Accelerating mathematical developments in materials modelling by composable software

Michael F. Herbst

Mathematics for Materials Modelling (matmat.org), EPFL

1 June 2023

Slides: https://michael-herbst.com/talks/2023.06.01_gamm_composable.pdf

Tackling to 21st century challenges

- 21st century challenges:
 - Renewable energy, green chemistry, health care ...
- Current solutions limited by properties of available materials
 Innovation driven by discovering new materials
- Crucial tool: Computational materials discovery
 - Systematic simulations on $\simeq 10^4 10^6 \ {\rm compounds}$
 - Complemented by data-driven approaches
 - Noteworthy share of world's supercomputing resources

K. Alberi et. al. J. Phys. D, 52, 013001 (2019).

Sketch of high-throughput workflows

Design funnel for photovoltaic materials

Workflow for computing elasticity tensors

- Many parameters to choose (algorithms, tolerances, models)
 - $\bullet\,$ Elaborate heuristics: Failure rate $\simeq 1\%$
 - Still: Thousands of failed calculations
 - \Rightarrow Wasted resources & increased human attention (limits througput)
- Goal: Self-adapting black-box algorithms
 - Transform empirical wisdom to built-in convergence guarantees
 - Requires: Uncertainty quantification & error estimation
 - \Rightarrow Understand where and how to spend efforts best

G. Hautier Comput. Mater. Sci. 164, 108 (2019); L. Himanen et. al. Adv. Science 6, 1900808 (2019).

Opportunities for mathematical research

- Gap: Mathematical understanding & simulation practice
- Broad range of concerned mathematical fields:
 - Optimisation, numerical linear algebra, analysis of PDEs, uncertainty quantification, model order reduction, ...
- Application domain: Source for research problems
 - Large-scale eigenvalue problems (L. Lin, Y. Saad, C. Yang, ...)
 - Acceleration, fixed-point methods (T. Kelly, A. Miedlar, Y. Saad, R. Schneider, H. vd. Vorst, H. Walker, ...)
 - Non-linear PDEs

(Z. Bai, E. Cancès, G. Friesecke, M. Lewin, I. Sigal, ...)

- Application domain: Source for new methods
 - Davidson diagonalisation (H. vd. Vorst, ...)
 - Thorough exploration of Anderson-type acceleration (see above)
- 17 minisymposia at SIAM in 2021/22 (-CSE, -LA, -MS, -PP, -UQ) with contributions related to electronic-structure theory

(Exaggerative) state of codes in this field

Mathematical research

- Goal: Numerical experiments
- Scope: Reduced models
- High-level **language**: Matlab, python, ...
- Lifetime: 1 paper
- Size: < 1k lines
- Does not care about performance

Application research

- Goal: Modelling physics
- Scope: All relevant systems
- Mix of languages: C, FORTRAN, python, ...
- Lifetime: 100 manyears
- Size: 100k 1M lines
- Obliged to write performant code
- Working with these codes requires different skillsets
 - ⇒ Orthogonal developer & user communities
- Obstacle for knowledge transfer:
 - Mathematical methods never tried in practical setting (and may well not work well in the real world)
 - Some issues cannot be studied with mathematical codes (and mathematicians may never get to know of them)
- What about emerging hardware, accelerators, performance?
 - Should be the regime of Computer Science (yet another community)

Difficulties of interdisciplinary research

- A social problem ...
 - Community conventions (e.g. publication culture)
 - Language barriers and context-sensitive terms
 - Speed of research (development of model vs. its analysis)
- ... cemented in software:
 - $\bullet~$ Priorities differ \Rightarrow What is considered a "good code" differs
 - Insurmountable obstacles for code integration
 - Collaborations can stop before they begin ...
- Hypothesis: People compose if software composes
 - **DFTK**, the Density-Functional ToolKit
 - Allows restriction to relevant model problems,
 - and scale-up to application regime (1000 electrons)
 - Sizeable feature set in 7500 lines of code
 - MPI, self-adapting methods, algorithmic differentiation
 - Integrated in multi-scale pipeline (potential fitting, molecular dynamics)

Density-functional theory (insulators)

