DFTK: An algorithmically differentiable density-functional theory framework

Michael F. Herbst*, Antoine Levitt§ and Niklas Schmitz[†]

*Applied and Computational Mathematics, RWTH Aachen University ©CERMICS, École des Ponts and Inria Paris †Technische Universität Berlin

10 December 2021

Slides: https://michael-herbst.com/slides/gdr-rest-ml

Data-enhanced first-principle models

- DFT features favourable cost / accuracy ratio
- Limitations:
 - Error balancing
 - Band gap problem
 - Multi-reference situations
- Machine-learning models demonstrated predictive power
- Fraction of the cost of ground truth
- Limitations:
 - Vast amounts of data required
 - Transferability not always clear
- \Rightarrow Patch up DFT by learning additional physics from data?

Initial success stories in the literature

- 1D Kinetic energy functional¹
- Differentiable Hartree-Fock (Algopy, DiffiQult)²
- NN-based XC functional (finite differences)³
- Kohn-Sham as a regularizer (Jax, jax_dft)⁴
- NN-based XC functional (not fully self-consistent)⁵
- Arbitrary-order derivatives including CC (Jax, Quax)⁶
- NN-based XC functionals (pytorch, dqc, xcnn)⁷
- Restrictions:
 - (Mainly) Gaussian basis sets
 - Codes written from scratch
 - Build on one specific AD framework

- ²T. Tamayo-Mendoza, C. Kreisbeck, R. Lindh et. al.. ACS Cent. Sci. 4, 559 (2018)
- ³R. Nagai, A. Ryosuke and O. Sugino. npj Comp. Mater. 6, 43 (2020)
- ⁴L. Li, S. Hoyer, R. Pederson et. al.. Phys. Rev. Lett. 126, 36401 (2021)
- ⁵Y. Chen, L. Zhang, H. Wang et. al.. J. Chem. Theo. Comput. **17**, 170 (2021)
- ⁶A. Abbott, B. Abbott, J. Turney et. al.. J. Phys. Chem. Lett. 12, 3232 (2021)
- ⁷M. F. Kasim and S. M. Vinko. Phys. Rev. Lett. **127**, 126403 (2021)

¹J. Snyder, M. Rupp, K. Hansen, et. al.. Phys. Rev. Lett. 108, 253002 (2012).

Neural-enhanced DFT models

- \bullet DFT model defined by energy functional $E_{\rm DFT}(\lambda,P)$
 - External parameters λ : Atomic coordinates, field, etc.
 - $\bullet~$ Density matrix P
- Variational problem of DFT:

Given
$$\lambda$$
 : $\min_{P} E_{\mathsf{DFT}}(\lambda, P)$

⇒ Neural-enhanced energy functional:

$$E(\theta, \lambda, P) = E_{\mathsf{DFT}}(\lambda, P) + E_{\mathsf{NN}}(\theta, P)$$

- Target: Optimal parameters θ given some data (e.g. $\tilde{\lambda}_i, \tilde{E}_i$)
- \Rightarrow What is optimal?

Obtaining optimal parameters θ

• Based on data $(\tilde{\lambda}_i, \tilde{E}_i)$ setup loss function:

$$L(\theta) = \sum_{i} \left| \min_{P} \left(E(\theta, \tilde{\lambda}_{i}, P) \right) - \tilde{E}_{i} \right|^{p} + \cdots$$

- Now just optimise until $\nabla L = 0$, right?
 - **Issue 1:** Computing ∇L requires unusual derivatives
 - **Issue 2:** Physical losses may require higher-order derivatives
 - **Issue 3:** Dimension of θ is large, so ∇L needs to be efficient

Issue 1: Computing ∇L requires unusual derivatives

$$L(\theta) = \sum_{i} \left| \min_{P} \left(E(\theta, \tilde{\lambda}_{i}, P) \right) - \tilde{E}_{i} \right|^{p}$$

- P depends implicitly on θ (details later)
- ∇L requires $\frac{\partial P}{\partial \theta}$
- I.e. density (matrix) derivative wrt. XC/NN parameters
- Not commonly available in codes
- Associated response problem depends on XC and NN model
- \Rightarrow Combinatorial explosion
- ⇒ Manual implementation not feasible

Issue 2: Physical losses require higher-order derivatives

- Absolute energies are not physically interesting.
- Changes in the energy are what is interesting!
- Properties: How is the response to external perturbation?
- Examples:
 - Forces (response to atomic position shifts)
 - Dipole moment (response to electric field)
 - Elasticity (cross-response to lattice deformation)
 - ...
- \Rightarrow Come out as derivatives of the energy
- \Rightarrow Property-based losses may require higher-order derivatives.

