
DFTK : An algorithmically differentiable
density-functional theory framework

Michael F. Herbst∗, Antoine Levitt§ and Niklas Schmitz†

∗Applied and Computational Mathematics, RWTH Aachen University
§CERMICS, École des Ponts and Inria Paris

†Technische Universität Berlin

10 December 2021
Slides: https://michael-herbst.com/slides/gdr-rest-ml

Stress =

1

det(L)

∂E
[
P∗, (I +M)L

]

∂M

∣∣∣∣∣
M=0

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

Run SCF, get P*
scfres = self_consistent_field(basis)

L = basis.model.lattice
stress = 1/det(L) * gradient(

M -> recompute_energy(
scfres, (I + M) * L),

zero(L)
)

https://michael-herbst.com/slides/gdr-rest-ml

Data-enhanced first-principle models

DFT features favourable cost / accuracy ratio
Limitations:

Error balancing

Band gap problem

Multi-reference situations

Machine-learning models demonstrated predictive power

Fraction of the cost of ground truth
Limitations:

Vast amounts of data required

Transferability not always clear

⇒ Patch up DFT by learning additional physics from data?
1 / 37

Initial success stories in the literature
1D Kinetic energy functional1

Differentiable Hartree-Fock (Algopy, DiffiQult)2

NN-based XC functional (finite differences)3

Kohn-Sham as a regularizer (Jax, jax_dft)4

NN-based XC functional (not fully self-consistent)5

Arbitrary-order derivatives including CC (Jax, Quax)6

NN-based XC functionals (pytorch, dqc, xcnn)7

Restrictions:
(Mainly) Gaussian basis sets
Codes written from scratch
Build on one specific AD framework

1J. Snyder, M. Rupp, K. Hansen, et. al.. Phys. Rev. Lett. 108, 253002 (2012).
2T. Tamayo-Mendoza, C. Kreisbeck, R. Lindh et. al.. ACS Cent. Sci. 4, 559 (2018)
3R. Nagai, A. Ryosuke and O. Sugino. npj Comp. Mater. 6, 43 (2020)
4L. Li, S. Hoyer, R. Pederson et. al.. Phys. Rev. Lett. 126, 36401 (2021)
5Y. Chen, L. Zhang, H. Wang et. al.. J. Chem. Theo. Comput. 17, 170 (2021)
6A. Abbott, B. Abbott, J. Turney et. al.. J. Phys. Chem. Lett. 12, 3232 (2021)
7M. F. Kasim and S. M. Vinko. Phys. Rev. Lett. 127, 126403 (2021) 2 / 37

https://doi.org/10.1103/physrevlett.108.253002
https://doi.org/10.1021/acscentsci.7b00586
https://doi.org/10.1038/s41524-020-0310-0
https://doi.org/10.1103/physrevlett.126.036401
https://doi.org/10.1021/acs.jctc.0c00872
https://doi.org/10.1021/acs.jpclett.1c00607
https://doi.org/10.1103/physrevlett.127.126403

Neural-enhanced DFT models

DFT model defined by energy functional EDFT(λ, P)
External parameters λ: Atomic coordinates, field, etc.

Density matrix P

Variational problem of DFT:

Given λ : min
P

EDFT(λ, P)

⇒ Neural-enhanced energy functional:

E(θ, λ, P) = EDFT(λ, P) + ENN(θ, P)

Target: Optimal parameters θ given some data (e.g. λ̃i, Ẽi)

⇒ What is optimal?

3 / 37

Obtaining optimal parameters θ

Based on data (λ̃i, Ẽi) setup loss function:

L(θ) =
∑

i

∣∣∣∣min
P

(
E(θ, λ̃i, P)

)
− Ẽi

∣∣∣∣p + · · ·

Now just optimise until ∇L = 0, right?

