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Task: Develop a new metalllc catalyst for a surface reaction

0 4 Pt

3 Distal
ol

s .- ) I
, 1, I,
pr— v P . 3 ¥
3 31 Altemalmg T
iiihbiiiiae a = e
Host metal + dopant Host surface Dopant adsorpotion site Reaction intermediates
~ 30 x 30 = 900 ~3-5 ~ 30 ~ 10

e Combinatorial design space: ~ 10° — 108 possibilities

@ Systematic experiments: Time and cost intensive

= Computational screening to complement and accelerate
e Harvest curated data bases
o Data-driven methods and statistical learning

= Regular need of millions of first-principle calculations
o Noteworthy share of world's supercomputing resources
o Growing list of data / workflow management tools
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Sketch of high-throughput workflows

} DFT PBE stability

DFT PBE band gap
Hybrid-DFT band gap
@2/ Beyond DFT

Design funnel for photovoltaic materials Workflow for computing elasticity tensors

@ Many parameters to choose (algorithms, tolerances, models)
o Elaborate heuristics: Failure rate ~ 1%
e Still: Thousands of failed calculations
= Wasted resources & increased human attention (limits througput)

@ Goal: Self-adapting black-box algorithms
e Transform empirical wisdom to built-in convergence guarantees
e Requires: Uncertainty quantification & error estimation
= Understand where and how to spend efforts best

G. Hautier Comput. Mater. Sci. 164, 108 (2019); L. Himanen et. al. Adv. Science 6, 1900808 (2019).
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Broader vision: Robust & error-controlled simulations

@ Error control = Track simulation uncertainties:
e Self-adapting simulations with mathematical guarantees
o Integrate with error propagation efforts for surrogates!
= Byproducts: Data quality control, accelerated design

@ Error control = Learn missing physics:
e Data-enhanced models, active learning
o Integration with experiment (autonomous discovery)
= Exploit high-fidelity experimental, beyond-DFT data

@ Error control = Leverage inexactness:
e Error balancing: Optimal adaptive parameter selection
e Randomised methods, selective precision (16-bit, FPGA)
o Multi-fidelity approaches (reduced basis, surrogates)

= Understand where and how to spend efforts best

= Realm of mathematical research

1F. Musil, A. Grisafi et. al. J. Chem. Theo. Comput. 15, 2 (2019).
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Opportunities for mathematical research

@ Gap: Mathematical understanding & simulation practice

@ Broad range of concerned mathematical fields:

e Optimisation, numerical linear algebra, analysis of PDEs,
uncertainty quantification, model order reduction, ...

@ Application domain: Source for research problems

o Large-scale eigenvalue problems
(L. Lin, Y. Saad, C. Yang, ...)

o Acceleration, fixed-point methods
(T. Kelly, A. Miedlar, Y. Saad, R. Schneider, H. vd. Vorst, H. Walker, ...)

e Non-linear PDEs
(Z. Bai, E. Cances, G. Friesecke, M. Lewin, I. Sigal, ...)
@ Application domain: Source for new methods
e Davidson diagonalisation (H. vd. Vorst, ...)

e Thorough exploration of Anderson-type acceleration (see above)

@ 17 minisymposia at SIAM in 2021/22 (-CSE, -LA, -MS, -PP, -UQ)

with contributions related to electronic-structure theory 4/34



(Exaggerative) state of codes in this field

Mathematical research Application research
@ Goal: Numerical experiments @ Goal: Modelling physics
@ Scope: Reduced models @ Scope: All relevant systems
@ High-level language: @ Mix of languages:
Matlab, python, ... C, FORTRAN, python, ...
@ Lifetime: 1 paper @ Lifetime: 100 manyears
@ Size: < 1k lines @ Size: 100k — 1M lines
@ Does not care about performance @ Obliged to write performant code

@ Working with these codes requires different skillsets

= Orthogonal developer & user communities

@ Obstacle for knowledge transfer:

@ Mathematical methods never tried in practical setting

(and may well not work well in the real world)
@ Some issues cannot be studied with mathematical codes
(and mathematicians may never get to know of them)
@ What about emerging hardware, accelerators, performance?

