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Task: Develop a new metallic catalyst for a surface reaction

Host metal + dopant Host surface Dopant adsorpotion site Reaction intermediates
≃ 30 × 30 = 900 ≃ 3 − 5 ≃ 30 ≃ 10

Combinatorial design space: ≃ 105 − 106 possibilities

Systematic experiments: Time and cost intensive

⇒ Computational screening to complement and accelerate
Harvest curated data bases
Data-driven methods and statistical learning

⇒ Regular need of millions of first-principle calculations
Noteworthy share of world’s supercomputing resources
Growing list of data / workflow management tools
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Sketch of high-throughput workflows

}
DFT PBE stability

DFT PBE band gap

Hybrid-DFT band gap

Beyond DFT

Design funnel for photovoltaic materials Workflow for computing elasticity tensors

Many parameters to choose (algorithms, tolerances, models)
Elaborate heuristics: Failure rate ≃ 1%
Still: Thousands of failed calculations

⇒ Wasted resources & increased human attention (limits througput)

Goal: Self-adapting black-box algorithms
Transform empirical wisdom to built-in convergence guarantees
Requires: Uncertainty quantification & error estimation

⇒ Understand where and how to spend efforts best

G. Hautier Comput. Mater. Sci. 164, 108 (2019); L. Himanen et. al. Adv. Science 6, 1900808 (2019).
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Broader vision: Robust & error-controlled simulations
Error control = Track simulation uncertainties:

Self-adapting simulations with mathematical guarantees
Integrate with error propagation efforts for surrogates1

⇒ Byproducts: Data quality control, accelerated design

Error control = Learn missing physics:
Data-enhanced models, active learning
Integration with experiment (autonomous discovery)

⇒ Exploit high-fidelity experimental, beyond-DFT data

Error control = Leverage inexactness:
Error balancing: Optimal adaptive parameter selection
Randomised methods, selective precision (16-bit, FPGA)
Multi-fidelity approaches (reduced basis, surrogates)

⇒ Understand where and how to spend efforts best
⇒ Realm of mathematical research

1F. Musil, A. Grisafi et. al. J. Chem. Theo. Comput. 15, 2 (2019). 3 / 34



Opportunities for mathematical research
Gap: Mathematical understanding & simulation practice
Broad range of concerned mathematical fields:

Optimisation, numerical linear algebra, analysis of PDEs,
uncertainty quantification, model order reduction, . . .

Application domain: Source for research problems
Large-scale eigenvalue problems
(L. Lin, Y. Saad, C. Yang, . . . )

Acceleration, fixed-point methods
(T. Kelly, A. Miedlar, Y. Saad, R. Schneider, H. vd. Vorst, H. Walker, . . . )

Non-linear PDEs
(Z. Bai, E. Cancès, G. Friesecke, M. Lewin, I. Sigal, . . . )

Application domain: Source for new methods
Davidson diagonalisation (H. vd. Vorst, . . . )

Thorough exploration of Anderson-type acceleration (see above)

17 minisymposia at SIAM in 2021/22 (-CSE, -LA, -MS, -PP, -UQ)
with contributions related to electronic-structure theory 4 / 34



(Exaggerative) state of codes in this field

Mathematical research
Goal: Numerical experiments
Scope: Reduced models
High-level language:
Matlab, python, . . .
Lifetime: 1 paper
Size: < 1k lines
Does not care about performance

Application research
Goal: Modelling physics
Scope: All relevant systems
Mix of languages:
C, FORTRAN, python, . . .
Lifetime: 100 manyears
Size: 100k – 1M lines
Obliged to write performant code

Working with these codes requires different skillsets
⇒ Orthogonal developer & user communities

Obstacle for knowledge transfer:
Mathematical methods never tried in practical setting
(and may well not work well in the real world)

Some issues cannot be studied with mathematical codes
(and mathematicians may never get to know of them)

What about emerging hardware, accelerators, performance?
Should be the regime of Computer Science (yet another community) 5 / 34



Difficulties of interdisciplinary research
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HΨ = EΨ

A social problem . . .
Community conventions (e.g. publication culture)
Language barriers and context-sensitive terms
Speed of research (development of model vs. its analysis)

. . . cemented in software:
Priorities differ ⇒ What is considered a “good code” differs
Insurmountable obstacles for code integration
Collaborations can stop before they begin . . .