Issue 1: Computing ∇L requires unusual derivatives

Issue 2: Physical losses may require higher-order derivatives

Issue 3: Dimension of θ is large, so ∇L needs to be efficient

4 / 37

Issue 1: Computing ∇L requires unusual derivatives

L(θ) =
∑

i

∣∣∣min
P

(
E(θ, λ̃i, P)

)
− Ẽi

∣∣∣p
P depends implicitly on θ (details later)

∇L requires ∂P
∂θ

I.e. density (matrix) derivative wrt. XC/NN parameters

Not commonly available in codes

Associated response problem depends on XC and NN model

⇒ Combinatorial explosion

⇒ Manual implementation not feasible

5 / 37

Issue 2: Physical losses require higher-order derivatives

Absolute energies are not physically interesting.

Changes in the energy are what is interesting!

Properties: How is the response to external perturbation?
Examples:

Forces (response to atomic position shifts)

Dipole moment (response to electric field)

Elasticity (cross-response to lattice deformation)

. . .

⇒ Come out as derivatives of the energy

⇒ Property-based losses may require higher-order derivatives.

6 / 37

Issue 3: Dimension of θ is large

L(θ) =
∑

i

∣∣∣min
P

(
E(θ, λ̃i, P)

)
− Ẽi

∣∣∣
NN feature large number of parameters

Dimension N > 10000 not unusual for θ ∈ RN

Simple finite differences

(∇L)i ≃ L(θ + αei) − L(θ)
α

Scales as O(N) times the cost of evaluating the primal
In this example: energy functional E, i.e. cost of an SCF

⇒ Finite-differences does not cut it

7 / 37

Obtaining optimal parameters θ (2)

Based on some data (λ̃i, Ẽi) setup loss function:

L(θ) =
∑

i

∣∣∣∣min
P

(
E(θ, λ̃i, P)

)
− Ẽi

∣∣∣∣p + · · ·

Now just optimise until ∇L = 0, right?

Issue 1: Computing ∇L requires unusual derivatives

Issue 2: Physical losses may require higher-order derivatives

Issue 3: Dimension of θ is large, so ∇L needs to be efficient

Need efficient automated way to obtain derivatives!

8 / 37

Obtaining optimal parameters θ (2)

Based on some data (λ̃i, Ẽi) setup loss function:

L(θ) =
∑

i

∣∣∣∣min
P

(
E(θ, λ̃i, P)

)
− Ẽi

∣∣∣∣p + · · ·

Now just optimise until ∇L = 0, right?

Issue 1: Computing ∇L requires unusual derivatives

Issue 2: Physical losses may require higher-order derivatives

Issue 3: Dimension of θ is large, so ∇L needs to be efficient

Need efficient automated way to obtain derivatives!

8 / 37

Algorithmic differentiation (AD)

Computational tool for computing arbitrary derivatives
Given a differentiable code allows to compute derivative of

any output quantity (band gap, forces, . . .) versus

any input (pseudo parameters, XC parameters, positions,
temperature, . . .)

Adjoint-based methods cost asymptotically the same as
function evaluation (details later)

Usefulness goes well beyond data-enhanced DFT models:
Design of environment models, tight-binding, pseudopotentials

Sensitivity analysis & statistical inference (UQ)

Development of error estimates

⇒ Motivation for integration in DFTK

9 / 37

Density-functional toolkit1 — https://dftk.org

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

HΨ = EΨ

code for plane-wave DFT

Fully composable with ecosystem:
Arbitrary precision (32bit, >64bit, . . .)
Algorithmic differentiation
Numerical error control

⇒ AD capabilities are a side effect

Supports mathematical developments and scale-up
to relevant applications
i.e. reduced problems for rigorous analysis (1D,
analytic potentials) and DFT on > 800 electrons

⇒ Build with multidisciplinary research in mind

Avoids two-language problem: Just
Only 2.5 years of development
Only 7k lines of code

⇒ Low entrance barrier across backgrounds

1M. F. Herbst, A. Levitt and E. Cancès. JuliaCon Proc., 3, 69 (2021).
10 / 37

https://dftk.org
https://doi.org/10.21105/jcon.00069

Black-box algorithms: Adaptive damping1

DFT involves a fixed-point problem, solved by SCF iteration

ρ(n+1) = ρ(n) + αP −1
[
SCF step

(
ρ(n))− ρ(n)

]
How to choose mixing P −1 and damping α?
State-of-the-art: Guessing / trial and error (fixed damping)

⇒ Wasted computational time!

