An interdisciplinary perspective on robust materials simulations

Michael F. Herbst

Mathematics for Materials Modelling (matmat.org), EPFL

8 May 2023

Slides: https://michael-herbst.com/talks/2023.05.08_cis_gtn.pdf

Task: Develop a new metallic catalyst for a surface reaction

- Combinatorial design space: $\simeq 10^5 10^6$ possibilities
- Systematic experiments: Time and cost intensive
- \Rightarrow Computational screening to complement and accelerate
 - Harvest curated data bases
 - Data-driven methods and statistical learning
- \Rightarrow Regular need of millions of first-principle calculations
 - Noteworthy share of world's supercomputing resources
 - $\bullet\,$ Growing list of data / workflow management tools

Sketch of high-throughput workflows

Design funnel for photovoltaic materials

Workflow for computing elasticity tensors

- Many parameters to choose (algorithms, tolerances, models)
 - $\bullet\,$ Elaborate heuristics: Failure rate $\simeq 1\%$
 - Still: Thousands of failed calculations
 - \Rightarrow Wasted resources & increased human attention (limits througput)
- Goal: Self-adapting black-box algorithms
 - Transform empirical wisdom to built-in convergence guarantees
 - Requires: Uncertainty quantification & error estimation
 - \Rightarrow Understand where and how to spend efforts best

G. Hautier Comput. Mater. Sci. 164, 108 (2019); L. Himanen et. al. Adv. Science 6, 1900808 (2019).

Broader vision: Robust & error-controlled simulations

- Error control = Track simulation uncertainties:
 - Self-adapting simulations with mathematical guarantees
 - Integrate with error propagation efforts for surrogates¹
 - ⇒ Byproducts: Data quality control, accelerated design
- Error control = Learn missing physics:
 - Data-enhanced models, active learning
 - Integration with experiment (autonomous discovery)
 - \Rightarrow Exploit high-fidelity experimental, beyond-DFT data
- Error control = Leverage inexactness:
 - Error balancing: Optimal adaptive parameter selection
 - Randomised methods, selective precision (16-bit, FPGA)
 - Multi-fidelity approaches (reduced basis, surrogates)
- \Rightarrow Understand where and how to spend efforts best
- ⇒ Realm of mathematical research

¹F. Musil, A. Grisafi et. al. J. Chem. Theo. Comput. 15, 2 (2019).

Opportunities for mathematical research

- Gap: Mathematical understanding & simulation practice
- Broad range of concerned mathematical fields:
 - Optimisation, numerical linear algebra, analysis of PDEs, uncertainty quantification, model order reduction, ...
- Application domain: Source for research problems
 - Large-scale eigenvalue problems (L. Lin, Y. Saad, C. Yang, ...)
 - Acceleration, fixed-point methods (T. Kelly, A. Miedlar, Y. Saad, R. Schneider, H. vd. Vorst, H. Walker, ...)
 - Non-linear PDEs

(Z. Bai, E. Cancès, G. Friesecke, M. Lewin, I. Sigal, ...)

- Application domain: Source for new methods
 - Davidson diagonalisation (H. vd. Vorst, ...)
 - Thorough exploration of Anderson-type acceleration (see above)
- 17 minisymposia at SIAM in 2021/22 (-CSE, -LA, -MS, -PP, -UQ) with contributions related to electronic-structure theory

(Exaggerative) state of codes in this field

Mathematical research

- Goal: Numerical experiments
- Scope: Reduced models
- High-level **language**: Matlab, python, ...
- Lifetime: 1 paper
- Size: < 1k lines
- Does not care about performance

Application research

- Goal: Modelling physics
- Scope: All relevant systems
- Mix of languages: C, FORTRAN, python, ...
- Lifetime: 100 manyears
- Size: 100k 1M lines
- Obliged to write performant code
- Working with these codes requires different skillsets
 - ⇒ Orthogonal developer & user communities
- Obstacle for knowledge transfer:
 - Mathematical methods never tried in practical setting (and may well not work well in the real world)
 - Some issues cannot be studied with mathematical codes (and mathematicians may never get to know of them)
- What about emerging hardware, accelerators, performance?
 - Should be the regime of Computer Science (yet another community)