Issue 3: Dimension of θ is large

$$L(\theta) = \sum_{i} \left| \min_{P} \left(E(\theta, \tilde{\lambda}_{i}, P) \right) - \tilde{E}_{i} \right|$$

- NN feature large number of parameters
- Dimension N>10000 not unusual for $\theta\in\mathbb{R}^N$
- Simple finite differences

$$(\nabla L)_i \simeq \frac{L(\theta + \alpha e_i) - L(\theta)}{\alpha}$$

- Scales as $\mathcal{O}(N)$ times the cost of evaluating the primal
 - In this example: energy functional E, i.e. cost of an SCF
- ⇒ Finite-differences does not cut it

Obtaining optimal parameters θ (2)

• Based on some data $(\tilde{\lambda}_i, \tilde{E}_i)$ setup loss function:

$$L(\theta) = \sum_{i} \left| \min_{P} \left(E(\theta, \tilde{\lambda}_{i}, P) \right) - \tilde{E}_{i} \right|^{p} + \cdots$$

- Now just optimise until $\nabla L = 0$, right?
 - **Issue 1:** Computing ∇L requires unusual derivatives **Issue 2:** Physical losses may require higher-order derivatives **Issue 3:** Dimension of θ is large, so ∇L needs to be efficient
- Need efficient automated way to obtain derivatives!

Obtaining optimal parameters θ (2)

• Based on some data $(\tilde{\lambda}_i, \tilde{E}_i)$ setup loss function:

$$L(\theta) = \sum_{i} \left| \min_{P} \left(E(\theta, \tilde{\lambda}_{i}, P) \right) - \tilde{E}_{i} \right|^{p} + \cdots$$

- Now just optimise until $\nabla L = 0$, right?
 - **Issue 1:** Computing ∇L requires unusual derivatives **Issue 2:** Physical losses may require higher-order derivatives **Issue 3:** Dimension of θ is large, so ∇L needs to be efficient
- Need efficient automated way to obtain derivatives!

Algorithmic differentiation (AD)

- Computational tool for computing arbitrary derivatives
- Given a differentiable code allows to compute derivative of
 - any output quantity (band gap, forces, ...) versus
 - *any input* (pseudo parameters, XC parameters, positions, temperature, ...)
- Adjoint-based methods cost asymptotically the same as function evaluation (details later)
- Usefulness goes well beyond data-enhanced DFT models:
 - Design of environment models, tight-binding, pseudopotentials
 - Sensitivity analysis & statistical inference (UQ)
 - Development of error estimates
- \Rightarrow Motivation for integration in 😽 DFTK

Density-functional toolkit¹ — https://dftk.org

- julia code for plane-wave DFT
- Fully composable with julia ecosystem:
 - Arbitrary precision (32bit, >64bit, ...)
 - Algorithmic differentiation
 - Numerical error control
 - \Rightarrow AD capabilities are a side effect
- Supports mathematical developments and scale-up to relevant applications
- *i.e.* reduced problems for rigorous analysis (1D, analytic potentials) *and* DFT on > 800 electrons
- \Rightarrow Build with multidisciplinary research in mind
- Avoids two-language problem: Just julia
- Only 2.5 years of development
- Only 7k lines of code
- \Rightarrow Low entrance barrier across backgrounds

¹M. F. Herbst, A. Levitt and E. Cancès. JuliaCon Proc., **3**, 69 (2021).

Black-box algorithms: Adaptive damping¹

• DFT involves a fixed-point problem, solved by SCF iteration

$$\rho^{(n+1)} = \rho^{(n)} + \alpha P^{-1} \left[\mathsf{SCF step} \left(\rho^{(n)} \right) - \rho^{(n)} \right]$$

- How to choose mixing P^{-1} and damping α ?
- State-of-the-art: Guessing / trial and error (fixed damping)
- \Rightarrow Wasted computational time!
 - OFTK approach: adaptive damping automatically selects damping
 - Similar performance than best fixed damping, but fully black-box

¹M. F. Herbst, A. Levitt. A robust and efficient line search for self-consistent field iterations arXiv 2109.14018.