• Energy minimisation problem:

$$\min_{D \in \mathcal{P}} \mathcal{E}(D) = \min_{D \in \mathcal{P}} \left[\operatorname{tr}(H_0 D) + E_{\mathsf{Hxc}}(\operatorname{diag} D) \right]$$

with $\mathcal{P} = \left\{ D \in \mathfrak{S}_1(L^2) \mid 0 \le D \le 1, \operatorname{tr}(D) = N, \operatorname{tr}(-\Delta D) < \infty \right\}$, $[\operatorname{diag} D](\underline{r}) = D(\underline{r}, \underline{r})$

• DFT approximation: Effective single-particle model

$$\begin{cases} \forall i \in 1 \dots N : \left(-\frac{1}{2} \Delta + V\left(\rho_{\Phi}\right) \right) \psi_{i} = \varepsilon_{i} \psi_{i}, \\ V(\rho) = V_{\text{nuc}} + v_{C} \rho + V_{\text{XC}}(\rho), \\ \rho_{\Phi} = \sum_{i=1}^{N} |\psi_{i}|^{2}, \\ \Phi = (\psi_{1}, \dots, \psi_{N}) \in \left(L^{2}(\mathbb{R}^{3}, \mathbb{C}) \right)^{N} \text{orthogonal} \end{cases}$$

nuclear attraction V_{nuc} , exchange-correlation V_{XC} , Hartree potential $-\Delta (v_C \rho) = 4\pi \rho$

 \Rightarrow Self-consistent field (SCF) problem: $\rho(V(\rho)) = \rho$ with

$$\rho(V) = \operatorname{diag}\left[\mathbbm{1}_{(-\infty,\varepsilon_F]}\left(-\frac{1}{2}\Delta + V\right)\right] \quad \text{and } \varepsilon_F \text{ s. t. } \int \rho(V) = N$$

Self-consistent field problem

- Density-mixing SCF procedure (preconditioner *P*, damping α) $\rho_{n+1} = \rho_n + \alpha P^{-1} \left[\rho(V(\rho_n)) - \rho_n \right]$
- In practice: Combined with acceleration (e.g. Anderson)
 - Dropped to simplify analysis
 - Re-introduced for numerical experiments
- Near a fixed-point the error goes as

$$e_{n+1} \simeq \left[1 - \boldsymbol{\alpha} P^{-1} \varepsilon^{\dagger}\right] e_n$$

with dielectric matrix $\varepsilon^{\dagger} = (1 - \chi_0 K)$, $K(\rho) = V'(\rho)$, $\chi_0(V) = \rho'(V)$

- Convergence iff $-1 < \left[1 \frac{\alpha}{\alpha}P^{-1}\varepsilon^{\dagger}\right] < 1$
 - Dielectric matrix ε: Depends on physics (conduction, screening)

7/21

• By second-order conditions: $\varepsilon \ge 0$ (near fixed point)

 \Rightarrow Need $P^{-1} \simeq \left(\varepsilon^{\dagger} \right)^{-1}$ (matching preconditioner) or small α

Black-box P: Local density of states (LDOS) mixing¹

- Bulk preconditioning models approximate inverse $P^{-1}\simeq \left(arepsilon^{\dagger}
 ight)^{-1}$
- Use $\varepsilon^{\dagger} = (1 \chi_0 K)$ with $K(\rho) = V'(\rho), \chi_0(V) = \rho'(V)$
- $\chi_0(r,r')$ unit-cell internal fluctuations, diagonal dominant:

- Tackle charge sloshing: Consider large-scale variations of χ_0 : $\chi_0(r, r') \simeq -LDOS(r)\delta(r, r')$ (homogenisation $LDOS(r) \approx \int \chi_0(r, r') dr'$)
- Apply preconditioner iteratively:

$$P^{-1}\rho_n = \left[1 - \widetilde{\chi_0}K\right]^{-1}\rho_n, \qquad \widetilde{\chi_0}(r, r') = -\mathsf{LDOS}(r)\delta(r, r')$$

¹MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).