Difficulties of interdisciplinary research

- A social problem ...
 - Community conventions (e.g. publication culture)
 - Language barriers and context-sensitive terms
 - Speed of research (development of model vs. its analysis)
- ... cemented in software:
 - $\bullet~$ Priorities differ \Rightarrow What is considered a "good code" differs
 - Insurmountable obstacles for code integration
 - Collaborations can stop before they begin ...
- Hypothesis: People compose if software composes
 - **DFTK**, the Density-Functional ToolKit
 - Allows restriction to relevant model problems,
 - and scale-up to application regime (1000 electrons)
 - Sizeable feature set in 7500 lines of code
 - MPI, self-adapting methods, algorithmic differentiation
 - Integrated in multi-scale pipeline (potential fitting, molecular dynamics)

An interdisciplinary perspective on robust materials simulations

- Density-functional theory
- Local density of states preconditioner
- Adaptive damping

- Errors in DFT
- Fusing model predictions
- 😽 DFTK overview

Density-functional theory (insulators)

• Energy minimisation problem:

$$\min_{D \in \mathcal{P}} \mathcal{E}(D) = \min_{D \in \mathcal{P}} \left[\operatorname{tr}(H_0 D) + E_{\mathsf{Hxc}}(\operatorname{diag} D) \right]$$

with $\mathcal{P} = \left\{ D \in \mathfrak{S}_1(L^2) \mid 0 \le D \le 1, \operatorname{tr}(D) = N, \operatorname{tr}(-\Delta D) < \infty \right\}$, $[\operatorname{diag} D](\underline{r}) = D(\underline{r}, \underline{r})$

• DFT approximation: Effective single-particle model

$$\begin{cases} \forall i \in 1 \dots N : \left(-\frac{1}{2} \Delta + V(\rho_{\Phi}) \right) \psi_{i} = \varepsilon_{i} \psi_{i}, \\ V(\rho) = V_{\text{nuc}} + v_{C} \rho + V_{\text{XC}}(\rho), \\ \rho_{\Phi} = \sum_{i=1}^{N} |\psi_{i}|^{2}, \\ \Phi = (\psi_{1}, \dots, \psi_{N}) \in \left(L^{2}(\mathbb{R}^{3}, \mathbb{C}) \right)^{N} \text{orthogonal} \end{cases}$$

nuclear attraction $V_{\rm nuc},$ exchange-correlation $V_{\rm XC},$ Hartree potential $-\Delta\left(v_C\rho\right)=4\pi\rho$

 \Rightarrow Self-consistent field (SCF) problem: $V(\rho(V)) = V$ with

$$\rho(V) = \operatorname{diag}\left[\mathbbm{1}_{(-\infty,\varepsilon_F]}\left(-\frac{1}{2}\Delta + V\right)\right] \quad \text{and } \varepsilon_F \text{ s. t. } \int \rho(V) = N$$

Self-consistent field problem

- Potential-mixing SCF procedure (preconditioner P, damping α) $V_{n+1} = V_n + \alpha P^{-1} [V(\rho(V_n)) - V_n]$
- In practice: Combined with acceleration (e.g. Anderson)
 - Dropped to simplify analysis
 - Re-introduced for numerical experiments
- Near a fixed-point the error goes as

$$e_{n+1} \simeq \left[1 - \boldsymbol{\alpha} P^{-1} \boldsymbol{\varepsilon}\right] e_n$$

with dielectric matrix $\varepsilon = (1 - K\chi_0)$, $K(\rho) = V'(\rho)$, $\chi_0(V) = \rho'(V)$

- Convergence iff $-1 < \left[1 \alpha P^{-1}\varepsilon\right] < 1$
 - Dielectric matrix ε: Depends on physics (conduction, screening)
 - By second-order conditions: $\varepsilon \geq 0$ (near fixed point)

\Rightarrow Need $P^{-1} \simeq \varepsilon^{-1}$ (matching preconditioner) or small α

Drawback of established approaches

- 1. Preconditioner P is system-dependent and chosen a priori
 - Standard preconditioners: Derived from bulk materials
 - Misses important applications (e.g. inhomogeneous systems)
 - E.g. clusters, passivated surfaces, heterogeneous catalysis, ...
- 2. If no good preconditioner P known: Trial and error
 - $\bullet\,$ Employ standard heuristics: E.g. decrease damping α
 - But: Can fail for interesting cases (the tough 1% ?)
- ⇒ Wasted computational resources
- \Rightarrow Goal: Black-box and self-adapting P and α

