

Michael F. Herbst

Applied and Computational Mathematics, RWTH Aachen University

22 July 2022

Slides: https://michael-herbst.com/talks/2022.07.22_dftk_juliacon.pdf

Contents

2 Highlighted recent features

- Black-box DFT algorithms
- Model sensitivities and algorithmic differentiation
- Ecosystem integration

Motivation: Computational materials design¹

- Simple catalyst design space: Combinatorial $\simeq 10^5 10^6$ possibilities
- Computational screening to complement and accelerate experiment
- Exponentially growing impact & successes:⁵
 - Semiconductors², batteries³, magnetic compounds⁴
- \Rightarrow Crucial tool for 21st century challenges:
 - Information technology & quantum computing
 - Energy storage & conversion

¹ACED project: https: //www.cmu.edu/aced/index.html

²S. Luo et. al. WIREs Comput. Mol. Sci. **11**, e1489 (2021).

³L. Kahle et. al. Energy & Environ. Science, **13**, 928 (2020).

⁴S. Jiang et. al. J. Alloys Comp. 867, 158854 (2021).

⁵K. Alberi et. al. J. Phys. D, **52**, 013001 (2019).

https://www.edfenergy.com/ electric-cars/batteries

J. Evans Beyond graphene Chemistry World (2014). 2 / 16

Sketch of high-throughput workflows

Design funnel for photovoltaic materials

Workflow for computing elasticity tensors

- Many parameters to choose (algorithms, tolerances, models)
 - $\bullet\,$ Elaborate heuristics: Failure rate $\simeq 1\%$
 - Still: Thousands of failed calculations
 - \Rightarrow Wasted resources & increased human attention (limits througput)
- Carbon footprint? More complex design spaces?
- Goal: Self-adapting black-box DFT algorithms
 - Parameter-free, automatically adapt to simulated system
 - Transform empirical wisdom to built-in convergence guarantees

G. Hautier Comput. Mater. Sci. 164, 108 (2019); L. Himanen et. al. Adv. Science 6, 1900808 (2019).

Interdisciplinary field \Rightarrow Multidisciplinary community

- Mathematicians: Toy models and unphysical edge cases
- High-performance person: Exploit hardware specialities
- Scientist: Design new models, not tweak numerics
- Practitioner: Reliable, black-box code, high-level interface
- State-of-the-art first-principle codes:
 - $\bullet \ \ {\sf Difficult \ problem} \Rightarrow {\sf Complex \ codes}$
 - Hard-coded details: Workflow, algorithms, optimisations
 - Huge code bases: 1M lines and beyond
 - Non-standard input syntax and API
 - Two-language problem: Algorithmic code hardly accessible

 \Rightarrow Innovations might not cross community boundaries

Density-functional toolkit¹ — https://dftk.org

• julia code for plane-wave DFT, started in 2019

- Lowers barriers for cross-disciplinary research:
 - Allows restriction to relevant model problems,
 - scale-up to application regime (1000 electrons)
 - Features incl. meta-GGA, response, MPI
 - Speed within factor 2–4 to established codes
- \Rightarrow Build to enable multidisciplinary synergies
 - Fully composable with julia ecosystem:
 - Arbitrary precision (32bit, >64bit, ...)
 - Algorithmic differentiation (AD)
 - Integrated in multi-scale pipeline

(potentials, MD, see talk by Emmanuel Lujan)

- High-productivity research framework:
 - Only 7000 lines of code
 - Avoids two-language problem: Just julia
 - $\bullet\,$ GSoC student (10 weeks) for initial AD support

Contents

2 Highlighted recent features

- Black-box DFT algorithms
- Model sensitivities and algorithmic differentiation
- Ecosystem integration

Black-box algorithms: Adaptive damping¹

• DFT involves a fixed-point problem, solved by SCF iteration

$$\boldsymbol{\rho}^{(n+1)} = \boldsymbol{\rho}^{(n)} + \alpha P^{-1} \left[\mathsf{SCF step} \left(\boldsymbol{\rho}^{(n)} \right) - \boldsymbol{\rho}^{(n)} \right]$$

- How to choose mixing P^{-1} and damping α ?
- State-of-the-art: Guessing / trial and error (fixed damping)
- \Rightarrow Wasted computational time!
 - FIC approach: adaptive damping automatically selects damping
 - Similar performance than best fixed damping, but fully black-box

¹M. F. Herbst, A. Levitt. A robust and efficient line search for self-consistent field iterations arXiv 2109.14018.

Black-box algorithms: LDOS mixing²

- Long-standing problem: Suitable mixing for inhomogeneous systems
 - E.g. metal+insulator, catalytic surfaces, ...
- State-of-the-art: local Thomas-Fermi-von Weizsäcker mixing (TFW)¹
- **OFTK** approach: LDOS mixing automatically interpolates between Kerker mixing (in the metallic region) and no mixing (insulating region)
- ⇒ Parameter-free and black-box

¹D. Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. 64, 121101 (2001).