Black-box algorithms: LDOS mixing²

- Long-standing problem: Suitable mixing P^{-1} for inhomogeneous systems
 - E.g. metal+insulator, catalytic surfaces, ...
- State-of-the-art: local Thomas-Fermi-von Weizsäcker mixing (TFW)¹
- **OFTK** approach: LDOS mixing automatically interpolates between Kerker mixing (in the metallic region) and no mixing (insulating region)

\Rightarrow Parameter-free and black-box

¹D. Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. **64**, 121101 (2001).

²M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

Rigorous error analysis: First results¹

- Fully guaranteed error bounds for band structures
- This case: Reduced Kohn-Sham model
- Captures basis set error, floating-point error, convergence error
- Recent work also considers others quantities of interest²:
- E.g. densities and forces

¹M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. 224, 227 (2020).

²E. Cancès, G. Dusson, G. Kemlin, A. Levitt. *Practical error bounds for properties in plane-wave electronic structure calculations* arXiv 2111.01470.

Contents

2 Differentiating DFT simulations

How does algorithmic differentiation (AD) work?

```
function F(x)
    y1 = x[1] + x[2] # F1 = sum
    y2 = 2 * p # F2 = double
    return y2
end
```

- Goal: Compute derivative of this code
- Function $F : \mathbb{R}^2 \to \mathbb{R}$ with $F(x) = \text{double}(\text{sum}(x_1, x_2))$
- Derivative at \tilde{x} is characterised by its Jacobian matrix

$$\left[J_F(\tilde{x})\right]_{ij} = \left(\left.\frac{\partial F}{\partial x}\right|_{x=\tilde{x}}\right)_{ij} = \left.\frac{\partial F_i}{\partial x_j}\right|_{x=\tilde{x}}$$

• Finite differences: Simple, one column at a time:

$$[J_F(\tilde{x})]_{:,j} = \frac{F(\tilde{x} + \alpha e_j) - F(\tilde{x})}{\alpha}$$

(with e_i unit vectors)

 \Rightarrow Inaccurate and slow ($\mathcal{O}(N)$ times primal cost)

Chain rule to the rescue!

function F(x)	
y1 = x[1] + x[2]	# F1 = sum
y2 = 2 * p	<pre># F2 = double</pre>
return y2	
end	

 $F(x) = \mathsf{double}(\mathsf{sum}(x_1, x_2))$

• "double" and "sum" are simple and frequent primitives

- \Rightarrow Key idea of AD:
 - Compose the derivative of F from the Jacobians of primitives
 - Assumed to be known and already implemented
 - Use chain rule as glue, e.g. for a Jacobian element at \tilde{x} :

$$\frac{\partial F_i}{\partial x_j} = \frac{\partial \mathsf{double}(a)}{\partial a} \left(\frac{\partial \mathsf{sum}(c,d)}{\partial c} \frac{\partial x_1}{\partial x_j} + \frac{\partial \mathsf{sum}(c,d)}{\partial d} \frac{\partial x_2}{\partial x_j} \right)$$

- More compact: $e_i^T J_F e_j = e_i^T J_{\text{double}} J_{\text{sum}} e_j$
- Note: J_{double} is needed at sum $(\tilde{x}_1, \tilde{x}_2)$

Forward-mode algorithmic differentiation

```
function F(x)
    y1 = x[1] + x[2] # F1 = sum
    y2 = 2 * p  # F2 = double
    return y2
end
```

 $F(x) = \mathsf{double}(\mathsf{sum}(x_1, x_2))$ $e_i^T J_F e_j = e_i^T J_{\mathsf{double}} J_{\mathsf{sum}} e_j$

• Forward-diff: Evaluate in order with *primal* F:

1 Set
$$y_0 = (x_1, x_2)$$
, $\dot{y}_0 = e_j$

2) Compute
$$y_1 = \mathsf{sum}(y_0)$$
 and $\dot{y}_1 = J_{\mathsf{sum}}(y_0)\dot{y}_0$

3) Compute
$$y_2 = \mathsf{double}(y_1)$$
 and $\dot{y}_2 = J_{\mathsf{double}}(y_1)\dot{y}_1$

$${old 0}$$
 Obtain $F(x_1,x_2)$ as y_2 and $[J_F]_{:,j}=\dot{y}_2$

- \Rightarrow Again one column of J_F at a time
 - Implementation: Numbers \rightarrow dual numbers
 - Vectorisation & other tricks: Usually faster than finite diff.
 - But: Still $\mathcal{O}(N)$ times primal cost