Illustration: Guessing a suitable damping ${m lpha}$ can be hard

- Inefficient standard damping (0.6 0.8)
- Surprisingly small damping for smooth convergence

- Heusler alloy: Design space of interest
- Convergence difficulties found in high-throughput studies
- Irregular behaviour: α versus convergence
- Heuristics breaks: Larger damping is better

Black-box α : Adaptive damping¹

- Theorem: SCF convergence guaranteed if α small enough (see paper)
- α adapted in each step using line search & quadratic model
- Novelty: Reuse of expensive quantities in next SCF step
 ⇒ No overhead if line search immediately successful
- For tricky systems: Adaptive damping has an overhead
 - But: Avoids trial and error
 - Mathematically motivated safeguard mechanism

¹MFH, A. Levitt. J. Comput. Phys. **459**, 111127 (2022).

Black-box P: Local density of states (LDOS) mixing¹

- $\bullet\,$ Bulk preconditioning models approximate inverse $P^{-1}\simeq \varepsilon^{-1}$
- Use $\varepsilon = (1 K\chi_0)$ with $K(\rho) = V'(\rho), \chi_0(V) = \rho'(V)$
- $\chi_0(r,r')$ unit-cell internal fluctuations, diagonal dominant:

- Tackle charge sloshing: Consider large-scale variations of χ_0 : $\chi_0(r, r') \simeq -LDOS(r)\delta(r, r')$ (homogenisation $LDOS(r) \approx \int \chi_0(r, r') dr'$)
- Apply preconditioner iteratively: $P^{-1}V_n = [1 - K\widetilde{\chi_0})]^{-1}V_n, \qquad \widetilde{\chi_0}(r, r') = -LDOS(r)\delta(r, r')$

¹MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).

LDOS preconditioning (examples)¹

- Inhomogeneous material: Aluminium metal + Insulator
- TFW: local Thomas-Fermi-von Weizsäcker mixing² (Ad hoc modification of metallic screening model)
- LDOS automatically interpolates between Kerker mixing (suitable for metals) and no mixing (suitable for insulators)
 - ⇒ Based on mathematical understanding of screening
 - ⇒ Parameter-free and black-box

¹MFH, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

²D. Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. 64, 121101 (2001).

An interdisciplinary perspective on robust materials simulations

DFT algorithms

- Density-functional theory
- Local density of states preconditioner
- Adaptive damping

- Errors in DFT
- Fusing model predictions

Error sources in DFT simulations

- Model error: Selection of DFT model
- Computational approach:
 - Discretisation error: Basis size, k-point mesh
 - Algorithm error: Convergence thresholds (SCF, eigensolver)
 - Floating-point error: Floating-point arithmetic
- Additionally: Programming error, hardware error
- Discretisation error: Promising recent progress¹
- Work on combined bounds with floating-point error²
- Recent work discussed here:
 - Dealing with the model error using multi-tasking surrogates

¹E. Cancès, G. Dusson et. al. arxiv 2111.01470v1.

²MFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).

DFT model classes

- DFT model hierarchy: Jacob's ladder
 - LDA, GGA, meta-GGA, Hybrid, RPA-like, Double Hybrid, ...
 - Each rung defines (parametrised) model class
 - Parameters found by fitting and/or from physics
 - Additional correction terms (+U, dispersion, counterpoise, ...)
- Higher rungs:
 - Generally more expensive
 - Generally more accurate
 - But: DFT is a non-variational approximation to exact physics
 - \Rightarrow No guaranteed accuracy order
- Guiding idea: Can we combine information from different functionals to balance accuracy / cost / deviating predictions?
- Important: We should not impose an order!

DFT model classes

- DFT model hierarchy: Jacob's ladder
 - LDA, GGA, meta-GGA, Hybrid, RPA-like, Double Hybrid, ...
 - Each rung defines (parametrised) model class
 - Parameters found by fitting and/or from physics
 - Additional correction terms (+U, dispersion, counterpoise, ...)
- Higher rungs:
 - Generally more expensive
 - Generally more accurate
 - But: DFT is a non-variational approximation to exact physics
 - \Rightarrow No guaranteed accuracy order
- **Guiding idea:** Can we combine information from different functionals to balance accuracy / cost / deviating predictions?
- Important: We should not impose an order!