@ Should be the regime of Computer Science (yet another community) 5/34



Difficulties of interdisciplinary research

@ A social problem ...
@ Community conventions (e.g. publication culture)
@ Language barriers and context-sensitive terms
@ Speed of research (development of model vs. its analysis)

@ ... cemented in software:
o) ic materials @ Priorities differ = What is considered a “good code” differs
CHILE Sl @ Insurmountable obstacles for code integration
@ Collaborations can stop before they begin ...

@ Hypothesis: People compose if software composes
novel
scientific

models ) @ DFTK, the Density-Functional ToolKit
@ Allows restriction to relevant model problems,

— @ @ and scale-up to application regime (1000 electrons)
-

m=rv @ Sizeable feature set in 7500 lines of code
MPI, self-adapting methods, algorithmic differentiation

@ Integrated in multi-scale pipeline
(potential fitting, molecular dynamics)

numerical
analysis
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An interdisciplinary perspective on robust materials simulations
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Self-adapting black-box
DFT algorithms

@ Density-functional theory

@ Local density of states
preconditioner

@ Adaptive damping
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Density-functional theory (insulators)

@ Energy minimisation problem:
min £(D) = min [ tr(HoD) + By (diag D)]

DeP DeP
with P = {D €61(L?) |0< D<1,tr(D) = N, tr(—AD) < x} [diag D] (r) = D(r, 7)
@ DFT approximation: Effective single-particle model

1
VZ € ].N <2A+ V(p@)) Wi = 51"1"/'7
V<p) :anuc‘i‘vCp‘f'VXC(p)a

N
2
pq> :Z |L',‘| )
i=1

. . N
D =(11,...,9nN) € (LZ(R'5, C)) orthogonal

nuclear attraction Vjyuc, exchange-correlation Vic, Hartree potential —A (vep) = 4mp

= Self-consistent field (SCF) problem: V (p(V)) =V with

1 .
p(V) = diag |:1(—oo,ap] <2A + V)] and e s. t. f p(V)=N
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Self-consistent field problem

@ Potential-mixing SCF procedure (preconditioner P, damping «)
Vn+1 =Vy+ P_l [V(p(Vn)) - Vn]

@ In practice: Combined with acceleration (e.g. Anderson)

e Dropped to simplify analysis

e Re-introduced for numerical experiments
@ Near a fixed-point the error goes as

entl {1 — P_ls} €n
with dielectric matrix ¢ = (1 — Kxo), K(p) = V'(p), xo(V) = p'(V)

o Convergence iff -1 < [1 —aP7le] <1

e Dielectric matrix e: Depends on physics (conduction, screening)

e By second-order conditions: € > 0 (near fixed point)

= Need P! ~ ¢~! (matching preconditioner) or small
9/34



Drawback of established approaches

1. Preconditioner P is system-dependent and chosen a priori
e Standard preconditioners: Derived from bulk materials
e Misses important applications (e.g. inhomogeneous systems)

o E.g. clusters, passivated surfaces, heterogeneous catalysis, ...

2. If no good preconditioner P known: Trial and error
e Employ standard heuristics: E.g. decrease damping

o But: Can fail for interesting cases (the tough 1% ?)

= Wasted computational resources

= Goal: Black-box and self-adapting P and
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lllustration: Guessing a suitable damping < can be hard

damping
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@ Inefficient standard damping @ Heusler alloy: Design space of interest
(0.6 — 0.8) @ Convergence difficulties found in
@ Surprisingly small damping for high-throughput studies
smooth convergence @ Irregular behaviour: o versus convergence
@ Heuristics breaks: Larger damping is better
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Black-box cv: Adaptive damping?