Hypothesis: People compose if software composes

DFTK , the Density-Functional ToolKit
Allows restriction to relevant model problems,
and scale-up to application regime (1000 electrons)

Sizeable feature set in 7500 lines of code
MPI, self-adapting methods, algorithmic differentiation
Integrated in multi-scale pipeline
(potential fitting, molecular dynamics)
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Density-functional theory (insulators)
Energy minimisation problem:

min
D∈P

E(D) = min
D∈P

[
tr(H0D) + EHxc(diagD)

]
with P =

{
D ∈ S1(L2) | 0 ≤ D ≤ 1, tr(D) = N, tr (−∆D) < ∞

}
, [diag D] (r) = D(r, r)

DFT approximation: Effective single-particle model

∀i ∈ 1 . . . N :
(

−1
2∆ + V (ρΦ)

)
ψi = εiψi,

V (ρ) =Vnuc + vCρ+ VXC(ρ),

ρΦ =
N∑

i=1
|ψi|2 ,

Φ = (ψ1, . . . , ψN ) ∈
(
L2(R3,C)

)N

orthogonal

nuclear attraction Vnuc, exchange-correlation VXC, Hartree potential −∆ (vCρ) = 4πρ

⇒ Self-consistent field (SCF) problem: V
(
ρ(V )

)
= V with

ρ(V ) = diag
[
1(−∞,εF ]

(
−1

2∆ + V

)]
and εF s. t.

∫
ρ(V ) = N
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Self-consistent field problem
Potential-mixing SCF procedure (preconditioner P , damping α)

Vn+1 = Vn + αP−1 [V (ρ(Vn)) − Vn]

In practice: Combined with acceleration (e.g. Anderson)
Dropped to simplify analysis
Re-introduced for numerical experiments

Near a fixed-point the error goes as

en+1 ≃
[
1 − αP−1ε

]
en

with dielectric matrix ε = (1 − Kχ0), K(ρ) = V ′(ρ), χ0(V ) = ρ′(V )

Convergence iff −1 <
[
1 − αP−1ε

]
< 1

Dielectric matrix ε: Depends on physics (conduction, screening)

By second-order conditions: ε ≥ 0 (near fixed point)

⇒ Need P−1 ≃ ε−1 (matching preconditioner) or small α
9 / 34



Drawback of established approaches

1. Preconditioner P is system-dependent and chosen a priori
Standard preconditioners: Derived from bulk materials

Misses important applications (e.g. inhomogeneous systems)

E.g. clusters, passivated surfaces, heterogeneous catalysis, . . .

2. If no good preconditioner P known: Trial and error
Employ standard heuristics: E.g. decrease damping α

But: Can fail for interesting cases (the tough 1% ?)

⇒ Wasted computational resources

⇒ Goal: Black-box and self-adapting P and α
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Illustration: Guessing a suitable damping α can be hard

damping
α

Inefficient standard damping
(0.6 − 0.8)
Surprisingly small damping for
smooth convergence

Heusler alloy: Design space of interest
Convergence difficulties found in
high-throughput studies

Irregular behaviour: α versus convergence
Heuristics breaks: Larger damping is better

11 / 34



Black-box α: Adaptive damping1

Theorem: SCF convergence guaranteed if α small enough (see paper)

α adapted in each step using line search & quadratic model
Novelty: Reuse of expensive quantities in next SCF step

⇒ No overhead if line search immediately successful

For tricky systems: Adaptive damping has an overhead
But: Avoids trial and error
Mathematically motivated safeguard mechanism

1MFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).
12 / 34
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Black-box P : Local density of states (LDOS) mixing1