²M. F. Herbst, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).

Obtaining DFT model sensitivities

• Consider optimal lattice constant

 $a_* = \operatorname*{arg\,min}_a \mathcal{E}_{\mathsf{DFT}}(a, \theta)$ (*a* lattice parameter, θ DFT exchange-correlation parameters)

- How sensitive is a_* for a system? \Rightarrow Need $\frac{da_*}{d\theta}$
- Annoyances for derivation and implementation:
 - Nested iterative methods (eigensolver, SCF, lattice optimisation)
 - Unusual second-order derivatives (e.g. $\frac{\partial^2 \mathcal{E}}{\partial \theta \partial a}$)
 - Combinatorial explosion: Other Qol? Other DFT models?
 - What about future DFT models? (with completely different kinds of parameters θ)
- Use algorithmic differentiation $(\approx \text{ automatic derivatives})$
 - Break "one PhD student per derivative" paradigm
 - Generic framework for DFT derivatives / response properties
 - \Rightarrow New properties/derivatives by non-DFT experts!

Example: Lattice constant sensitivities of silicon


```
a_* = \underset{a}{\arg\min} \ \mathcal{E}(a, \theta)
sensitivities = \frac{da_*}{d\theta}
```

- One line of code to "request" desired gradients from:
 - Floating-point agnostic BFTK architecture
 - julia tools for algorithmic differentiation
 - Generic response implementation in 🐺 DFTK
- Fully flexible in DFT model or targeted quantity:
 - Only XC energy expression & SCF postprocessing code needed

(Å)	a*	κ	$\frac{da_*}{d\kappa}$	β	$\frac{da_*}{d\beta}$
expmnt.	5.421				
PBEsol	5.449	0.804	0.713	0.0375	0.0058
PBE	5.461	0.804	0.550	0.0667	0.0194
APBE	5.465	0.804	0.482	0.0790	0.0269
PBEmol	5.467	0.804	0.456	0.0838	0.0301
XPBE	5.466	0.920	0.603	0.0706	0.0184
rev-PBE	5.4 67	1.2 45	0.744	0.0667	0.0099

Model sensitivities for the silicon lattice constant

DEMO

Ecosystem integration of DFTK

- AtomsBase.jl: Interface for atomic structures
 - AtomIO.jl: Abstraction for parsing/writing structure files (ongoing student project)
- DftFunctionals.jl: Interface and differentiable fallbacks for exchange-correlation functionals
- InteratomicPotentials.jl: Interface for evaluating energies and forces

Contents

2 Highlighted recent features

- Black-box DFT algorithms
- Model sensitivities and algorithmic differentiation
- Ecosystem integration

Ongoing developments

• GPU Support (GSoC of Guillaume Vigne):

- Goal: Minimise code duplication between GPU & CPU
- Target generic GpuArrays infrastructure \Rightarrow CUDA & AMD
- Adjoint-mode algorithmic differentiation:
 - (talk by Gaspard, Markus, Niklas Wed 27th 12:30 UTC)
 - All parameter sensitivities by a single response problem
 - ⇒ Routine computation of model sensitivities
 - ⇒ Prospect: Machine-learned solid-state XC models

TFTK : Bringing mathematical research to the applications

- Self-adapting black-box DFT methods^{*a*, *b*} (details follow)
- Numerical analysis of DFT^c
- Practical numerical error bounds^{d, e}
- Exploring algorithmic differentiation: DFT, potentials, MD
- Uncertainty quantification all the way: DFT, potentials, MD
- Approximate computing on modern GPUs
- Outreach and teaching
 - Community building: julia-based first-principle ecosystem
 - Interdisciplinary workshop on DFT and Spectrum
 - Lecture: Mathematics of computational chemistry

Carnegie Mellon University

Ecole des Pont ParisTech

14/16

^aMFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).

^bMFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).

^cE. Cancès, G. Kemlin et. al. J. Matrix Anal. Appl., 42, 243 (2021).

^dMFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).

^eE. Cancès, G. Dusson et. al. arxiv 2111.01470v1.

Acknowledgements

https://michael-herbst.com/talks/2022.07.22_dftk_juliacon.pdf

École des Ponts

Antoine Levitt Eric Cancès **RWTH** Benjamin Stamm Markus Towara Mines Paris Guillaume Vigne

МΙΤ

Valentin Churavy Jeremiah DeGreeff Emmanuel Luján

TU Berlin Niklas Schmitz

Summer of code

CESMIX

mfherbst

Questions?

herbst@acom.rwth-aachen.de

https://michael-herbst.com/blog

💑 DFTK https://dftk.org

JuliaCon 2021 A mathematical look at electronic structure theory

JuliaCon 2022 Automatic Differentiation for Quantum Electron Structure (Wed 27th July 12:30 UTC)