DFTK approach: adaptive damping automatically selects damping
Similar performance than best fixed damping, but fully black-box

1M. F. Herbst, A. Levitt. A robust and efficient line search for self-consistent field
iterations arXiv 2109.14018. 11 / 37

https://arxiv.org/abs/2109.14018
https://arxiv.org/abs/2109.14018

Black-box algorithms: LDOS mixing2

Long-standing problem: Suitable mixing P −1 for inhomogeneous systems
E.g. metal+insulator, catalytic surfaces, . . .

State-of-the-art: local Thomas-Fermi-von Weizsäcker mixing (TFW)1

DFTK approach: LDOS mixing automatically interpolates between
Kerker mixing (in the metallic region) and no mixing (insulating region)

⇒ Parameter-free and black-box

1D. Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. 64, 121101 (2001).
2M. F. Herbst, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).

12 / 37

https://doi.org/10.1103/physrevb.64.121101
https://doi.org/10.1088/1361-648X/abcbdb

Rigorous error analysis: First results1

Γ XX WW KK ΓΓ LL UU WW LL K|U X
−0.2

−0.1

0.0

0.1

0.2

Fully guaranteed error bounds for band structures
This case: Reduced Kohn-Sham model
Captures basis set error, floating-point error, convergence error

Recent work also considers others quantities of interest2:
E.g. densities and forces

1M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. 224, 227 (2020).
2E. Cancès, G. Dusson, G. Kemlin, A. Levitt. Practical error bounds for properties in

plane-wave electronic structure calculations arXiv 2111.01470.
13 / 37

https://doi.org/10.1039/D0FD00048E
https://arxiv.org/abs/2111.01470
https://arxiv.org/abs/2111.01470

Contents

1 Algorithmic differentiation

2 Differentiating DFT simulations

3 Implementation in DFTK

4 Outlook

14 / 37

How does algorithmic differentiation (AD) work?
function F(x)

y1 = x[1] + x[2] # F1 = sum
y2 = 2 * p # F2 = double
return y2

end

Goal: Compute derivative of this code

Function F : R2 → R with F (x) = double(sum(x1, x2))

Derivative at x̃ is characterised by its Jacobian matrix

[JF (x̃)]ij =
(

∂F

∂x

∣∣∣∣
x=x̃

)
ij

= ∂Fi

∂xj

∣∣∣∣∣
x=x̃

Finite differences: Simple, one column at a time:

[JF (x̃)]:,j = F (x̃ + αej) − F (x̃)
α

(with ei unit vectors)

⇒ Inaccurate and slow (O(N) times primal cost)
15 / 37

Chain rule to the rescue!
function F(x)

y1 = x[1] + x[2] # F1 = sum
y2 = 2 * p # F2 = double
return y2

end

F (x) = double(sum(x1, x2))

“double” and “sum” are simple and frequent primitives
⇒ Key idea of AD:

Compose the derivative of F from the Jacobians of primitives

Assumed to be known and already implemented

Use chain rule as glue, e.g. for a Jacobian element at x̃:

∂Fi

∂xj
= ∂double(a)

∂a

(
∂sum(c, d)

∂c

∂x1
∂xj

+ ∂sum(c, d)
∂d

∂x2
∂xj

)