Bulk preconditioning models approximate inverse P−1 ≃ ε−1

Use ε = (1 −Kχ0) with K(ρ) = V ′(ρ), χ0(V ) = ρ′(V )

χ0(r, r′) unit-cell internal fluctuations, diagonal dominant:

Tackle charge sloshing: Consider large-scale variations of χ0:
χ0(r, r′) ≃ −LDOS(r)δ(r, r′) (homogenisation LDOS(r) ≈

∫
χ0(r, r′) dr′)

Apply preconditioner iteratively:
P−1Vn = [1 −Kχ̃0)]−1 Vn, χ̃0(r, r′) = −LDOS(r)δ(r, r′)

1MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021). 13 / 34

https://doi.org/10.1088/1361-648X/abcbdb


LDOS preconditioning (examples)1

Inhomogeneous material: Aluminium metal + Insulator

TFW: local Thomas-Fermi-von Weizsäcker mixing2

(Ad hoc modification of metallic screening model)

LDOS automatically interpolates between Kerker mixing
(suitable for metals) and no mixing (suitable for insulators)

⇒ Based on mathematical understanding of screening
⇒ Parameter-free and black-box

1MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
2D. Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. 64, 121101 (2001). 14 / 34

https://doi.org/10.1088/1361-648X/abcbdb
https://doi.org/10.1103/physrevb.64.121101
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Error sources in DFT simulations

Model error: Selection of DFT model
Computational approach:

Discretisation error: Basis size, k-point mesh

Algorithm error: Convergence thresholds (SCF, eigensolver)

Floating-point error: Floating-point arithmetic
Additionally: Programming error, hardware error

Discretisation error: Promising recent progress1

Work on combined bounds with floating-point error2

Recent work discussed here:
Dealing with the model error using multi-tasking surrogates

1E. Cancès, G. Dusson et. al. arxiv 2111.01470v1.
2MFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).

16 / 34
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DFT model classes

DFT model hierarchy: Jacob’s ladder
LDA, GGA, meta-GGA, Hybrid, RPA-like, Double Hybrid, . . .
Each rung defines (parametrised) model class
Parameters found by fitting and/or from physics
Additional correction terms (+U, dispersion, counterpoise, . . . )

Higher rungs:
Generally more expensive
Generally more accurate
But: DFT is a non-variational approximation to exact physics

⇒ No guaranteed accuracy order

Guiding idea: Can we combine information from different
functionals to balance accuracy / cost / deviating predictions?

Important: We should not impose an order!
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Test problem: Ionisation potentials of organic molecules

Dataset: ≃ 3000 small organic molecules1

ANI-1 subset (2–5 heavy atoms, a few with 6 heavies)

Targeted quantity: Ionisation potential
Note: A challenging quantity for DFT

Considered models:
density-functional theory (DFT) coupled cluster

model PBE PBE0 PBE0_DH CCSD(T)

cost 1 1 10 1000

rung 2nd (GGA) 4th (Hybrid) 6th (double Hybrid) Reference

Goal: Surrogate for CCSD(T) but mostly use DFT data

Work in progress report . . .

1C. Duan, F. Fang, A. Nandy, H. Kulik. J. Chem. Theo. Comput. 16, 4373 (2020).
18 / 34
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Delta learning: Learning to correct the error

Idea: Construct surrogate for difference between high-fidelity
and low-fidelity

Gaussian Process (GP) ansatz:

ICCSD(T) − IDFT = f(ξ) + ε

ε ∼ N (0, σ2I) (Gaussian noise)

f(ξ) ∼ GP (µ,Kθ) (GP prior)

ξ: vector of molecular descriptors, Ix: vector of simulated data,
Kθ: Kernel (e.g. polynomial, squared exponential),
σ, µ, θ hyperparameters

Training: Need DFT & CCSD(T) data

Prediction: Add DFT simulation to predicted mean of GP

Apply recursively: Multiple levels
19 / 34



Delta learning: Discussion

Conventional:
PBE → PBE0 → PBE0_DH → CCSD(T)