Fe2CrGa (Kerker, Anderson)
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Theorem: SCF convergence guaranteed if o small enough (see paper)

adapted in each step using line search & quadratic model

Novelty: Reuse of expensive quantities in next SCF step
= No overhead if line search immediately successful

For tricky systems: Adaptive damping has an overhead
e But: Avoids trial and error
e Mathematically motivated safeguard mechanism

IMFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).
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https://doi.org/10.1016/j.jcp.2022.111127

Black-box P: Local density of states (LDOS) mixing!

@ Bulk preconditioning models approximate inverse P~ ~ 7!

@ Use e = (1 — Kxp) with K(p) = V'(p),xo(V) = p'(V)

@ xo(r,r") unit-cell internal fluctuations, diagonal dominant:
= 0.00100

I0.00075
0.00050
0.00025
0
—0.00025

—0.00050
I —0.00075
—0.00100

@ Tackle charge sloshing: Consider large-scale variations of x(:

position normal to surface r' (bohr)

0 20 40 60 80
position normal to surface r (bohr)

XO(T, 7“/) ~ fLDOS(T)(s(T‘, 7’/) (homogenisation LDOS(r) = fw(r. r’)dr’)

@ Apply preconditioner iteratively:
P W, =[1-KxX0) ' Vu,  Xo(r,r’) = —LDOS(r)é(r,r’)

IMFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021). 1334


https://doi.org/10.1088/1361-648X/abcbdb

LDOS preconditioning (examples)®

(a) Al+vacuum

(b) A+Si02

|- None
A~ LDOS

Estimated SCF error
Estimated SCF error

@ Inhomogeneous material: Aluminium metal + Insulator

e TFW: local Thomas-Fermi-von Weizsicker mixing?
(Ad hoc modification of metallic screening model)

@ LDOS automatically interpolates between Kerker mixing
(suitable for metals) and no mixing (suitable for insulators)
=- Based on mathematical understanding of screening
=- Parameter-free and black-box

1MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
2p, Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. 64, 121101 (2001). 14 /34


https://doi.org/10.1088/1361-648X/abcbdb
https://doi.org/10.1103/physrevb.64.121101
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Error sources in DFT simulations

Model error: Selection of DFT model

Computational approach:
e Discretisation error: Basis size, k-point mesh
o Algorithm error: Convergence thresholds (SCF, eigensolver)

e Floating-point error: Floating-point arithmetic

@ Additionally: Programming error, hardware error

1

Discretisation error: Promising recent progress
2

Work on combined bounds with floating-point error

@ Recent work discussed here:
o Dealing with the model error using multi-tasking surrogates

1E. Cancés, G. Dusson et. al. arxiv 2111.01470v1.

2MFH, A. Levitt, E. Cances. Faraday Discus. 223, 227 (2020).
16/34


https://arxiv.org/abs/2111.01470v1
https://doi.org/10.1039/D0FD00048E

DFT model classes

@ DFT model hierarchy: Jacob’s ladder
o LDA, GGA, meta-GGA, Hybrid, RPA-like, Double Hybrid, ...
o Each rung defines (parametrised) model class
o Parameters found by fitting and/or from physics

o Additional correction terms (+U, dispersion, counterpoise, ...)

@ Higher rungs:
o Generally more expensive
o Generally more accurate

e But: DFT is a non-variational approximation to exact physics

= No guaranteed accuracy order
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DFT model classes

@ DFT model hierarchy: Jacob’s ladder
o LDA, GGA, meta-GGA, Hybrid, RPA-like, Double Hybrid, ...
o Each rung defines (parametrised) model class
o Parameters found by fitting and/or from physics

e Additional correction terms (U, dispersion, counterpoise, ... )

@ Higher rungs:
o Generally more expensive
e Generally more accurate
e But: DFT is a non-variational approximation to exact physics

= No guaranteed accuracy order

o Guiding idea: Can we combine information from different
functionals to balance accuracy / cost / deviating predictions?

@ Important: We should not impose an order!

17/34



Test problem: lonisation potentials of organic molecules

@ Dataset: ~ 3000 small organic molecules!