Test problem: Ionisation potentials of organic molecules

- Dataset: $\simeq 3000$ small organic molecules¹
 - ANI-1 subset (2-5 heavy atoms, a few with 6 heavies)
- Targeted quantity: Ionisation potential
 - Note: A challenging quantity for DFT
- Considered models:

	densi	density-functional theory (DFT) coupled clust		
model	PBE	PBE0	PBE0_DH	CCSD(T)
cost	1	1	10	1000
rung	2nd (GGA)	4th (Hybrid)	6th (double Hybrid)	Reference

• Goal: Surrogate for CCSD(T) but mostly use DFT data

• Work in progress report ...

¹C. Duan, F. Fang, A. Nandy, H. Kulik. J. Chem. Theo. Comput. 16, 4373 (2020).

Delta learning: Learning to correct the error

- Idea: Construct surrogate for *difference* between high-fidelity and low-fidelity
- Gaussian Process (GP) ansatz:

$$I^{\text{CCSD}(\mathsf{T})} - I^{\text{DFT}} = f(\xi) + \varepsilon$$

 $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ (Gaussian noise)
 $f(\xi) \sim \mathcal{GP}(\mu, K_{\theta})$ (GP prior)

 ξ : vector of molecular descriptors, I^x : vector of simulated data, K_{θ} : Kernel (e.g. polynomial, squared exponential), σ , μ , θ hyperparameters

- Training: Need DFT & CCSD(T) data
- Prediction: Add DFT simulation to predicted mean of GP
- Apply recursively: Multiple levels

Delta learning: Discussion

• Conventional: PBE \rightarrow PBE0 \rightarrow PBE0 DH \rightarrow CCSD(T)

• Scrambled:

 $PBE0_DH \rightarrow PBE0 \rightarrow PBE \rightarrow CCSD(T)$

• Error bars from three draws (unit: eV)

- Data of all lower levels required
- Ordering matters, but the physical one does not always shine

Multitasking: All DFT models are equal

• Asymmetric multitasking^a with DFT models $\alpha \in \{PBE, PBE0, \ldots\}$

$$\begin{split} I^{\mathsf{CCSD}(\mathsf{T})} &= f^{\mathsf{CCSD}(\mathsf{T})}(\xi) + \varepsilon^{\mathsf{CCSD}(\mathsf{T})} \\ I^{\alpha} &= f^{\alpha}(\xi) + \varepsilon^{\alpha} \\ f^{\alpha}(\xi) &= \rho^{\alpha} f^{\mathsf{CCSD}(\mathsf{T})}(\xi) + \delta^{\alpha}(\xi) \qquad \text{(assumed shared structure)} \\ \varepsilon^{x} &\sim \mathcal{N}(0, \sigma_{x}^{2}I) \qquad \text{(Gaussian iid noise)} \\ f^{\mathsf{CCSD}(\mathsf{T})}(\xi) &\sim \mathcal{GP}\left(\mu^{\mathsf{CCSD}(\mathsf{T})}, K^{\mathsf{CCSD}(\mathsf{T})}\right) \\ \delta^{\alpha}(\xi) &\sim \mathcal{GP}\left(\mu^{\alpha}, K^{\alpha}\right) \\ \mathsf{Hyperparameters:} \ \mu^{x}, \ \sigma_{x}, \ \rho^{x} \ \& \text{ kernel params} \end{split}$$

• Rationale of α -specific correlation ρ^{α} & δ^{α} :

- Avoid negative transfer learning on $f^{\text{CCSD}(T)}$
- Assume δ^{α} independent, independent from $f^{\rm CCSD(T)}$
 - Simplified observation covariance matrix
 - Analytical inference feasible

^aG. Leen, J. Peltonen, S. Kaski. Mach. Learn. 89, 157 (2012)

Multitasking: IP results (1)

	С	S	Т
CCSD(T)			
PBE			

- Core, Supplementary and Target data sets
- T never available at CCSD(T) level
- Cost model: CCSD(T) is 1000-fold PBE

(CCSD(T) scales $\mathcal{O}(N^7)$ and DFT $\mathcal{O}(N^3)$ with N number of electrons)