Scrambled:
PBE0_DH → PBE0 → PBE → CCSD(T)

Error bars from three draws (unit: eV)

Data of all lower levels required

Ordering matters, but the physical one does not always shine

20 / 34



Multitasking: All DFT models are equal
Asymmetric multitaskinga with DFT models α ∈ {PBE,PBE0, . . .}

ICCSD(T) = fCCSD(T)(ξ) + εCCSD(T)

Iα = fα(ξ) + εα

fα(ξ) = ραfCCSD(T)(ξ) + δα(ξ) (assumed shared structure)

εx ∼ N (0, σ2
xI) (Gaussian iid noise)

fCCSD(T)(ξ) ∼ GP
(
µCCSD(T),KCCSD(T)

)
δα(ξ) ∼ GP (µα,Kα)

Hyperparameters: µx, σx, ρx & kernel params

Rationale of α-specific correlation ρα & δα:
Avoid negative transfer learning on fCCSD(T)

Assume δα independent, independent from fCCSD(T)

Simplified observation covariance matrix
Analytical inference feasible

aG. Leen, J. Peltonen, S. Kaski. Mach. Learn. 89, 157 (2012) 21 / 34

http://dx.doi.org/10.1007/s10994-012-5302-y


Multitasking: IP results (1)

Core, Supplementary and Target data sets
T never available at CCSD(T) level
Cost model: CCSD(T) is 1000-fold PBE
(CCSD(T) scales O(N7) and DFT O(N3) with N number of electrons)

Accuracy improved for PBE0 → CCSD(T); error in eV
22 / 34



Multitasking: IP results (2)

Cost model: CCSD(T) is 50-fold DFT
(extremely conservative)
500 target data points, average over 3 runs

Lessons learned:
Given a CCSD(T) budget: Add DFT helps
To target accuracy:
Save CCSD(T) by using (many) DFT

23 / 34



Multitasking outlook: Transfer learning between datasets

Water monomer and water dimer
Target: Dimer interaction energy
≃ 6000 monomer, max. 1000 DFT
dimer datapoints
200 target points, average over 3 runs

Cost model:
DFT CCSD(T)

monomer 01 0010
dimer 10 1000

24 / 34
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Density-functional toolkit1 — https://dftk.org
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HΨ = EΨ

code for plane-wave DFT, started in 2019

Fully composable with ecosystem:
Arbitrary precision (32bit, >64bit, . . . )
Algorithmic differentiation (AD)
HPC tools: GPU acceleration, MPI parallelisation

Key tool in all presented research:
Allows restriction to relevant model problems,
and scale-up to application regime (1000 electrons)

Sizeable feature set in 7500 lines of code
Including some unique features (Self-adapting algorithms)

⇒ Build to enable multidisciplinary synergies

Accessible high-productivity framework across domains:
Key code contributions by undegrads / PhD students
Initial AD support in 10 weeks (CS Bachelor)
Initial GPU support in 10 weeks (Physics Bachelor)

Relevant contributions from outside collab. circle

26 / 34
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New features from generic code: Sensitivity analysis
function dft_energy(a, θ)

model = model_DFT(make_structure(a), PbeExchange(θ))
basis = PlaneWaveBasis(model; Ecut=..., kgrid=... )

self_consistent_field(basis).energies.total

end

optimise_lattice(θ) = optimise(a -> dft_energy(a, θ))

sensitivities =

ForwardDiff.gradient(optimise_lattice, [κ, β])

a∗ = arg min
a

E(a, θ)

sensitivities = da∗

dθ

Arbitrary, user-desired derivatives in one line of code
Three nested layers of iterative solvers
Almost a byproduct of our generic implementation
(main addendum: Stable response solver)

Breaks “one PhD student per derivative” paradigm
⇒ New properties/derivatives by non-DFT experts!