Optimal cost for differentiation (1)

```
function F(x)
    y1 = x[1] + x[2] # F1 = sum
    y2 = 2 * p  # F2 = double
    return y2
end
```

 $F(x) = \mathsf{double}(\mathsf{sum}(x_1, x_2))$ $e_i^T J_F e_j = e_i^T J_{\mathsf{double}} J_{\mathsf{sum}} e_j$

18/37

Proposition

If $f : \mathbb{R}^N \to \mathbb{R}$ is a differentiable function, computing $\nabla f = J_f$ is asymptotically not more expensive than f itself.

- \Rightarrow This is violated for finite diff and forward diff.
 - Let's try to be more clever:
 - We could write $F(x) = b^T A x$ for appropriate (sparse) A, b
 - Equivalent formulation: $F(x) = (A^T b)^T x$
 - Differentiate that: $\nabla F = A^T b \Rightarrow$ costs the same as F.
 - To generalise this idea note that (for scalar functions) $F(x) = b^T L_{T} x + O(x^2)$

Optimal cost for differentiation (2)

```
function F(x)
    y1 = x[1] + x[2]  # F1 = sum
    y2 = 2 * p  # F2 = double
    return y2
end
```

 $F(x) = \text{double}(\text{sum}(x_1, x_2))$ $e_i^T J_F e_j = e_i^T J_{\text{double}} J_{\text{sum}} e_j$

- Let's try to be more clever:
 - We could write $F(x) = b^T A x$ for appropriate (sparse) A, b
 - Equivalent formulation: $F(x) = (A^T b)^T x$
 - Differentiate that: $\nabla F = A^T b \Rightarrow$ costs the same as F.
- To generalise this idea note that (for scalar functions) $F(x) = b^T J_F x + O(x^2)$ with $b = e_1 = 1$
- \Rightarrow Focus on computing adjoint of Jacobian:

$$e_i^T J_F e_j = \left(J_F^T e_i\right)^T e_j = \left(J_{\mathsf{sum}}^T J_{\mathsf{double}}^T e_i\right)^T e_j$$

Adjoint-mode algorithmic differentiation

```
function F(x)
    y1 = x[1] + x[2] # F1 = sum
    y2 = 2 * p  # F2 = double
    return y2
end
```

$$F(x) = \mathsf{double}(\mathsf{sum}(x_1, x_2))$$
$$e_i^T J_F e_j = \left(J_{\mathsf{sum}}^T J_{\mathsf{double}}^T e_i\right)^T e_j$$

- Adjoint-mode AD: Derivative in reverse instruction order.
- Forward pass:
- Set y₀ = (x₁, x₂)
 Compute y₁ = sum(y₀) and store it
 Compute y₂ = double(y₁) and store it
 Reverse pass:

 Set y

 2 = e_i
 Compute y

 1 = [J_{double}(y₁)]^Ty

 Compute y

 1 = [J_{sum}(y₀)]^Ty

 Obtain [J_F]_i as y

 ^T₀ = One row at a time

Adjoint-mode algorithmic differentiation (2)

- Given $f:\mathbb{R}^N\to\mathbb{R}$ there is only one $e_i=1$
- \Rightarrow Only one reverse pass computes full gradient ∇f
- $\Rightarrow \mathcal{O}(1)$ times primal cost
 - Many names:
 - Adjoint trick, back propagation, reverse-mode AD
 - Some difficulties / challenges:
 - Reverse control flow required!
 - (Hurts your heads sometimes)
 - Storage / memory costs
 - All mutation is bad ...
 - One has to be a bit more clever for iterative algorithms
 - Let's look at the SCF case next.

