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Modelling electronic structures

Seek variational energy: min
P

E(P )

But: Experiments can’t measure energies!

Changes in the energy are what is interesting
Key question: How is the response to external perturbation?
Examples:

Forces (response to atomic position shifts)
Dipole moment (response to electric field)
Elasticity (cross-response to lattice deformation)
. . .

Often directly measurable (or closely linked)

⇒ We care very much about derivatives
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Need for automatic derivatives: Practical argument

Many (many) models
Need derivatives to judge usefulness of method
Deriving / implementing analytic derivatives takes time . . .
. . . so does fixing the bugs

Even standard codes don’t have all relevant derivatives
Standard fallback: Finite differences
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Need for AD: New and improved methods

Any model building needs error control . . .
Error control needs derivatives (sensitivities)

Data-driven model construction
Scientific machine learning
E.g. neural-network functionals / pseudos / . . .

Challenge: Requires unusual derivatives:
Density vs. XC parameters
Atomisation energy vs. pseudo parameters
. . .
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Property computation

SCF fixed-point problem in density matrix P

0 = f(P, λ) = fFD
(
Hλ(P )

)
− P

with
λ: Parameter of external perturbation
fFD: Fermi-Dirac function
Hλ: Non-linear Kohn-Sham Hamiltonian

Defines implicit function P (λ) for density matrix
Quantities of interest:

dQ(P )
dλ

= ∂Q

∂λ
+ ∂Q

∂P

∂P

∂λ

Forces: Q = E, λ = R (atomic displacement)
Polarisability: Q = dipole moment, λ = E (electric field)
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Hellmann-Feynman theorem

dQ(P )
dλ

= ∂Q

∂λ
+ ∂Q

∂P

∂P

∂λ

Special case of Q = E

Recall P∗ = argmin E(P ) ⇒ ∂E

∂P

∣∣∣∣
P∗

= 0

Hellmann-Feynman theorem

dE

dλ

∣∣∣∣
∗

= ∂E

∂λ

∣∣∣∣
∗

First energy derivatives are (comparatively) easy!
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Response theory (1)

If Q 6= E we need ∂P
∂λ

Consider at λ = λ∗ and corresponding P∗ and H∗:

0 = ∂

∂λ

[
fFD

(
Hλ(P )

)
− P

]∣∣∣∣
∗

= f ′FD(H∗) ·
∂Hλ

∂λ

∣∣∣∣∣
∗

+ ∂P

∂λ

∣∣∣∣
∗
· ∂
∂P

[
fFD

(
Hλ(P )

)
− P

]∣∣∣
∗

= f ′FD(H∗) ·
∂Hλ

∂λ

∣∣∣∣∣
∗

+ ∂P

∂λ

∣∣∣∣
∗
·
[
f ′FD(H∗) ·Kλ∗(P∗)− I

]

where Kλ∗ = ∂Hλ∗

∂P
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Response theory (2): Sternheimer equation

0 = f ′FD(H∗) · ∂H
λ

∂λ

∣∣∣∣
∗

+ ∂P

∂λ

∣∣∣
∗

·
[
f ′FD(H∗) · Kλ∗ (P∗) − I

]
Rearrange:

∂P

∂λ

∣∣∣∣
∗

= −
[
f ′FD(H∗)Kλ∗(P∗)− I

]−1
f ′FD(H∗)

∂Hλ

∂λ

∣∣∣∣∣
∗

= −
[
Kλ∗(P∗) + Ω(H∗)

]−1 ∂Hλ

∂λ

∣∣∣∣∣
∗

where Ω(H∗) = −
(
f ′FD(H∗)

)−1

Sternheimer equation (implicit differentiation)
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Example: Computing polarisabilities
Homogeneous electric field λ = E along x-direction
Cubic cell (length Lx)

Hamiltonian HE(P ) = HDFT(P )− E(x− Lx/2)
Perturbation ∂HE

∂E

∣∣∣
∗

= (x− Lx/2)
Dipole moment:

µ(P ) =
∫

Ω
(x− Lx/2)ρ(r) dr, ρ = diag(P )

Polarisability dµ

dE
= ∂µ

∂P

∂P

∂E

1 Solve SCF P∗ = H0(P∗) at zero field
2 Solve Sternheimer ∂P

∂E = −[K + Ω]−1 ∂HE
∂E

(implicit
differentiation)

3 Compute polarisability
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Role of automatic differentiation
Universal building blocks:

Primal pass: Solve SCF
f -rule: Solve Sternheimer

⇒ Code up once, use AD to take care of repetitive glue

Adjoint-mode is goal:
Faster for larger number of parameters (neural net)
Support for higher derivatives
Sparsification techniques

Adjoint-mode is feasible:
K + Ω is self-adjoint

⇒ SCF r -rule: Adjoint-solve Sternheimer

Let’s look at things in practice . . .
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AD scenarios considered

Forward-mode AD (ForwardDiff.jl)
Stresses via Hellmann-Feynman
Polarisability via implicit differentiation of SCF

Adjoint-mode AD (Zygote.jl)
Stresses via Hellmann-Feynman
XC-functional gradients
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Forward-mode AD with Hellman-Feynman

For stresses Q = E, λ = L (unit cell vectors)
⇒ Hellmann-Feynman applies

Computing stresses:

Stress = 1
det(L)

∂E
[
P∗, (I + M) L

]
∂M

∣∣∣∣∣
M=0

In code:

scfres = self_consistent_field(basis) # Run SCF, get P*
L = basis.model.lattice

stress = 1/det(L) * ForwardDiff.gradient(M -> recompute_energy(scfres, (I + M) * L),
zero(L))
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Stresses using ForwardDiff

ForwardDiff.jl workarounds & LIVE DEMO
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Status of reverse-mode AD

ChainRules.jl workarounds & LIVE DEMO
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AD scenarios considered

Forward-mode AD (ForwardDiff.jl)
Stresses via Hellmann-Feynman work
Polarisability via implicit differentiation of SCF works

Adjoint-mode AD (Zygote.jl)
Stresses via Hellmann-Feynman work/WIP
XC-functional gradients WIP
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Strategies learned

ForwardDiff.jl
ensure array-allocations can hold Dual numbers
custom overloads for non-Julia code (FFTW, spglib, ...)

Zygote.jl with ChainRules.jl
avoid mutation
avoid indexing into large arrays
generating rrules from alternative primals
generating rrules from frules
general rrules for NLsolve.jl, IterativeSolvers.jl
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Conclusion

We got the building blocks for 1st derivatives
The challenge now is gluing it all together

TODO:
Hide the details . . .
Minimise code duplication
Optimise performance
Fix the details (symmetries, external libraries . . . )
Higher derivatives?

Happy for any input!
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What next?

Sensitivities:
Structural, alchemical, model parameters
Band gaps, atomisation energies, forces, geo-opt

Data-driven design:
DFT models
Pseudopotentials
Tight-binding models
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Questions?
https://michael-herbst.com/talks/2021.10.07_dftk_ad_update.pdf

DFTK https://dftk.org
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