® ANI-1 subset (2-5 heavy atoms, a few with 6 heavies)

@ Targeted quantity: lonisation potential
o Note: A challenging quantity for DFT

@ Considered models:

density-functional theory (DFT) coupled cluster
model PBE PBEO PBEO_DH CCSD(T)
cost 1 1 10 1000
rung 2nd (GGA) | 4th (Hybrid) | 6th (double Hybrid) Reference

e Goal: Surrogate for CCSD(T) but mostly use DFT data

@ Work in progress report ...

1C. Duan, F. Fang, A. Nandy, H. Kulik. J. Chem. Theo. Comput. 16, 4373 (2020).
18 /34


http://dx.doi.org/10.1021/acs.jctc.0c00358

Delta learning: Learning to correct the error

o ldea: Construct surrogate for difference between high-fidelity
and low-fidelity

e Gaussian Process (GP) ansatz:

JCCSD(T) _ yDFT _ F(6) +e
e ~N(0,0°1) (Gaussian noise)
f(&) ~ GP (u, Kop) (GP prior)
¢: vector of molecular descriptors, I”: vector of simulated data,

Ky: Kernel (e.g. polynomial, squared exponential),

o, u, 0 hyperparameters
@ Training: Need DFT & CCSD(T) data
@ Prediction: Add DFT simulation to predicted mean of GP

@ Apply recursively: Multiple levels
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Delta learning: Discussion

Mean Absolute Error

0.225

0.200

0.175

0.150

0.125

Comparison of A Method for
Different Level Ordering

Conventional
@ Scrambled

@ Conventional:
PBE — PBEO — PBE0_DH — CCSD(T)

@ Scrambled:
PBEO_DH — PBEO — PBE — CCSD(T)

t $ % @ Error bars from three draws (unit: eV)

Cost [Seconds]

@ Data of all lower levels required

@ Ordering matters, but the physical one does not always shine
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Multitasking: All DFT models are equal
@ Asymmetric multitasking? with DFT models o € {PBE, PBEQO, ...}
ECSD(T) — pCCSD(T) (¢ 4 LCCSD(T)
I = f(&) +&*
) = pafCCSD(T) (&) +0%(¢) (assumed shared structure)
e’ ~ ./\/’(0,0'gl) (Gaussian iid noise)
fCCSD(T)(g) ~GP (uCCSD(T)7 KCCSD(T))
3%(§) ~ GP (u*, K
Hyperparameters: u*, 0., p* & kernel params

@ Rationale of a-specific correlation p® & §¢:
o Avoid negative transfer learning on f€cSP(T)

@ Assume 6“ independent, independent from f€CSP(T)
e Simplified observation covariance matrix
e Analytical inference feasible

2G. Leen, J. Peltonen, S. Kaski. Mach. Learn. 89, 157 (2012) 21/34


http://dx.doi.org/10.1007/s10994-012-5302-y

Multitasking: IP results (1)

C S T

ccso(m) - Ml I
PBE

@ Core, Supplementary and Target data sets
e T never available at CCSD(T) level
e Cost model: CCSD(T) is 1000-fold PBE

4 3

(CCSD(T) scales O(N") and DFT O(N?) with N number of electrons)

2 Levels: CCSD(T) and PBE 2 Levels: CCSD(T) and PBE
—CCsD(T) only| —CCsD(T) only
s ®csT c ®CsT
Q 1003 cs .G 1007 Cs
fr ec 5%
£ ~ - &3
S 80 jg0s0
%] - L] Qo
2 =5
c 10 . 82
s . =5 10°7
s wn
A
$ $ R $
Cost of Training Set [Seconds] Cost of Training Set [Seconds]

@ Accuracy improved for PBEO — CCSD(T); error in eV
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Multitasking: IP results (2)

I
(ST

T

® 2 Tasks (PBE)
2 Tasks (PBEO)
3 Tasks

@ 5 Tasks

—CCSD(T) Only

10*03

10 .

