\right)$
- Not fully converged, i.e. $H \psi_{n} \neq \varepsilon_{n} \psi_{n}$ for $n=N+1, \ldots, N+N_{\text {ex }}$

[^3]
Splitting the orbital space ${ }^{1}$

- Overview:
- P: Fully converged, occupied orbitals
- T: Non-occupied, not converged
- R : Completely unknown states
- $I=\Pi_{P}+\Pi_{Q}=\Pi_{P}+\Pi_{T}+\Pi_{R}$
- Hamiltonian structure:

$$
H=\left(\begin{array}{ccc}
E & 0 & 0 \\
0 & E_{\mathrm{ex}} & \Pi_{T} H \Pi_{R} \\
0 & \Pi_{R} H \Pi_{T} & \Pi_{R} H \Pi_{R}
\end{array}\right)
$$

where $E=\operatorname{diag}\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)$ and $E_{\text {ex }}=\operatorname{diag}\left(\varepsilon_{N+1}, \ldots, \varepsilon_{N+N_{\mathrm{ex}}}\right)$

[^4]
Exploiting block structure ${ }^{1}$

$$
\Pi_{Q}\left(H-\varepsilon_{n}\right) \Pi_{Q} \delta \psi_{n}=-\Pi_{Q} \delta V \psi_{n}
$$

Sternheimer equation

$$
H-\varepsilon_{n}=\left(\begin{array}{cc}
E-\varepsilon_{n} & 0 \\
0 & \Pi_{Q}\left(H-\varepsilon_{n}\right) \Pi_{Q}
\end{array}\right)=\left(\begin{array}{ccc}
E-\varepsilon_{n} & 0 & 0 \\
0 & E_{\text {ex }}-\varepsilon_{n} & \Pi_{T} H \Pi_{R} \\
0 & \Pi_{R} H \Pi_{T} & \Pi_{R}\left(H-\varepsilon_{n}\right) \Pi_{R}
\end{array}\right)
$$

- Invert $\Pi_{Q}\left(H-\varepsilon_{n}\right) \Pi_{Q}$
- $n=N$: Possibly ill-conditioned as $\varepsilon_{N+1}-\varepsilon_{N} \rightarrow 0$
- $E_{\text {ex }}-\varepsilon_{n}$ diagonal: Inversion for free
- Only invert $\Pi_{R}\left(H-\varepsilon_{n}\right) \Pi_{R}$
\Rightarrow Better conditioned as

$$
\varepsilon_{N+N \mathrm{exx}}-\varepsilon_{N}>\varepsilon_{N+1}-\varepsilon_{N}
$$

- Non-zero off-diagonal parts: Schur complement
- A bit tedious \Rightarrow Ask me for details

[^5]
Schur-based response: Numerical examples ${ }^{1}$

[^6]
Contents

(1) Gauge choices
(2) Sternheimer with a Schur complement
(3) Routine computation of model sensitivities

EPFL M X tMat

Density-functional toolkit ${ }^{1}$ — https://dftk.org

- julî̉ code for plane-wave DFT, started in 2019
- Fully composable due to jullỉa abstractions:
- Arbitrary precision (32bit, >64bit, ...)
- Algorithmic differentiation (AD)
- HPC tools: GPU acceleration, MPI parallelisation
- Low barriers for cross-disciplinary research:
- Allows restriction to relevant model problems,
- and scale-up to application regime (1000 electrons)
- Sizeable feature set in 7500 lines of code
- Including some unique features (Self-adapting algorithms)
- Accessible high-productivity research framework:
- Key code contributions by undegrads / PhD students
- AD support in 10 weeks (CS Bachelor)
- GPU support in 10 weeks (Physics Bachelor)
- Relevant contributions from outside collab. circle

Lattice constant sensitivities in DFTK

```
function dft_energy(a, 0)
    model = model_DFT(make_structure(a), PbeExchange( }0\mathrm{ ) )
    basis = PlaneWaveBasis(model; Ecut=..., kgrid=... )
    self_consistent_field(basis).energies.total
end
optimise_lattice(0) = optimise(a -> dft_energy (a, 0))
sensitivities =
    ForwardDiff.gradient(optimise_lattice, [\kappa, \beta])
```