LDOS preconditioning (examples)¹

- Inhomogeneous material: Aluminium metal + Insulator
- TFW: local Thomas-Fermi-von Weizsäcker mixing² (Ad hoc modification of metallic screening model)
- LDOS automatically interpolates between Kerker mixing (suitable for metals) and no mixing (suitable for insulators)
 - ⇒ Based on mathematical understanding of screening
 - ⇒ Parameter-free and black-box

¹MFH, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

²D. Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. 64, 121101 (2001).

DEMO

How did **TK** help us to get there?

https://michael-herbst.com/talks/2023.06.01_gamm_composable.html

10 / 21

How does 😵 DFTK achieve this?

- The magic of julia:
 - Separating the what from the how
- Clear design, inspired by mathematical structure
 Self-explaining code (a clear what)
- Focus on keeping code accessible (7500 lines)
 - Started in 2018, already 30 contributors
 - Key features by undergrads & outsiders
- ⇒ High-productivity research framework
 ⇒ Supports joint research across disciplines

Separating the what from the how

- Why is this separation so important ...
 - ... for composable software?
 - ... for multidisciplinary research?
- Consider the goal: Implementing a new numerical scheme
- Traditionally users code in detail how the computation should proceed (Imperative programming)
 - How = architecture
 - How = linear algebra primitive (e.g. orthogonalisation)
 - How = memory layout
 - ...
- This has nothing to do with the mathematics we care about!
- Can the how be abstracted away?
- Let's see julia's HPC developments

julia HPC abstractions

A = rand(10, 10); A = A + A' + 10I; x = rand(10)

```
function power_method(A, x; niter=100)
for i = 1:niter
    x = A * x
    x ./= norm(x)
end
    x
end
```

```
using LinearMaps, IterativeSolvers
itinv(A) = LinearMap(x -> cg(A, x), size(A)...)
```

```
using CUDA
power_method(itinv(CuArray(A)), CuArray(x))
```

```
using AMDGPU
power_method(itinv(ROCArray(A)), ROCArray(x))
```


UliaMolSim/DFTK.ji 🕬 🔍 Gran Pira - 🖉	D Unwatch 15 + ¥ Ferk 58 + ☆ Star 285 +
⇔ Code ⊙ Issues (H) IT Pull requests (R) E0 Discussions ⊙ Actions © Security (∠' Insights	
Make LOBPCG GPU-compatible #711 (a) O own-	
G JuliaMcISim/DFTK.ji nam 0, terns 0 (mem 6 + 12 no 38 + 0 or 38 +	
O Code 🚫 Issues 56 12 Poll requests 16 😳 Discussions 🛞 Actions 🛞 Security 😥 Insights 🛞 Settings	
Make some computations in DFTK GPU-compatible #712	
Qu Conversation (a) Commits (a)	
📸 < ONgre connected on 24 Aug - edited - Contributor. 🛇	ferieses @
This PRI is a follow of this one, which implements OPU compatibility for LOBPCO. If you have any questional remarks as to have LOBPCO works, please refer to this other PRI.	Sugarton - Anit Faquet
The goal of the inflowing PFI is to replement QFU computative for some computations made by CPTR. This mainly means making the PlaneWebbias set is on since OPUR-stags, and extending the sage(s) functions to allow the Hemiltonian and its operators to be applied to QFUA-rays.	Alteredite August August Solit is property Convertio dast
From an end user perspective, the only thing that changes is when he builds the basis. There is now an optimal argument array, type, which liels the onde which type of array structure should be used. For example :	Assignees 8 No read-assign yound
<pre>basis = 0ianebhoudusis(model; Ecut=00, kgride(1, 1, 1)) # Econstations will happen on CRU basis.gpu = Flamebhoudusis(model; Ecut=00, kgride(1, 1, 1)</pre>	Laten B
The end-user can then call the SCP with either basis or basis gaps.	
Lused CUDA since I have an NMDA GPU, but this part of the code should also work with other GPUs, since I did not use any CUDA-specific function.	Projectis IB None pet
Things that I already know could be greatly improved:	Mintore 8

- Use julia's HPC abstractions to target all of CUDA, ROCm, oneAPI
- < 500 lines changed
- Collaboration with **julia** lab: CS, physics & maths
- 10-week GSoC project

- Note: julia allows seamless composition of
 - Floating-point agnostic code for computing arbitrary derivatives (algorithmic differentiation), guaranteed error control (intervals), etc.
 - Fast code integrating with MPI, CUDA, ...