Mean Absolute Error

@ Cost model: CCSD(T) is 50-fold DFT
(extremely conservative)

@ 500 target data points, average over 3 runs

@ Lessons learned:
@ Given a CCSD(T) budget: Add DFT helps

@ To target accuracy:
Save CCSD(T) by using (many) DFT
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Multitasking outlook: Transfer learning between datasets

Mean Absolute Error

0.006

0.005

0.004

0.003

10° 10 10
Cost [Seconds]

Monomer Dimer
c s c s T
CCsD(T) (I 11111 [T ATATIOE
PBEO NI 11111 I
PBE TR VTR (T JULCLOCCPOUEEL LD
@ Water monomer and water dimer
& 30C20M Dimers @ Target: Dimer interaction energy
20 CCSD(T) Dimers
© & 2D Dimers @ ~ 6000 monomer, max. 1000 DFT
160 CCSD(T) Dimers . )
_® Fccsnm Dimers, dimer datapoints
@ 200 target points, average over 3 runs
@ Cost model:
A DFT  CCSD(T)
! monomer 1 10
2 dimer 10 1000
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Density-functional toolkit! — https://dftk.org

@ julia code for plane-wave DFT, started in 2019

@ Fully composable with juli.é ecosystem:
@ Arbitrary precision (32bit, >64bit, ...)
@ Algorithmic differentiation (AD)
@ HPC tools: GPU acceleration, MPI parallelisation

performance materials )
LN S @ Key tool in all presented research:

@ Allows restriction to relevant model problems,
@ and scale-up to application regime (1000 electrons)

@ Sizeable feature set in 7500 lines of code

novel
scientific
models

numerical

analysie @ Including some unique features (Self-adapting algorithms)

= Build to enable multidisciplinary synergies

@ Accessible high-productivity framework across domains:
@ Key code contributions by undegrads / PhD students
@ Initial AD support in 10 weeks (CS Bachelor)
@ Initial GPU support in 10 weeks (Physics Bachelor)

@ Relevant contributions from outside collab. circle

26 /34


https://dftk.org

New features from generic code: Sensitivity analysis

function dft_energy(a, 0)
model = model_DFT(make_structure(a), PbeExchange(6))

basis = PlaneWaveBasis(model; Ecut=..., kgrid=... ) .

self_consistent_field(basis).energies.total a* = arg min 5(“7 9)
end a
optimise_lattice(f) = optimise(a -> dft_energy(a, 6)) a
sensitivities = sensitivities =

ForwardDiff.gradient (optimise_lattice, [x, B]) d0

@ Arbitrary, user-desired derivatives in one line of code
e Three nested layers of iterative solvers

e Almost a byproduct of our generic juli'él implementation

(main addendum: Stable response solver)
o Breaks “one PhD student per derivative” paradigm

= New properties/derivatives by non-DF T experts!

@ Avoids combinatorial explosion
e Future models automatically supported

@ ...so are unusual derivatives

= Setting the scene for new approaches:

e Sensitivity analysis & UQ), data-enhanced models 27 /34



@ DFTK design: Keeping code concise & accessible

# Run SCF, get Px*
Stress = scfres = self_consistent_field(basis)

L = basis.model.lattice
1 OF [P*7 (I +M) L] stress = 1/det(L) * gradient(
. M -> recompute_energy(
det(L) oM scfres, (I + M) * L),
M=0 zero(L)
)
o Stress computation (Definition vs. julia code)?

Post-processing step = Not performance critical

@ Comparison of implementation complexity:
° @ DFTK: 20 lines! (using forward-mode AD)
o Quantum-Espresso: 1700 lines?

Note: julia allows seamless composition of
o Floating-point agnostic code for AD (slightly slower)
e Fast code integrating with MPI, CUDA, ...