Contents

2 Differentiating DFT simulations

Properties and derivatives of SCFs

• SCF fixed-point problem in density matrix \boldsymbol{P}

$$0 = f(P,\lambda) = f_{\mathsf{FD}}\Big(H^{\lambda}(P)\Big) - P$$

with

- λ : Parameters (for simplicity: both external & neural net)
- f_{FD} : Fermi-Dirac function
- H^{λ} : Non-linear Kohn-Sham Hamiltonian
- \bullet Defines implicit function $P(\lambda)$ for density matrix
- Quantities of interest:

$$\frac{dA(P)}{d\lambda} = \frac{\partial A}{\partial \lambda} + \frac{\partial A}{\partial P} \frac{\partial P}{\partial \lambda}$$

• Forces: A = E, $\lambda = R$ (atomic displacement)

• Polarisability: A = dipole moment, $\lambda = \mathcal{E}$ (electric field)

Hellmann-Feynman theorem

$$\frac{dA(P)}{d\lambda} = \frac{\partial A}{\partial \lambda} + \frac{\partial A}{\partial P} \frac{\partial P}{\partial \lambda}$$

- Special case of A = E
- Recall $P_* = \operatorname{argmin} E(P) \implies \left. \frac{\partial E}{\partial P} \right|_{P_*} = 0$
- Hellmann-Feynman theorem

$$\left.\frac{dE}{d\lambda}\right|_* = \left.\frac{\partial E}{\partial\lambda}\right|_*$$

• First energy derivatives are (comparatively) easy!

Response theory (1)

- If $A \neq E$ we need $\frac{\partial P}{\partial \lambda}$
- Consider at $\lambda = \lambda_*$ and corresponding P_* and H_* :

$$0 = \frac{\partial}{\partial\lambda} \left[f_{\mathsf{FD}} \Big(H^{\lambda}(P) \Big) - P \Big] \Big|_{*}$$

= $f'_{\mathsf{FD}}(H_{*}) \cdot \frac{\partial H^{\lambda}}{\partial\lambda} \Big|_{*} + \frac{\partial P}{\partial\lambda} \Big|_{*} \cdot \frac{\partial}{\partial P} \left[f_{\mathsf{FD}} \Big(H^{\lambda}(P) \Big) - P \Big] \Big|_{*}$
= $f'_{\mathsf{FD}}(H_{*}) \cdot \frac{\partial H^{\lambda}}{\partial\lambda} \Big|_{*} + \frac{\partial P}{\partial\lambda} \Big|_{*} \cdot \left[f'_{\mathsf{FD}}(H_{*}) \cdot \mathbf{K}^{\lambda_{*}}(P_{*}) - I \right]$
= $\chi_{0}(H_{*}) \cdot \frac{\partial H^{\lambda}}{\partial\lambda} \Big|_{*} - \frac{\partial P}{\partial\lambda} \Big|_{*} \cdot \left[I - \chi_{0}(H_{*}) \cdot \mathbf{K}^{\lambda_{*}}(P_{*}) \right]$

where
$$m{K}^{\lambda_*}=rac{\partial H^{\lambda_*}}{\partial P}$$
, $m{\chi}_0(H_*)=f_{\mathsf{FD}}'(H_*)$

Response theory (2): Sternheimer equation

$$0 = \boldsymbol{\chi}_0(H_*) \cdot \left. \frac{\partial H^{\lambda}}{\partial \lambda} \right|_* - \left. \frac{\partial P}{\partial \lambda} \right|_* \cdot \left[I - \boldsymbol{\chi}_0(H_*) \cdot \boldsymbol{K}^{\lambda_*}(P_*) \right]$$

• Rearrange:

$$\frac{\partial P}{\partial \lambda}\Big|_{*} = \left[I - \boldsymbol{\chi}_{0}(H_{*})\boldsymbol{K}^{\lambda_{*}}(P_{*})\right]^{-1} \boldsymbol{\chi}_{0} \left.\frac{\partial H^{\lambda}}{\partial \lambda}\right|_{*}$$
$$= -\left[\boldsymbol{K}^{\lambda_{*}}(P_{*}) + \boldsymbol{\Omega}(H_{*})\right]^{-1} \left.\frac{\partial H^{\lambda}}{\partial \lambda}\right|_{*}$$

where
$$oldsymbol{\Omega}(H_*) = - igl[oldsymbol{\chi}_0(H_*)igr]^{-1}$$

• Sternheimer equation (implicit differentiation)

Example: Computing polarisabilities

- Homogeneous electric field $\lambda = \mathcal{E}$ along x-direction
- Cubic cell (length L_x)
- Hamiltonian $H^{\mathcal{E}}(P) = H_{\mathsf{DFT}}(P) \mathcal{E}(x L_x/2)$

• Perturbation
$$\left. \frac{\partial H^{\mathcal{E}}}{\partial \mathcal{E}} \right|_{*} = (x - L_x/2)$$