(\AA)	a_{*}	κ	$\frac{d a_{*}}{d \kappa}$	$\boldsymbol{\beta}$	$\frac{d a_{*}}{d \beta}$
expmnt.	5.421				
PBEsol	5.449	0.804	0.713	0.0375	0.0058
PBE	5.461	0.804	0.550	0.0667	0.0194
APBE	5.465	0.804	0.482	0.0790	0.0269
PBEmol	5.467	0.804	0.456	0.0838	0.0301
XPBE	5.466	0.920	0.603	0.0706	0.0184
rev-PBE	5.467	1.245	0.744	0.0667	0.0099

Model sensitivities for the silicon lattice constant

- Optimal lattice constant sensitivities in one line of code

$$
a_{*}=\underset{a}{\arg \min } \mathcal{E}(a, \theta) \quad \text { sensitivities }=\frac{d a_{*}}{d \theta}
$$

- Practical challenges for derivation and implementation:
- Nested iterative methods (eigensolver, SCF, lattice optimisation)
- Unusual second-order derivatives (e.g. $\frac{\partial S}{\partial \theta}=\frac{\partial^{2} \varepsilon}{\partial \theta \partial a}$)
- Support for future DFT models? (with their different parameters θ)
- DFTK key achievements:
- Integration with juliả's frameworks for algorithmic differentiation (AD)
- Floating-point agnostic design
- Stable \& generic response solver (this talk)
- Fully flexible in DFT model or targeted quantity:
- Saves manual coding: Request gradient, AD delivers
\Rightarrow Breaks "one PhD student per derivative" paradigm

Summary

- Challenges of response calculations for metals
- Closing gap worsens conditioning of linear system
- Ambiguity in representing density response (gauge freedom)
- Mathematical analysis of DFPT
- Novel Schur-complement approach to response
- Up to 40% faster, while no additional cost
- Applicable to all "large basis set" methods
- Readily available in DFTK
- Enables fast \& robust derivative computations (in combination with AD)
- Routine sensitivity analysis \& UQ
- Development of data-enhanced models
- DFTK: Multidisciplinary software development
- juliả-based framework for new DFT algorithms
- High-productivity research framework
- In one code: Reduced problems and scale-up to realistic applications
\Rightarrow Sketch new methods \& test in HPC context

Open PhD \& PostDoc positions in the MatMat group

Possible topics include:

- Uncertainty quantification for DFT: Error in data-driven DFT models, pseudopotentials, propagation to properties and MD potentials
- Self-adapting numerical methods for high-throughput DFT simulations
- See https://matmat.org/jobs/
- Interdisciplinary research linking maths and simulation:
- Become part of maths and materials institutes @ EPFL
- Collaboration inside MARVEL
- Reproducible workflows \& sustainable software
- Computational materials discovery
- Statistical learning methods

EPFL M Xt Mat

Questions?

mythat https://matmat.org
(C) mfherbst

- michael.herbst@epfl.ch
© E. Cancès, MFH, A. Levitt et. al. Lett. Math. Phys., 113, 21 (2023). DOI 10.1007/s11005-023-01645-3

DFTK https://dftk.org

Contents

4 Details on the Schur complement approach
(5) Shifted Sternheimer approaches

EPFL M XtMat

Schur-complement approach ${ }^{1}$ (1)

- We want to solve

$$
\Pi_{Q}\left(H-\varepsilon_{n}\right) \Pi_{Q} \delta \psi_{n}=\underbrace{-\Pi_{Q} \delta V \psi_{n}}_{:=b_{n}}
$$

- Split orbital perturbation $\Pi_{Q} \delta \psi_{n}=\Phi \alpha_{n}+\Pi_{R} \delta \psi_{n}^{R}$ to obtain:

$$
\Pi_{Q}\left(H-\varepsilon_{n}\right) \Phi \alpha_{n}+\Pi_{Q}\left(H-\varepsilon_{n}\right) \Pi_{R} \delta \psi_{n}^{R}=b_{n}
$$