More compact: eT
i JF ej = eT

i JdoubleJsumej

Note: Jdouble is needed at sum(x̃1, x̃2)
16 / 37

Forward-mode algorithmic differentiation

function F(x)
y1 = x[1] + x[2] # F1 = sum
y2 = 2 * p # F2 = double
return y2

end

F (x) = double(sum(x1, x2))
eT

i JF ej = eT
i JdoubleJsumej

Forward-diff: Evaluate in order with primal F :
1 Set y0 = (x1, x2), ẏ0 = ej

2 Compute y1 = sum(y0) and ẏ1 = Jsum(y0)ẏ0

3 Compute y2 = double(y1) and ẏ2 = Jdouble(y1)ẏ1

4 Obtain F (x1, x2) as y2 and [JF]:,j = ẏ2

⇒ Again one column of JF at a time

Implementation: Numbers → dual numbers

Vectorisation & other tricks: Usually faster than finite diff.

But: Still O(N) times primal cost
17 / 37

Optimal cost for differentiation (1)
function F(x)

y1 = x[1] + x[2] # F1 = sum
y2 = 2 * p # F2 = double
return y2

end

F (x) = double(sum(x1, x2))
eT

i JF ej = eT
i JdoubleJsumej

Proposition
If f : RN → R is a differentiable function, computing ∇f = Jf is
asymptotically not more expensive than f itself.

⇒ This is violated for finite diff and forward diff.

Let’s try to be more clever:
We could write F (x) = bT Ax for appropriate (sparse) A, b

Equivalent formulation: F (x) = (AT b)T x

Differentiate that: ∇F = AT b ⇒ costs the same as F .

To generalise this idea note that (for scalar functions)
F (x) = bT JF x + O(x2) 18 / 37

Optimal cost for differentiation (2)
function F(x)

y1 = x[1] + x[2] # F1 = sum
y2 = 2 * p # F2 = double
return y2

end

F (x) = double(sum(x1, x2))
eT

i JF ej = eT
i JdoubleJsumej

Let’s try to be more clever:
We could write F (x) = bT Ax for appropriate (sparse) A, b

Equivalent formulation: F (x) = (AT b)T x

Differentiate that: ∇F = AT b ⇒ costs the same as F .

To generalise this idea note that (for scalar functions)

F (x) = bT JF x + O(x2) with b = e1 = 1

⇒ Focus on computing adjoint of Jacobian:

eT
i JF ej =

(
JT

F ei

)T
ej =

(
JT

sumJT
doubleei

)T
ej

19 / 37

Adjoint-mode algorithmic differentiation

function F(x)
y1 = x[1] + x[2] # F1 = sum
y2 = 2 * p # F2 = double
return y2

end

F (x) = double(sum(x1, x2))

eT
i JF ej =

(
JT

sumJT
doubleei

)T
ej

Adjoint-mode AD: Derivative in reverse instruction order.
Forward pass:

1 Set y0 = (x1, x2)
2 Compute y1 = sum(y0) and store it
3 Compute y2 = double(y1) and store it

Reverse pass:
1 Set ȳ2 = ei

2 Compute ȳ1 = [Jdouble(y1)]T ȳ2

3 Compute ȳ0 = [Jsum(y0)]T ȳ1

Obtain [JF]i,: as ȳT
0 =⇒ One row at a time

20 / 37

Adjoint-mode algorithmic differentiation (2)

Given f : RN → R there is only one ei = 1

⇒ Only one reverse pass computes full gradient ∇f

⇒ O(1) times primal cost
Many names:

Adjoint trick, back propagation, reverse-mode AD

Some difficulties / challenges:
Reverse control flow required!

(Hurts your heads sometimes)

Storage / memory costs

All mutation is bad . . .

One has to be a bit more clever for iterative algorithms . . .
Let’s look at the SCF case next.

