
Accelerating mathematical developments in
materials modelling by composable software

Michael F. Herbst

Mathematics for Materials Modelling (matmat.org), EPFL

1 June 2023
Slides: https://michael-herbst.com/talks/2023.06.01_gamm_composable.pdf

Developing novel DFT algorithms

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

https://matmat.org
https://michael-herbst.com/talks/2023.06.01_gamm_composable.pdf


Tackling to 21st century challenges
21st century challenges:

Renewable energy, green chemistry, health care . . .

Current solutions limited by properties of available materials
⇒ Innovation driven by discovering new materials

Crucial tool: Computational materials discovery
Systematic simulations on ≃ 104 − 106 compounds
Complemented by data-driven approaches
Noteworthy share of world’s supercomputing resources

K. Alberi et. al. J. Phys. D, 52, 013001 (2019). 1 / 21
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Sketch of high-throughput workflows

}
DFT PBE stability

DFT PBE band gap

Hybrid-DFT band gap

Beyond DFT

Design funnel for photovoltaic materials Workflow for computing elasticity tensors

Many parameters to choose (algorithms, tolerances, models)
Elaborate heuristics: Failure rate ≃ 1%
Still: Thousands of failed calculations

⇒ Wasted resources & increased human attention (limits througput)

Goal: Self-adapting black-box algorithms
Transform empirical wisdom to built-in convergence guarantees
Requires: Uncertainty quantification & error estimation

⇒ Understand where and how to spend efforts best

G. Hautier Comput. Mater. Sci. 164, 108 (2019); L. Himanen et. al. Adv. Science 6, 1900808 (2019).
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Opportunities for mathematical research
Gap: Mathematical understanding & simulation practice
Broad range of concerned mathematical fields:

Optimisation, numerical linear algebra, analysis of PDEs,
uncertainty quantification, model order reduction, . . .

Application domain: Source for research problems
Large-scale eigenvalue problems
(L. Lin, Y. Saad, C. Yang, . . . )

Acceleration, fixed-point methods
(T. Kelly, A. Miedlar, Y. Saad, R. Schneider, H. vd. Vorst, H. Walker, . . . )

Non-linear PDEs
(Z. Bai, E. Cancès, G. Friesecke, M. Lewin, I. Sigal, . . . )

Application domain: Source for new methods
Davidson diagonalisation (H. vd. Vorst, . . . )

Thorough exploration of Anderson-type acceleration (see above)

17 minisymposia at SIAM in 2021/22 (-CSE, -LA, -MS, -PP, -UQ)
with contributions related to electronic-structure theory 3 / 21



(Exaggerative) state of codes in this field

Mathematical research
Goal: Numerical experiments
Scope: Reduced models
High-level language:
Matlab, python, . . .
Lifetime: 1 paper
Size: < 1k lines
Does not care about performance

Application research
Goal: Modelling physics
Scope: All relevant systems
Mix of languages:
C, FORTRAN, python, . . .
Lifetime: 100 manyears
Size: 100k – 1M lines
Obliged to write performant code

Working with these codes requires different skillsets
⇒ Orthogonal developer & user communities

Obstacle for knowledge transfer:
Mathematical methods never tried in practical setting
(and may well not work well in the real world)

Some issues cannot be studied with mathematical codes
(and mathematicians may never get to know of them)

What about emerging hardware, accelerators, performance?
Should be the regime of Computer Science (yet another community) 4 / 21
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A social problem . . .
Community conventions (e.g. publication culture)
Language barriers and context-sensitive terms
Speed of research (development of model vs. its analysis)

. . . cemented in software:
Priorities differ ⇒ What is considered a “good code” differs
Insurmountable obstacles for code integration
Collaborations can stop before they begin . . .

Hypothesis: People compose if software composes

DFTK , the Density-Functional ToolKit
Allows restriction to relevant model problems,
and scale-up to application regime (1000 electrons)

Sizeable feature set in 7500 lines of code
MPI, self-adapting methods, algorithmic differentiation
Integrated in multi-scale pipeline
(potential fitting, molecular dynamics)

5 / 21



Density-functional theory (insulators)
Energy minimisation problem:

min
D∈P

E(D) = min
D∈P

[
tr(H0D) + EHxc(diagD)

]
with P =

{
D ∈ S1(L2) | 0 ≤ D ≤ 1, tr(D) = N, tr (−∆D) < ∞

}
, [diag D] (r) = D(r, r)