• Accuracy improved for PBE0 \rightarrow CCSD(T); error in eV

Multitasking: IP results (2)

	С	S	Т
CCSD(T)			
PBE0_DH		1111	
PBE0		1111	
PBE		100	
BLYP			

- Cost model: CCSD(T) is 50-fold DFT (extremely conservative)
- 500 target data points, average over 3 runs

• Lessons learned:

- Given a CCSD(T) budget: Add DFT helps
- To target accuracy: Save CCSD(T) by using (many) DFT

Multitasking outlook: Transfer learning between datasets

	Monomer		Dimer		
	С	S	С	S	Т
CCSD(T)			11111		
PBE0			11111		
PBE					

- Water monomer and water dimer
- Target: Dimer interaction energy
- $\simeq 6000$ monomer, max. 1000 DFT dimer datapoints
- 200 target points, average over 3 runs

Cost model:

	DFT	CCSD(T)
monomer	1	10
dimer	10	1000

An interdisciplinary perspective on robust materials simulations

Self-adapting black-box DFT algorithms

Model error in DFT simulations

- Density-functional theory
- Local density of states preconditioner
- Errors in DFT
- Fusing model predictions

Adaptive damping

Density-functional toolkit¹ — https://dftk.org

- julia code for plane-wave DFT, started in 2019
- Fully composable with julia ecosystem:
 - Arbitrary precision (32bit, >64bit, ...)
 - Algorithmic differentiation (AD)
 - HPC tools: GPU acceleration, MPI parallelisation
- Key tool in all presented research:
 - Allows restriction to relevant model problems,
 - and scale-up to application regime (1000 electrons)
 - Sizeable feature set in 7500 lines of code
 - Including some unique features (Self-adapting algorithms)
- \Rightarrow Build to enable multidisciplinary synergies
- Accessible high-productivity framework across domains:
 - Key code contributions by undegrads / PhD students
 - Initial AD support in 10 weeks (CS Bachelor)
 - Initial GPU support in 10 weeks (Physics Bachelor)
 - Relevant contributions from outside collab. circle

New features from generic code: Sensitivity analysis


```
a_* = \operatorname*{arg\,min}_{a} \mathcal{E}(a, \theta)
sensitivities = \frac{da_*}{d\theta}
```

- Arbitrary, user-desired derivatives in one line of code
 - Three nested layers of iterative solvers
 - Almost a byproduct of our generic julia implementation (main addendum: Stable response solver)
 - Breaks "one PhD student per derivative" paradigm
 - ⇒ New properties/derivatives by non-DFT experts!
- Avoids combinatorial explosion
 - Future models automatically supported
 - ... so are unusual derivatives
- \Rightarrow Setting the scene for new approaches:
 - Sensitivity analysis & UQ, data-enhanced models

🔁 DFTK design: Keeping code concise & accessible

- Stress computation (Definition vs. julia code)¹
- Post-processing step \Rightarrow Not performance critical
- Comparison of implementation complexity:
 - **FTK**: 20 lines¹ (using forward-mode AD)
 - Quantum-Espresso: 1700 lines²
- Note: julia allows seamless composition of
 - Floating-point agnostic code for AD (slightly slower)
 - Fast code integrating with MPI, CUDA, ...

\Rightarrow No performance impact & accessible code

²https://github.com/QEF/q-e/blob/develop/PW/src

 $^{{}^{1} \}tt https://github.com/JuliaMolSim/DFTK.jl/blob/master/src/postprocess/stresses.jl$