- Schur complement: Solve component in T (along Φ) explicitly:

$$
\alpha_{n}=\underbrace{\left(\Phi^{T} H \Phi\right)^{-1}}_{=D^{-1}}(\Phi^{T} b_{n}-\underbrace{\Phi^{T}\left(H-\varepsilon_{n}\right) \Pi_{R}}_{=h_{R T}^{T}} \delta \psi_{n}^{R})
$$

[^7]
Schur-complement approach ${ }^{1}$ (2)

$$
\begin{aligned}
& \Pi_{Q}\left(H-\varepsilon_{n}\right) \Phi \alpha_{n} \\
& \quad \quad+\Pi_{Q}\left(H-\varepsilon_{n}\right) \Pi_{R} \delta \psi_{n}^{R}=b_{n} \\
& \alpha_{n}= \\
& D^{-1}\left(\Phi^{T} b_{n}-h_{R T}^{T} \delta \psi_{n}^{R}\right)
\end{aligned}
$$

- Insert α_{n} back and project with Π_{R} from the left:

$$
\begin{aligned}
& \Pi_{R}\left(H-\varepsilon_{n}\right) \Phi\left[D^{-1}\left(\Phi^{T} b_{n}-h_{R T}^{T} \delta \psi_{n}^{R}\right)\right]+\Pi_{R}\left(H-\varepsilon_{n}\right) \Pi_{R} \delta \psi_{n}^{R}=\Pi_{R} b_{n} \\
& \Rightarrow\left[\Pi_{R}\left(H-\varepsilon_{n}\right) \Pi_{R}-h_{R T} D^{-1} h_{R T}^{T}\right] \Pi_{R} \delta \psi_{n}^{R}=\left[\Pi_{R}-h_{R T} D^{-1} \Phi^{T}\right] b_{n}
\end{aligned}
$$

- This can be solved for $\delta \psi_{n}^{R}$ using CG
- Φ are almost eigenvectors of H
$\Rightarrow \Pi_{R}$ almost removes small eigenmodes of $H-\varepsilon_{N}$
\Rightarrow Improved conditioning

[^8]
Shifted Sternheimer approaches

- Some codes avoid the split $\delta \psi_{n}=\delta \psi_{n}^{P}+\delta \psi_{n}^{Q}$ (e.g. Quantum Espresso)
- Instead they solve a shifted Sternheimer equation

$$
\left(H+S-\varepsilon_{n}\right) \delta \psi_{n}=-\left(f_{n}-S_{n}\right) \delta V
$$

(with S chosen to make this non-singular and S_{n} chosen to give the correct $\delta \rho$)

[^0]: G. Hautier Comput. Mater. Sci. 164, 108 (2019); L. Himanen et. al. Adv. Science 6, 1900808 (2019).

[^1]: ${ }^{1}$ E. Cancès, MFH, A. Levitt et. al. Lett. Math. Phys., 113, 21 (2023).

[^2]: ${ }^{1}$ E. Cancès, MFH, A. Levitt et. al. Lett. Math. Phys., 113, 21 (2023).

[^3]: ${ }^{1}$ E. Cancès, MFH, A. Levitt et. al. Lett. Math. Phys., 113, 21 (2023).

[^4]: ${ }^{1}$ E. Cancès, MFH, A. Levitt et. al. Lett. Math. Phys., 113, 21 (2023).

[^5]: ${ }^{1}$ E. Cancès, MFH, A. Levitt et. al. Lett. Math. Phys., 113, 21 (2023).

[^6]: ${ }^{1}$ E. Cancès, MFH, A. Levitt et. al. Lett. Math. Phys., 113, 21 (2023).

[^7]: ${ }^{1}$ E. Cancès, MFH, A. Levitt et. al. Lett. Math. Phys., 113, 21 (2023).

[^8]: ${ }^{1}$ E. Cancès, MFH, A. Levitt et. al. Lett. Math. Phys., 113, 21 (2023).