DFT approximation: Effective single-particle model

∀i ∈ 1 . . . N :
(

−1
2∆ + V (ρΦ)

)
ψi = εiψi,

V (ρ) =Vnuc + vCρ+ VXC(ρ),

ρΦ =
N∑

i=1
|ψi|2 ,

Φ = (ψ1, . . . , ψN ) ∈
(
L2(R3,C)

)N

orthogonal

nuclear attraction Vnuc, exchange-correlation VXC, Hartree potential −∆ (vCρ) = 4πρ

⇒ Self-consistent field (SCF) problem: ρ
(
V (ρ)

)
= ρ with

ρ(V ) = diag
[
1(−∞,εF ]

(
−1

2∆ + V

)]
and εF s. t.

∫
ρ(V ) = N
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Self-consistent field problem
Density-mixing SCF procedure (preconditioner P , damping α)

ρn+1 = ρn + αP−1 [
ρ

(
V (ρn)

)
− ρn

]
In practice: Combined with acceleration (e.g. Anderson)

Dropped to simplify analysis
Re-introduced for numerical experiments

Near a fixed-point the error goes as

en+1 ≃
[
1 − αP−1ε†

]
en

with dielectric matrix ε† = (1 − χ0K), K(ρ) = V ′(ρ), χ0(V ) = ρ′(V )

Convergence iff −1 <
[
1 − αP−1ε†

]
< 1

Dielectric matrix ε: Depends on physics (conduction, screening)

By second-order conditions: ε ≥ 0 (near fixed point)

⇒ Need P−1 ≃
(
ε†

)−1
(matching preconditioner) or small α
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Black-box P : Local density of states (LDOS) mixing1

Bulk preconditioning models approximate inverse P−1 ≃
(
ε†

)−1

Use ε† = (1 − χ0K) with K(ρ) = V ′(ρ), χ0(V ) = ρ′(V )

χ0(r, r′) unit-cell internal fluctuations, diagonal dominant:

Tackle charge sloshing: Consider large-scale variations of χ0:
χ0(r, r′) ≃ −LDOS(r)δ(r, r′) (homogenisation LDOS(r) ≈

∫
χ0(r, r′) dr′)

Apply preconditioner iteratively:
P−1ρn = [1 − χ̃0K)]−1 ρn, χ̃0(r, r′) = −LDOS(r)δ(r, r′)

1MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021). 8 / 21

https://doi.org/10.1088/1361-648X/abcbdb


LDOS preconditioning (examples)1

Inhomogeneous material: Aluminium metal + Insulator

TFW: local Thomas-Fermi-von Weizsäcker mixing2

(Ad hoc modification of metallic screening model)

LDOS automatically interpolates between Kerker mixing
(suitable for metals) and no mixing (suitable for insulators)

⇒ Based on mathematical understanding of screening
⇒ Parameter-free and black-box

1MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
2D. Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. 64, 121101 (2001). 9 / 21

https://doi.org/10.1088/1361-648X/abcbdb
https://doi.org/10.1103/physrevb.64.121101


DEMO

DEMO

How did DFTK help us to get there?

→ https://michael-herbst.com/talks/2023.06.01_gamm_composable.html
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How does DFTK achieve this?
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The magic of :
Separating the what from the how

Clear design, inspired by mathematical structure
⇒ Self-explaining code (a clear what)

Focus on keeping code accessible (7500 lines)
Started in 2018, already 30 contributors
Key features by undergrads & outsiders

⇒ High-productivity research framework
⇒ Supports joint research across disciplines

11 / 21



Separating the what from the how

Why is this separation so important . . .
. . . for composable software?
. . . for multidisciplinary research?

Consider the goal: Implementing a new numerical scheme
Traditionally users code in detail how the computation should
proceed (Imperative programming)

How = architecture
How = linear algebra primitive (e.g. orthogonalisation)

How = memory layout
. . .

This has nothing to do with the mathematics we care about!

Can the how be abstracted away?
Let’s see ’s HPC developments . . .

