Towards error-controlled, black-box density-functional theory methods

Michael F. Herbst*, Antoine Levitt

*Applied and Computational Mathematics, RWTH Aachen University https://michael-herbst.com

21 July 2021 Slides: https://michael-herbst.com/slides/vmd2021

Motivation: Computational challenges

- Virtual materials design ⇒ millions of calculations:
 - design space search, data generation for surrogates, ...
- Key requirements:
 - Automation (saves human time)
 - Efficiency (saves computer time)
 - Reliability (saves computer time & human time)
- State of the art:
 - Many parameters to choose (algorithms, tolerances, models)
 - Choice by experience
 - Workflow success rate: $\simeq 50\%^1$
 - Little rigorous error control (basically trial and error)

¹Z. Ulissi, private communication in ARPAE differentiate group seminar. Dec 2020.

Some questions and hardly explored techniques

- Leading questions:
 - Do we need the same accuracy everywhere?
 - Where can mathematical insight improve reliability?
 - Can we tune between accuracy and runtime using only a single parameter?
- Error estimation (a posteriori, UQ, sensitivity analysis)
 - ⇒ Error-guided automatic selection of parameters
- Numerical analysis of simulation algorithms
 - ⇒ Towards black-box algorithms
- Multi-fidelity methods
 - ⇒ Combination of results of different quality (functionals, numerics, corrections, . . .)
- ⇒ Multidisciplinary research setting

Density-functional toolkit (DFTK)¹

- https://dftk.org
- 2 years of development
- Open-source julia code
- Building on **julia** ecosystem
- Supports mathematical developments and scale-up to regime relevant to applications
- Low entrance barrier: Only 6k lines of code!

¹M. F. Herbst, A. Levitt and E. Cancès. JuliaCon Proc., 3, 69 (2021).

🌄 DFTK — https://dftk.org

- Documentation and examples: https://docs.dftk.org
- Ground state (LDA, GGA) and a bit of response theory
- Compose your model (e.g. analytic potentials, 1D / 2D, ...)
- Arbitrary floating point type / reduced precision
- Automatic differentiation (e.g. stresses, sensitivities)
- Mixed MPI-Thread-based parallelism
- $\bullet > 800$ electrons possible
- Performance: Within factor 2–4 of established codes
- Involved in multiple multidisciplinary collaborations:
 - ARPA-E's ACED-differentiate, ERC's EMC2 synergy,
 MIT's Center for the Exascale Simulation of Material Interfaces (CESMIX)

A posteriori error analysis: First results with Topic DFTK 1

- Reduced model without SCF, otherwise representative setting
- Error bars guaranteed: Difference to analytical solution
- Hint what to improve: Tolerance, basis, floating-point type
- Just a starting point . . .
- Model error: Combination of analytical and statistical approaches (BEEF)

¹M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. **224**, 227 (2020).

Black-box SCF methods: Our recent ideas

 Parameter-free mixing for inhomogeneous systems¹

 Adaptive and automatic selection of the damping parameter

¹M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

Self-consistent field (SCF) as a fixed-point problem

Self-consistent field equations:

$$\begin{cases} \hat{\mathcal{F}}_{\rho} = -\frac{1}{2}\Delta + \mathcal{V}(\underline{\rho}) \\ \\ \underline{\rho}(\underline{r}) = \sum_{i} f\left(\frac{\varepsilon_{i} - \varepsilon_{F}}{T}\right) |\psi_{i}(\underline{r})|^{2} & \text{with } \hat{\mathcal{F}}_{\rho}\psi_{i} = \varepsilon_{i}\psi_{i}, \end{cases}$$

- \Rightarrow Fixed-point problem $\rho = F(\rho)$
 - Use damped update with mixing (preconditioner) P:

$$\rho_{n+1} = \rho_n + \alpha P^{-1} [F(\rho_n) - \rho_n]$$

Near a fixed-point the error goes as

$$e_{n+1} \simeq \left[1 - \alpha P^{-1} \epsilon^{\dagger}\right] e_n$$

with ϵ^{\dagger} dielectric matrix

- Convergence iff $-1 < \left[1 \alpha P^{-1} \epsilon^{\dagger}\right] < 1$
 - \Rightarrow Need $P^{-1} \simeq (\epsilon^{\dagger})^{-1}$ (matching preconditioner) or small α
 - $\Rightarrow \kappa \left(P^{-1} \epsilon^{\dagger} \right)$ determines convergence rate