Preliminary GPU support in 🐳 DFTK

Q JuliaMolSim / DFTK.jl (1998) Q Sat Pre -	© Unwatch 15 + ¥ Fox 58 + ☆ 50x 285 +
↔ Code ⊙ Issues 66 □ Pull requests (6 ⊂D Discussion	n 💿 Actions 💿 Security 🖂 Insights 🛛 …
Make LOBPCG GPU-compatible #	711 Eat: ↔ Code v wype Loterca, Key @ 12 days ago
diaMcISim / DFTK.jl nam	× ¥ fex 58 + ☆ 6er 585 +
	mights ⊕ 5emps #712
Conversation (a) 🔶 Commits (a) 📋 Checks (b) 👔 Files charged (b)	*
SNigne commented on 2N Age related Committee Q Dealer (Committee Q Dealer Dealer (Committee Q	forviews © Supporting Support Payor © Support Payor ©
The goal of the feature print as important on to compare yor to one compares in and by print. This mainly means motifying the PlantWaveBasis set I can stars CPURays, and orderding the (apply) functions to allow the Hamiltonian and ta operation to be applied to CPURays.	Gel in program Convertio stat
optional argument array, type: which halls the code which type of array structure about the used. For example :	Assignment B Normal-mail proceed
<pre>basis = Olanakhandhais(mode); Cost-MG, byid=(1, 1, 1)) # Computerisms atll bapper on COV basis_gpu = Flandhandhais(mode); Cost-MG, kgrid=(1, 1, 1) Orap.lpu = Cokrimp) impute</pre>	Latens ®
The end-user can then call the SCP with either taxis or basis gap. I send CLDA since I have an WOM GPU, but this part of the code should also work with other GPUs, since is for our as more ITM encoder function.	Property (B)
This was the first of the second barries of the second barries and	

- 10-week GSoC project
- \bullet < 500 lines changed
- Use julia's HPC abstractions to target all of CUDA, ROCm, oneAPI
- Painless installation and setup
- Collaboration with **julia** lab: CS, physics & maths

🔁 DFTK : Bringing mathematical research to the applications

- Mathematical works with Vertical
 - Self-adapting black-box DFT methods^{a, b}
 - Numerical analysis of DFT^{c,d}
 - Practical error bounds^{e, f}
- Exploring algorithmic differentiation:
 - "Automatic response": Phonons & higher-order properties
 - Data-enhanced DFT models
 - Full AD-able simulation pipeline: DFT, potentials, MD
 - \Rightarrow Uncertainty quantification all the way
- Part of growing julia materials modelling community
 - Common interfaces and data structures (e.g. AtomsBase)
- Outreach and teaching: 😯 DFTK summer school in 2022
 - United CS, maths, physics, chemistry, materials

- ^bMFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).
- ^cE. Cancès, G. Kemlin, A. Levitt. J. Matrix Anal. Appl., 42, 243 (2021).
- ^dE. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
- ^eMFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).

Growing user base:

Carnegie Mellon University

^aMFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).

^fE. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).

Summary

- High-throughput screening
 - Main obstacle: Large number of parameters
 - Chosen empirically \Rightarrow Reliability limited
- Black-box strategies for damping & preconditioning
 - Build on combining mathematical and physical insight
 - Safeguard mechanism: Increase robustness for hard cases
 - Readily available in I DFTK
- Multi-tasking surrogate models
 - $\bullet~$ No need to impose model ordering $\Rightarrow~$ Well-suited for DFT setting
 - Can use cheap model data to compensate for expensive simulations
 - Promising to exploit existing data sets (highly heterogeneous!)
- **W**DFTK : Multidisciplinary software development
 - julia-based framework for new DFT algorithms
 - In one code: Reduced problems and scale-up to realistic applications
 - High-productivity research framework
 - Overcome disciplinary barriers: People compose if software composes

Acknowledgements

- Eric Cancès (École des Ponts)
- Katharine Fisher (MIT)
- Antoine Levitt (Université Paris-Saclay)
- Youssef Marzouk (MIT)
- Niklas Schmitz (TU Berlin)
- Guillaume Vigne (Mines Paris)
- All 😽 DFTK contributors

Applied and Computational Mathematics

European Research Council Established by the European Commission

ParisTech

1467

CESMIX

Opportunities to learn more

LauzHack event (with G. Dalle, C. Dufour, J. Grainger, F. Wechsler): "Introduction to Julia"

- 10 May 2023 18:15 BC410, EPFL & zoom
- Get a tour of the julia programming language ...
- ... and some free pizza

https://memento.epfl.ch/event/introduction-to-julia/

Upcoming seminar:

"Julia for Materials Modelling"

- 24 May 2023 15:00 MED 2 1124 & zoom
- Status of julia for materials science
- Overview of existing tools & ecosystems
- Hands-on showcases and perspectives
- > https://memento.epfl.ch/event/julia-for-materials-modelling-2/

Questions?

mfherbst

- ♦ https://matmat.org
- ≥ michael.herbst@epfl.ch

DFTK https://dftk.org **julia** https://go.epfl.ch/julia