Avoids combinatorial explosion
Future models automatically supported
. . . so are unusual derivatives

⇒ Setting the scene for new approaches:
Sensitivity analysis & UQ, data-enhanced models 27 / 34



DFTK design: Keeping code concise & accessible

Stress =

1

det(L)

∂E
[
P∗, (I +M)L

]

∂M

∣∣∣∣∣
M=0

# Run SCF, get P*
scfres = self_consistent_field(basis)

L = basis.model.lattice
stress = 1/det(L) * gradient(

M -> recompute_energy(
scfres, (I + M) * L),

zero(L)
)

Stress computation (Definition vs. code)1

Post-processing step ⇒ Not performance critical

Comparison of implementation complexity:
DFTK : 20 lines1 (using forward-mode AD)

Quantum-Espresso: 1700 lines2

Note: allows seamless composition of
Floating-point agnostic code for AD (slightly slower)
Fast code integrating with MPI, CUDA, . . .

⇒ No performance impact & accessible code
1https://github.com/JuliaMolSim/DFTK.jl/blob/master/src/postprocess/stresses.jl
2https://github.com/QEF/q-e/blob/develop/PW/src 28 / 34
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Preliminary GPU support in DFTK

10-week GSoC project

< 500 lines changed

Use ’s HPC abstractions to
target all of CUDA, ROCm, oneAPI

Painless installation and setup

Collaboration with lab:
CS, physics & maths

basis = PlaneWaveBasis(model; Ecut=30, kgrid=(1, 1, 1),
architecture=DFTK.GPU(CuArray))

29 / 34



DFTK : Bringing mathematical research to the applications
Mathematical works with DFTK

Self-adapting black-box DFT methodsa,b

Numerical analysis of DFTc,d

Practical error boundse,f

Exploring algorithmic differentiation:
“Automatic response”: Phonons & higher-order properties
Data-enhanced DFT models
Full AD-able simulation pipeline: DFT, potentials, MD

⇒ Uncertainty quantification all the way

Part of growing materials modelling community
Common interfaces and data structures (e.g. AtomsBase)

Outreach and teaching: DFTK summer school in 2022
United CS, maths, physics, chemistry, materials

aMFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
bMFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).
cE. Cancès, G. Kemlin, A. Levitt. J. Matrix Anal. Appl., 42, 243 (2021).
dE. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
eMFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).
fE. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).

Growing
user base:
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Summary https://michael-herbst.com/talks/2023.05.08_cis_gtn.pdf

High-throughput screening
Main obstacle: Large number of parameters
Chosen empirically ⇒ Reliability limited

Black-box strategies for damping & preconditioning
Build on combining mathematical and physical insight
Safeguard mechanism: Increase robustness for hard cases
Readily available in DFTK

Multi-tasking surrogate models
No need to impose model ordering ⇒ Well-suited for DFT setting
Can use cheap model data to compensate for expensive simulations
Promising to exploit existing data sets (highly heterogeneous!)

DFTK : Multidisciplinary software development
-based framework for new DFT algorithms

In one code: Reduced problems and scale-up to realistic applications
High-productivity research framework
Overcome disciplinary barriers: People compose if software composes

31 / 34
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Opportunities to learn more
LauzHack event (with G. Dalle, C. Dufour, J. Grainger, F. Wechsler):

“Introduction to Julia”
10 May 2023 18:15 BC410, EPFL & zoom
Get a tour of the programming language . . .
. . . and some free pizza

⇒ https://memento.epfl.ch/event/introduction-to-julia/

Upcoming seminar:
“Julia for Materials Modelling”

24 May 2023 15:00 MED 2 1124 & zoom
Status of for materials science
Overview of existing tools & ecosystems
Hands-on showcases and perspectives

⇒ https://memento.epfl.ch/event/julia-for-materials-modelling-2/
33 / 34
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Questions? https://michael-herbst.com/talks/2023.05.08_cis_gtn.pdf

� mfherbst

� https://matmat.org

� michael.herbst@epfl.ch

DFTK https://dftk.org

https://go.epfl.ch/julia
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