Automatic differentiation efforts in TFTK

Michael F. Herbst* and Niklas Schmitz[†]

*Applied and Computational Mathematics, RWTH Aachen University †TU Berlin

7 October 2021

Slides: https://michael-herbst.com/talks/2021.10.07_dftk_ad_update.pdf

Contents

- Introduction and setting
- Practical challenges
- Outlook

Modelling electronic structures

- Seek variational energy: $\min E(P)$
- But: Experiments can't measure energies!
- Changes in the energy are what is interesting
- Key question: How is the response to external perturbation?
- Examples:

Introduction and setting

•00000000

- Forces (response to atomic position shifts)
- Dipole moment (response to electric field)
- Elasticity (cross-response to lattice deformation)
- Often directly measurable (or closely linked)

Modelling electronic structures

- \bullet Seek variational energy: $\min_P E(P)$
- But: Experiments can't measure energies!
- Changes in the energy are what is interesting
- Key question: How is the response to external perturbation?
- Examples:
 - Forces (response to atomic position shifts)
 - Dipole moment (response to electric field)
 - Elasticity (cross-response to lattice deformation)
 - ...
- Often directly measurable (or closely linked)
- ⇒ We care very much about derivatives

Modelling electronic structures

- \bullet Seek variational energy: $\min_P E(P)$
- But: Experiments can't measure energies!
- Changes in the energy are what is interesting
- Key question: How is the response to external perturbation?
- Examples:
 - Forces (response to atomic position shifts)
 - Dipole moment (response to electric field)
 - Elasticity (cross-response to lattice deformation)
 - ...
- Often directly measurable (or closely linked)
- ⇒ We care very much about derivatives

Need for automatic derivatives: Practical argument

- Many (many) models
- Need derivatives to judge usefulness of method
- Deriving / implementing analytic derivatives takes time . . .
- ...so does fixing the bugs
- Even standard codes don't have all relevant derivatives
- Standard fallback: Finite differences

Need for AD: New and improved methods

- Any model building needs error control ...
- Error control needs derivatives (sensitivities)
- Data-driven model construction
- Scientific machine learning
- E.g. neural-network functionals / pseudos / . . .
- Challenge: Requires unusual derivatives:
 - Density vs. XC parameters
 - Atomisation energy vs. pseudo parameters
 - ...

Property computation

ullet SCF fixed-point problem in density matrix P

$$0 = f(P, \lambda) = f_{\mathsf{FD}}(H^{\lambda}(P)) - P$$

with

- ullet λ : Parameter of external perturbation
- f_{FD}: Fermi-Dirac function
- \bullet H^{λ} : Non-linear Kohn-Sham Hamiltonian
- Defines implicit function $P(\lambda)$ for density matrix
- Quantities of interest:

$$\frac{dQ(P)}{d\lambda} = \frac{\partial Q}{\partial \lambda} + \frac{\partial Q}{\partial P} \frac{\partial P}{\partial \lambda}$$

- Forces: Q = E, $\lambda = R$ (atomic displacement)
- ullet Polarisability: Q= dipole moment, $\lambda=\mathcal{E}$ (electric field)

A & Q

$$\frac{dQ(P)}{d\lambda} = \frac{\partial Q}{\partial \lambda} + \frac{\partial Q}{\partial P} \frac{\partial P}{\partial \lambda}$$

- Special case of Q=E
- Recall $P_* = \operatorname{argmin} E(P) \quad \Rightarrow \quad \frac{\partial E}{\partial P} \Big|_{P_*} = 0$
- Hellmann-Feynman theorem

$$\left. \frac{dE}{d\lambda} \right|_* = \left. \frac{\partial E}{\partial \lambda} \right|_*$$

First energy derivatives are (comparatively) easy!

Response theory (1)

- If $Q \neq E$ we need $\frac{\partial P}{\partial \lambda}$
- Consider at $\lambda = \lambda_*$ and corresponding P_* and H_* :

$$0 = \frac{\partial}{\partial \lambda} \left[f_{\mathsf{FD}} \Big(H^{\lambda}(P) \Big) - P \right] \Big|_{*}$$

$$= f'_{\mathsf{FD}}(H_{*}) \cdot \frac{\partial H^{\lambda}}{\partial \lambda} \Big|_{*} + \frac{\partial P}{\partial \lambda} \Big|_{*} \cdot \frac{\partial}{\partial P} \left[f_{\mathsf{FD}} \Big(H^{\lambda}(P) \Big) - P \right] \Big|_{*}$$

$$= f'_{\mathsf{FD}}(H_{*}) \cdot \frac{\partial H^{\lambda}}{\partial \lambda} \Big|_{*} + \frac{\partial P}{\partial \lambda} \Big|_{*} \cdot \left[f'_{\mathsf{FD}}(H_{*}) \cdot \mathbf{K}^{\lambda_{*}}(P_{*}) - I \right]$$

where
$$\boldsymbol{K}^{\lambda_*} = \frac{\partial H^{\lambda_*}}{\partial P}$$

000000000

Response theory (2): Sternheimer equation

$$0 = f_{\mathsf{FD}}'(H_*) \cdot \left. \frac{\partial H^{\lambda}}{\partial \lambda} \right| + \left. \frac{\partial P}{\partial \lambda} \right|_* \cdot \left[f_{\mathsf{FD}}'(H_*) \cdot \boldsymbol{K}^{\lambda_*}(P_*) - I \right]$$