• Dipole moment:

$$\mu(P) = \int_{\Omega} (x - L_x/2)\rho(r) \,\mathrm{d}r, \qquad \rho = \mathrm{diag}(P)$$

• Polarisability
$$\frac{d\mu}{d\mathcal{E}} = \frac{\partial\mu}{\partial P} \frac{\partial P}{\partial \mathcal{E}}$$

- Solve SCF $P_* = H^0(P_*)$ at zero field
- Solve Sternheimer
 $\frac{\partial P}{\partial \mathcal{E}} = -[\mathbf{K} + \mathbf{\Omega}]^{-1} \frac{\partial H^{\mathcal{E}}}{\partial \mathcal{E}}$ (implicit

 Compute polarisability

Role of algorithmic differentiation

- For electronic structure theory:
 - SCF is a frequent primitive
- Code up SCF and Sternheimer for AD library once
- \Rightarrow AD library can invoke it as needed
- ⇒ User asks for arbitrary gradient, appropriate response problem solved automatically
 - Adjoint-mode differentiation:
 - $\pmb{K} + \pmb{\Omega}$ is self-adjoint (i.e. one solver for both modes)
 - ⇒ One Sternheimer solve per *output* parameter
 - E.g. for energy quantities one solve for all sensitivities
 - ⇒ Supports large number of parameters & NN-based approaches
 - Additional goodies
 - E.g. support for higher derivatives, sparsification techniques

Contents

2 Differentiating DFT simulations

- Time investment:
 - Bachelor student, $\simeq 12$ weeks half-time (20h/week)
 - Some follow-up work and support from 🏶 DFTK developers
- Forward-mode status (ForwardDiff.jl):
 - DFT fully supported
 - Some polishing in user interface needed
 - Default approach for stresses
- Adjoint-mode status (Zygote.jl):
 - ChainRules.jl: No hard commitment to a single AD tool
 - Limited to reduced models
 - Difficulties: Third-party C codes, program flow & mutation
 - Ongoing work ...

Forward-mode AD with Hellman-Feynman

- For stresses A = E, $\lambda = L$ (unit cell vectors)
- ⇒ Hellmann-Feynman applies
 - Computing stresses:

$$\mathsf{Stress} = \frac{1}{\mathsf{det}(\mathbf{L})} \left. \frac{\partial E[P_*, (I + \mathbf{M}) \mathbf{L}]}{\partial \mathbf{M}} \right|_{\mathbf{M} = 0}$$

• In julia code1

¹Live code: https://github.com/JuliaMolSim/DFTK.jl/blob/master/src/postprocess/stresses.jl

DEMO

Polarisabilities by algorithmic differentiation

https://docs.dftk.org/stable/examples/forwarddiff/

Contents

2 Differentiating DFT simulations

Conclusion

- Data-enhanced methods: Need for unusual gradients
- Exploration of such methods has just started
- \Rightarrow Flexible differentiable codes are key
 - Size of parameter space requires adjoint-mode AD
 - Practical challenges (program runs in reverse!)
- ⇒ Best framework not clear
 - FTK: Initial support for forward & reverse AD
 - Profit from composable julia ecosystem:
 - AD is a side effect (**OFTK** not written for AD)
 - No full buy-in into a single AD framework.
 - We are not ML people: Happy for any input!

Opportunities to learn more ...

RWTH julia workshop:

"Introduction to the Julia programming language"

- 17th and 18th February 2022 (online & open for everyone)
- \Rightarrow https://michael-herbst.com/learn-julia

DFTK school 2022 *(with E. Cancès, A. Levitt)*: "Numerical methods for DFT simulations"

- 29-31 August 2022 at Sorbonne Université, Paris
- Centred around 🚯 DFTK and its multidisciplinary philosophy
- Grounds-up introduction of electronic structure theory, mathematical background, numerical methods, implementation
- Applications in method development & simulations
- \Rightarrow https://school2022.dftk.org

Acknowledgements

Antoine Levitt Niklas Schmitz

Benjamin Stamm Eric Cancès

all DFTK contributors

European Research Council Established by the European Commission

Summer of code

🙀 DFTK https://dftk.org, https://school2022.dftk.org julia https://michael-herbst.com/learn-julia

mfherbst \Box

- https://michael-herbst.com/blog Q
- - herbst@acom.rwth-aachen.de