= No performance impact & accessible code

Ihttps: //github.com/JuliaMolSim/DFTK. j1/blob/master/src/postprocess/stresses.jl
2https://github.com/QEF/q-e/blob/develop/PW/src 28/34


https://github.com/JuliaMolSim/DFTK.jl/blob/3c9f1f8d7cf6bf9ac6fee298e0cd65e18d8f2285/src/postprocess/stresses.jl
https://github.com/QEF/q-e/blob/develop/PW/src

Preliminary GPU support in @ DFTK

m/DFTK I

prr—

Make LOBPCG GPU-compatible #711

rrrrr

Make some computations in DFTK GPU-compatible #712

ceo

10-week GSoC project
< 500 lines changed

N

Use julia's HPC abstractions to
target all of CUDA, ROCm, oneAPI

Painless installation and setup

Collaboration with julia lab:
CS, physics & maths

basis = PlaneWaveBasis(model; Ecut=30, kgrid=(1, 1, 1),

architecture=DFTK.GPU(Culrray))
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@ DFTK: Bringing mathematical research to the applications

@ Mathematical works with @ DFTK
e Self-adapting black-box DFT methods?®?
o Numerical analysis of DFT<¢
e Practical error bounds®:f

@ Exploring algorithmic differentiation:
e “Automatic response”: Phonons & higher-order properties
e Data-enhanced DFT models
o Full AD-able simulation pipeline: DFT, potentials, MD
= Uncertainty quantification all the way

@ Part of growing julia materials modelling community
o Common interfaces and data structures (e.g. AtomsBase)

@ Outreach and teaching: @ DFTK summer school in 2022
o United CS, maths, physics, chemistry, materials

MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).

bMFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).

€E. Cancés, G. Kemlin, A. Levitt. J. Matrix Anal. Appl., 42, 243 (2021).

dg. Cancés, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).

€MFH, A. Levitt, E. Cancés. Faraday Discus. 223, 227 (2020).

fE. Cances, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).

Growing
user base:

Carnegie
‘Mellon
University
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https://github.com/JuliaMolSim/AtomsBase.jl
https://doi.org/10.1088/1361-648X/abcbdb
https://doi.org/10.1016/j.jcp.2022.111127
https://doi.org/10.1137/20M1332864
https://doi.org/10.1007/s11005-023-01645-3
https://doi.org/10.1039/D0FD00048E
https://doi.org/10.1137/21M1456224

S ummary https://michael-herbst.com/talks/2023.05.08_cis_gtn.pdf

@ High-throughput screening
e Main obstacle: Large number of parameters

@ Chosen empirically = Reliability limited

@ Black-box strategies for damping & preconditioning
@ Build on combining mathematical and physical insight
e Safeguard mechanism: Increase robustness for hard cases

@ Readily available in [;3;] DFTK

@ Multi-tasking surrogate models
@ No need to impose model ordering = Well-suited for DFT setting
o Can use cheap model data to compensate for expensive simulations

o Promising to exploit existing data sets (highly heterogeneous!)

° @ DFTK: Multidisciplinary software development
juli'é-based framework for new DFT algorithms

°
@ In one code: Reduced problems and scale-up to realistic applications
@ High-productivity research framework

°

Overcome disciplinary barriers: People compose if software composes
31/34


https://michael-herbst.com/talks/2023.05.08_cis_gtn.pdf
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https://michael-herbst.com/talks/2023.05.08_cis_gtn.pdf

Opportunities to learn more

LauzHack event (with G. Dalle, C. Dufour, J. Grainger, F. Wechsler):
“Introduction to Julia”

e 10 May 2023 18:15 BC410, EPFL & zoom

e Get a tour of the julia programming language . . .
@ ...and some free pizza

= https://memento.epfl.ch/event/introduction-to-julia/

Upcoming seminar:

“Julia for Materials Modelling”
e 24 May 2023 15:00 MED 2 1124 & zoom

@ Status of julia for materials science
@ Overview of existing tools & ecosystems
@ Hands-on showcases and perspectives

—> https://memento.epfl.ch/event/julia-for-materials-modelling-2/
33/34


https://memento.epfl.ch/event/introduction-to-julia/
https://memento.epfl.ch/event/julia-for-materials-modelling-2/

Questions?

https://michael-herbst.com/talks/2023.05.08_cis_gtn.pdf

) mfherbst
@ https://matmat.org

¥ michael.herbst@epfl.ch

9 DFTK https://dftk.org

julia https://go.epfl.ch/julia
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