21 / 37

Contents

1 Algorithmic differentiation

2 Differentiating DFT simulations

3 Implementation in DFTK

4 Outlook

22 / 37

Properties and derivatives of SCFs
SCF fixed-point problem in density matrix P

0 = f(P, λ) = fFD
(
Hλ(P)

)
− P

with
λ: Parameters (for simplicity: both external & neural net)

fFD: Fermi-Dirac function

Hλ: Non-linear Kohn-Sham Hamiltonian

Defines implicit function P (λ) for density matrix

Quantities of interest:
dA(P)

dλ
= ∂A

∂λ
+ ∂A

∂P

∂P

∂λ

Forces: A = E, λ = R (atomic displacement)

Polarisability: A = dipole moment, λ = E (electric field)
23 / 37

Hellmann-Feynman theorem

dA(P)
dλ

= ∂A

∂λ
+ ∂A

∂P

∂P

∂λ

Special case of A = E

Recall P∗ = argmin E(P) ⇒ ∂E

∂P

∣∣∣∣
P∗

= 0

Hellmann-Feynman theorem

dE

dλ

∣∣∣∣
∗

= ∂E

∂λ

∣∣∣∣
∗

First energy derivatives are (comparatively) easy!

24 / 37

Response theory (1)

If A ̸= E we need ∂P
∂λ

Consider at λ = λ∗ and corresponding P∗ and H∗:

0 = ∂

∂λ

[
fFD

(
Hλ(P)

)
− P

]∣∣∣∣
∗

= f ′
FD(H∗) · ∂Hλ

∂λ

∣∣∣∣∣
∗

+ ∂P

∂λ

∣∣∣∣
∗

· ∂

∂P

[
fFD

(
Hλ(P)

)
− P

]∣∣∣
∗

= f ′
FD(H∗) · ∂Hλ

∂λ

∣∣∣∣∣
∗

+ ∂P

∂λ

∣∣∣∣
∗

·
[
f ′

FD(H∗) · Kλ∗(P∗) − I
]

= χ0(H∗) · ∂Hλ

∂λ

∣∣∣∣∣
∗

− ∂P

∂λ

∣∣∣∣
∗

·
[
I − χ0(H∗) · Kλ∗(P∗)

]

where Kλ∗ = ∂Hλ∗

∂P
, χ0(H∗) = f ′

FD(H∗)

25 / 37

Response theory (2): Sternheimer equation

0 = χ0(H∗) · ∂Hλ

∂λ

∣∣∣∣
∗

− ∂P

∂λ

∣∣∣
∗

·
[
I − χ0(H∗) · Kλ∗ (P∗)

]

Rearrange:

∂P

∂λ

∣∣∣∣
∗

=
[
I − χ0(H∗)Kλ∗(P∗)

]−1
χ0

∂Hλ

∂λ

∣∣∣∣∣
∗

= −
[
Kλ∗(P∗) + Ω(H∗)

]−1 ∂Hλ

∂λ

∣∣∣∣∣
∗

where Ω(H∗) = −
[
χ0(H∗)

]−1

Sternheimer equation (implicit differentiation)

26 / 37

Example: Computing polarisabilities
Homogeneous electric field λ = E along x-direction

Cubic cell (length Lx)

Hamiltonian HE(P) = HDFT(P) − E(x − Lx/2)

Perturbation ∂HE

∂E

∣∣∣
∗

= (x − Lx/2)

Dipole moment:

µ(P) =
∫

Ω
(x − Lx/2)ρ(r) dr, ρ = diag(P)

Polarisability dµ

dE
= ∂µ

∂P

∂P

∂E

1 Solve SCF P∗ = H0(P∗) at zero field
2 Solve Sternheimer ∂P

∂E = −[K + Ω]−1 ∂HE

∂E
(implicit
differentiation)

3 Compute polarisability
27 / 37

Role of algorithmic differentiation
For electronic structure theory:

SCF is a frequent primitive

Code up SCF and Sternheimer for AD library once

⇒ AD library can invoke it as needed

⇒ User asks for arbitrary gradient, appropriate response problem
solved automatically

Adjoint-mode differentiation:
K + Ω is self-adjoint (i.e. one solver for both modes)