12 / 21



HPC abstractions

   OneAPI.jl

Accelerators Shared Mem Distributed

CUDA.jl

function power_method(A, x; niter=100)
for i = 1:niter

x = A * x
x ./= norm(x)

end
x

end

A = rand(10, 10); A = A + A' + 10I; x = rand(10)

using LinearMaps, IterativeSolvers
itinv(A) = LinearMap(x -> cg(A, x), size(A)...)

using CUDA
power_method(itinv(CuArray(A)), CuArray(x))

using AMDGPU
power_method(itinv(ROCArray(A)), ROCArray(x))
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GPU support in DFTK

Use ’s HPC abstractions to
target all of CUDA, ROCm, oneAPI

< 500 lines changed

Collaboration with lab:
CS, physics & maths

10-week GSoC project

basis = PlaneWaveBasis(model; Ecut=30, kgrid=(1, 1, 1),
architecture=DFTK.GPU(CuArray))

Note: allows seamless composition of
Floating-point agnostic code for computing arbitrary derivatives
(algorithmic differentiation), guaranteed error control (intervals), etc.
Fast code integrating with MPI, CUDA, . . .
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DFTK design: Keeping code concise & accessible

Stress =

1

det(L)

∂E
[
P∗, (I +M)L

]

∂M

∣∣∣∣∣
M=0

# Run SCF, get P*
scfres = self_consistent_field(basis)

L = basis.model.lattice
stress = 1/det(L) * gradient(

M -> recompute_energy(
scfres, (I + M) * L),

zero(L)
)

Stress computation (Definition vs. code)1

Post-processing step ⇒ Not performance critical

Comparison of implementation complexity:
DFTK : 20 lines1 (forward-mode algorithmic differentiation)

Quantum-Espresso: 1700 lines2

≃ 10-week GSoC project

⇒ No performance impact & accessible code

1https://github.com/JuliaMolSim/DFTK.jl/blob/master/src/postprocess/stresses.jl
2https://github.com/QEF/q-e/blob/develop/PW/src
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Support of a posteriori error analysis

Γ XX WW KK ΓΓ LL UU WW LL K|U X
−0.2

−0.1

0.0

0.1

0.2

Albeit the HPC capabilities: Numerical experiments are feasible

E.g. fully guaranteed error bounds for band structures1

Deals with a reduced Kohn-Sham model and requires interval arithmetic
Captures basis set error, floating-point error, convergence error

Recent using DFTK considers also density and force errors2

1MFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).
2E. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).
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Robust & efficient algorithms

Fe2MnAl Heusler alloy

standard approach
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Schur complement
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40% less iterations

40% less iterations

Black-box SCF damping α1

α adapted in each step using line
search & quadratic model
Novelty: Reuse of expensive
quantities in next SCF step
Reduces trial and error

First-principle properties of metals
Schur-complement approach to
perturbation theory2

(exploits partially converged states)

ca. 40% less iterations

⇒ Maths / physics collaboration:
Exchange of ideas between simplified & practical settings crucial

1MFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).
2E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023). 17 / 21
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DFTK : Bringing mathematical research to the applications
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Fully composable due to abstractions:
Arbitrary precision (32bit, >64bit, . . . )
Algorithmic differentiation (AD)
HPC tools: GPU acceleration, MPI parallelisation

⇒ Accessible high-productivity research framework

Low barriers for cross-disciplinary research:
Allows restriction to relevant model problems,
and scale-up to application regime (1000 electrons)

⇒ Sizeable feature set of DFT methods in 7500 lines
Including some unique features (Self-adapting algorithms)

Mathematical works with DFTK

Self-adapting black-box DFT methodsa,b

Numerical analysis of DFTc,d

Practical error boundse,f

aMFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
bMFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).
cE. Cancès, G. Kemlin, A. Levitt. J. Matrix Anal. Appl., 42, 243 (2021).
dE. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
eMFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).
fE. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).18 / 21
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https://doi.org/10.1007/s11005-023-01645-3
https://doi.org/10.1039/D0FD00048E
https://doi.org/10.1137/21M1456224
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Open PhD & PostDoc positions in the MatMat group

Possible topics include:
Uncertainty quantification for DFT:
Error in data-driven DFT models,
pseudopotentials, propagation to properties
and MD potentials
Self-adapting numerical methods for
high-throughput DFT simulations
See https://matmat.org/jobs/

Interdisciplinary research linking maths and simulation:
Become part of maths & materials institutes @ EPFL

Collaboration inside :
Reproducible workflows & sustainable software
Computational materials discovery
Statistical learning methods
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Questions? https://michael-herbst.com/talks/2023.06.01_gamm_composable.pdf

https://matmat.org

� mfherbst

 michael.herbst@epfl.ch

DFTK https://dftk.org

https://michael-herbst.com/learn-julia
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