🔂 DFTK design: Keeping code concise & accessible

Stress =

$$\frac{1}{\det(\mathbf{L})} \left. \frac{\partial E[P_*, (\mathbf{I} + \mathbf{M}) \, \mathbf{L}]}{\partial \mathbf{M}} \right|_{\mathbf{M} = 0}$$

- Stress computation (Definition vs. julia code)¹
- Post-processing step \Rightarrow Not performance critical
- Comparison of implementation complexity:
 - 😽 DFTK: 20 lines¹ (forward-mode algorithmic differentiation)
 - Quantum-Espresso: 1700 lines²
 - \simeq 10-week GSoC project

\Rightarrow No performance impact & accessible code

¹https://github.com/JuliaMolSim/DFTK.jl/blob/master/src/postprocess/stresses.jl

²https://github.com/QEF/q-e/blob/develop/PW/src

Support of a posteriori error analysis

- Albeit the HPC capabilities: Numerical experiments are feasible
- E.g. fully guaranteed error bounds for band structures¹
- Deals with a reduced Kohn-Sham model and requires interval arithmetic
- Captures basis set error, floating-point error, convergence error
- Recent using 🚯 DFTK considers also density and force errors²

¹MFH, A. Levitt, E. Cancès. Faraday Discus. **223**, 227 (2020).

²E. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).

Robust & efficient algorithms

- Black-box SCF damping α^1
- α adapted *in each step* using line search & quadratic model
- Novelty: Reuse of expensive quantities in next SCF step
- Reduces trial and error

- First-principle properties of metals
- Schur-complement approach to perturbation theory² (exploits partially converged states)
- ca. 40% less iterations
- ⇒ Maths / physics collaboration: Exchange of ideas between simplified & practical settings crucial

¹MFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).

²E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).

🚯 DFTK : Bringing mathematical research to the applications

- Fully composable due to julia abstractions:
 - Arbitrary precision (32bit, >64bit, ...)
 - Algorithmic differentiation (AD)
 - HPC tools: GPU acceleration, MPI parallelisation
 - ⇒ Accessible high-productivity research framework
- Low barriers for cross-disciplinary research:
 - Allows restriction to relevant model problems,
 - and scale-up to application regime (1000 electrons)
 - \Rightarrow Sizeable feature set of DFT methods in 7500 lines
 - Including some unique features (Self-adapting algorithms)
- Mathematical works with 🐳 DFTK
 - Self-adapting black-box DFT methods^{a, b}
 - Numerical analysis of DFT^{c,d}
 - Practical error bounds^{*e*, *f*}

^aMFH, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

^bMFH, A. Levitt. J. Comput. Phys. **459**, 111127 (2022).

^cE. Cancès, G. Kemlin, A. Levitt. J. Matrix Anal. Appl., 42, 243 (2021).

^dE. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).

^eMFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).

^fE. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022)18/21

Acknowledgements

- Eric Cancès (École des Ponts)
- Antoine Levitt (Université Paris-Saclay)
- Niklas Schmitz (TU Berlin)
- Benjamin Stamm (Universität Stuttgart)
- Guillaume Vigne (Mines Paris)
- All OFTK contributors

Open PhD & PostDoc positions in the MatMat group

Possible topics include:

- Uncertainty quantification for DFT: Error in data-driven DFT models, pseudopotentials, propagation to properties and MD potentials
- Self-adapting numerical methods for high-throughput DFT simulations
- See https://matmat.org/jobs/
- Interdisciplinary research linking maths and simulation:
 - Become part of maths & materials institutes @ EPFL
- Collaboration inside O
 - Reproducible workflows & sustainable software
 - Computational materials discovery
 - Statistical learning methods

🗲 michael.herbst@epfl.ch

DFTK https://dftk.org

julia https://michael-herbst.com/learn-julia