Rearrange:

$$\frac{\partial P}{\partial \lambda}\Big|_{*} = -\left[f'_{\mathsf{FD}}(H_{*})\boldsymbol{K}^{\lambda_{*}}(P_{*}) - I\right]^{-1}f'_{\mathsf{FD}}(H_{*})\left.\frac{\partial H^{\lambda}}{\partial \lambda}\right|_{*}$$

$$= -\left[\boldsymbol{K}^{\lambda_{*}}(P_{*}) + \boldsymbol{\Omega}(H_{*})\right]^{-1}\left.\frac{\partial H^{\lambda}}{\partial \lambda}\right|_{*}$$

where
$$\Omega(H_*) = -ig(f'_{\mathsf{FD}}(H_*)ig)^{-1}$$

Sternheimer equation (implicit differentiation)

000000000

Example: Computing polarisabilities

- Homogeneous electric field $\lambda = \mathcal{E}$ along x-direction
- Cubic cell (length L_x)
- Hamiltonian $H^{\mathcal{E}}(P) = H_{\mathsf{DFT}}(P) \mathcal{E}(x L_r/2)$
- Perturbation $\frac{\partial H^{\mathcal{E}}}{\partial \mathcal{E}}\Big|_{x} = (x L_x/2)$
- Dipole moment:

$$\mu(P) = \int_{\Omega} (x - L_x/2)\rho(r) dr, \qquad \rho = \text{diag}(P)$$

- $\bullet \ \, \text{Polarisability} \, \, \frac{d\mu}{d\mathcal{E}} = \frac{\partial \mu}{\partial P} \frac{\partial P}{\partial \mathcal{E}} \,$
- Solve SCF $P_* = H^0(P_*)$ at zero field
- $m{2}$ Solve Sternheimer $rac{\partial P}{\partial \mathcal{E}} = -[m{K} + m{\Omega}]^{-1} rac{\partial H^{\mathcal{E}}}{\partial \mathcal{E}}$ (implicit differentiation)
- Compute polarisability

Role of automatic differentiation

- Universal building blocks:
 - Primal pass: Solve SCF
 - *f*-rule: Solve Sternheimer
- ⇒ Code up once, use AD to take care of repetitive glue
 - Adjoint-mode is goal:
 - Faster for larger number of parameters (neural net)
 - Support for higher derivatives
 - Sparsification techniques
 - Adjoint-mode is feasible:
 - ullet $K+\Omega$ is self-adjoint
 - \Rightarrow SCF *r*-rule: Adjoint-solve Sternheimer
 - Let's look at things in practice . . .

Contents

- Introduction and setting
- Practical challenges
- Outlook

AD scenarios considered

- Forward-mode AD (ForwardDiff.jl)
 - Stresses via Hellmann-Feynman
 - Polarisability via implicit differentiation of SCF
- Adjoint-mode AD (Zygote.jl)
 - Stresses via Hellmann-Feynman
 - XC-functional gradients

Forward-mode AD with Hellman-Feynman

- For stresses Q=E, $\lambda=L$ (unit cell vectors)
- ⇒ Hellmann-Feynman applies
 - Computing stresses:

$$\mathsf{Stress} = \frac{1}{\mathsf{det}(\mathbf{L})} \left. \frac{\partial E[P_*, (\mathbf{I} + \mathbf{M}) \, \mathbf{L}]}{\partial \mathbf{M}} \right|_{\mathbf{M} = 0}$$

• In julia code:

Stresses using ForwardDiff

ForwardDiff.jl workarounds & LIVE DEMO

Status of reverse-mode AD

ChainRules.jl workarounds & LIVE DEMO

AD scenarios considered

- Forward-mode AD (ForwardDiff.jl)
 - Stresses via Hellmann-Feynman work
 - Polarisability via implicit differentiation of SCF works
- Adjoint-mode AD (Zygote.jl)
 - Stresses via Hellmann-Feynman work/WIP
 - XC-functional gradients WIP

Strategies learned

- ForwardDiff.jl
 - ensure array-allocations can hold Dual numbers
 - custom overloads for non-Julia code (FFTW, spglib, ...)
- Zygote.jl with ChainRules.jl
 - avoid mutation
 - avoid indexing into large arrays
 - generating rrules from alternative primals
 - generating rrules from frules
 - general rrules for NLsolve.jl, IterativeSolvers.jl

Outlook

•00

Contents

- Introduction and setting
- Practical challenges
- Outlook

Conclusion

Introduction and setting

- We got the building blocks for 1st derivatives
- The challenge now is gluing it all together
- TODO:
 - Hide the details
 - Minimise code duplication
 - Optimise performance
 - Fix the details (symmetries, external libraries . . .)
 - Higher derivatives?
- Happy for any input!

What next?

- Sensitivities:
 - Structural, alchemical, model parameters
 - Band gaps, atomisation energies, forces, geo-opt
- Data-driven design:
 - DFT models
 - Pseudopotentials
 - Tight-binding models

Acknowledgements

Introduction and setting

https://michael-herbst.com/talks/2021.10.07_dftk_ad_update.pdf

Antoine Levitt

Benjamin Stamm Fric Cancès

Questions?

Introduction and setting

https://michael-herbst.com/talks/2021.10.07_dftk_ad_update.pdf

The image of the property of t

- mfherbst
- https://michael-herbst.com/blog
- herbst@acom.rwth-aachen.de
- niklasschmitz
- niklasschmitz_
- n.schmitz@tu-berlin.de