⇒ One Sternheimer solve per output parameter

E.g. for energy quantities one solve for all sensitivities

⇒ Supports large number of parameters & NN-based approaches

Additional goodies

E.g. support for higher derivatives, sparsification techniques
28 / 37

Contents

1 Algorithmic differentiation

2 Differentiating DFT simulations

3 Implementation in DFTK

4 Outlook

29 / 37

AD status in DFTK

Time investment:
Bachelor student, ≃12 weeks half-time (20h/week)

Some follow-up work and support from DFTK developers

Forward-mode status (ForwardDiff.jl):
DFT fully supported

Some polishing in user interface needed

Default approach for stresses

Adjoint-mode status (Zygote.jl):
ChainRules.jl: No hard commitment to a single AD tool

Limited to reduced models

Difficulties: Third-party C codes, program flow & mutation

Ongoing work . . .

30 / 37

Forward-mode AD with Hellman-Feynman

For stresses A = E, λ = L (unit cell vectors)

⇒ Hellmann-Feynman applies

Computing stresses:

Stress = 1
det(L)

∂E
[
P∗, (I + M) L

]
∂M

∣∣∣∣∣
M=0

In code1

scfres = self_consistent_field(basis) # Run SCF, get P*
L = basis.model.lattice

stress = 1/det(L) * ForwardDiff.gradient(M -> recompute_energy(scfres, (I + M) * L),
zero(L))

1Live code: https://github.com/JuliaMolSim/DFTK.jl/blob/master/src/postprocess/stresses.jl
31 / 37

https://github.com/JuliaMolSim/DFTK.jl/blob/master/src/postprocess/stresses.jl

DEMO

DEMO

Polarisabilities by algorithmic differentiation

https://docs.dftk.org/stable/examples/forwarddiff/

32 / 37

https://docs.dftk.org/stable/examples/forwarddiff/

Contents

1 Algorithmic differentiation

2 Differentiating DFT simulations

3 Implementation in DFTK

4 Outlook

33 / 37

Conclusion
Data-enhanced methods: Need for unusual gradients

Exploration of such methods has just started

⇒ Flexible differentiable codes are key

Size of parameter space requires adjoint-mode AD

Practical challenges (program runs in reverse!)

⇒ Best framework not clear

DFTK : Initial support for forward & reverse AD
Profit from composable ecosystem:

AD is a side effect (DFTK not written for AD)
No full buy-in into a single AD framework.

We are not ML people: Happy for any input!
34 / 37

Opportunities to learn more . . .

RWTH workshop:
“Introduction to the Julia programming language”

17th and 18th February 2022 (online & open for everyone)
⇒ https://michael-herbst.com/learn-julia

DFTK school 2022 (with E. Cancès, A. Levitt):
“Numerical methods for DFT simulations”

29–31 August 2022 at Sorbonne Université, Paris
Centred around DFTK and its multidisciplinary philosophy
Grounds-up introduction of electronic structure theory,
mathematical background, numerical methods, implementation
Applications in method development & simulations

⇒ https://school2022.dftk.org
35 / 37

https://michael-herbst.com/learn-julia
https://school2022.dftk.org

Acknowledgements https://michael-herbst.com/slides/gdr-rest-ml

Antoine Levitt
Niklas Schmitz

Benjamin Stamm
Eric Cancès

all DFTK contributors

Summer of code

36 / 37

https://michael-herbst.com/slides/gdr-rest-ml

Questions? https://michael-herbst.com/slides/gdr-rest-ml

DFTK https://dftk.org,
https://school2022.dftk.org

https://michael-herbst.com/learn-julia

� mfherbst

� https://michael-herbst.com/blog

� herbst@acom.rwth-aachen.de

37 / 37

https://michael-herbst.com/slides/gdr-rest-ml
https://dftk.org
https://school2022.dftk.org
https://michael-herbst.com/learn-julia
https://github.com/mfherbst
https://michael-herbst.com/blog
herbst@acom.rwth-aachen.de

	Motivation and setting
	Algorithmic differentiation
	Differentiating DFT simulations
	Implementation in [height=1.4em]img/DFTK3to1.pdf
	Outlook
	A & Q
	