Drawback of established approaches

- 1. Ideal mixing P is system-dependent, but manually chosen
 - Rough idea of dielectric properties needed a priori
 - Good preconditioners only known for bulk materials
 - Misses important applications (e.g. inhomogeneous systems)
 - Examples: Metal clusters, passivated surfaces, heterogeneous catalysis, . . .
- 2. No good mixing P known
 - ullet Damping lpha found by trial and error
 - Our motivation: Making these cases more black-box

Solving 1: LDOS mixing¹

- ullet Bulk preconditioning models tackle directly $P^{-1}pprox \left(arepsilon^\dagger
 ight)^{-1}$
- But we have $\epsilon^{\dagger} = (1 \chi_0 K_{\mathsf{Hxc}})$
- Plot of χ_0 (Chain of 10 Sodium atoms and 10 helium atoms):

 \Rightarrow Diagonal-dominant, try to approx. $\chi_0(\underline{r},\underline{r}')\simeq\widetilde{\chi_0}(\underline{r})\delta(\underline{r},\underline{r}')$:

$$P^{-1}\rho_n = (1 - \widetilde{\chi_0} K_{\mathsf{Hxc}}))^{-1} \rho_n \qquad \text{(iteratively)}$$

• In the case of LDOS mixing:

$$\chi_0(\boldsymbol{r}, \boldsymbol{r}') \simeq -\mathsf{LDOS}(\boldsymbol{r})\delta(\boldsymbol{r}, \boldsymbol{r}')$$

¹M. F. Herbst, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).

LDOS preconditioning (examples)²

- 20 repeats of aluminium + 20 repeats vacuum / silica
- TFW: local Thomas-Fermi-von Weizsäcker mixing¹
- LDOS automatically interpolates between Kerker mixing (in the metallic region) and no mixing (insulating region)
- ⇒ Parameter-free and black-box

¹D. Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. **64**, 121101 (2001).

²M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

Solving 2: Adaptive damping

Potential mixing:

$$V_{n+1} = V_n + \alpha \, \frac{\delta V_n}{\delta V_n}$$
$$\frac{\delta V_n}{\delta V_n} = P^{-1} \left[\mathcal{V}(\mathcal{D}(V_n)) - V_n \right]$$

Quadratic model for DFT energy:

$$E(V_n + \alpha \delta V_n) \simeq E(V_n) + \alpha \left\langle \nabla E_{|V=V_n} \middle| \delta V_n \right\rangle + \frac{\alpha^2}{2} \left\langle \delta V_n \middle| \nabla^2 E_{|V=V_n} \delta V_n \right\rangle$$

After some algebra:

$$\nabla E_{|V=V_n} = -\chi_0 \left[\mathcal{V}(\mathcal{D}(V_n)) - V_n \right]$$

$$\nabla^2 E_{|V=V_n} \simeq -\chi_0 \left[1 - K_{\mathsf{Hxc}} \chi_0 \right]$$

⇒ Use model to find damping automatically!

Solving 2: Adaptive damping

Potential mixing:

$$V_{n+1} = V_n + \alpha \frac{\delta V_n}{\delta V_n}$$
$$\frac{\delta V_n}{\delta V_n} = P^{-1} \left[\mathcal{V}(\mathcal{D}(V_n)) - V_n \right]$$

Quadratic model for DFT energy:

$$E(V_n + \alpha \delta V_n) \simeq E(V_n) + \alpha \left\langle \nabla E_{|V=V_n} \middle| \frac{\delta V_n}{\delta} \right\rangle + \frac{\alpha^2}{2} \left\langle \delta V_n \middle| \nabla^2 E_{|V=V_n} \delta V_n \right\rangle$$

After some algebra:

$$\nabla E_{|V=V_n} = -\chi_0 \left[\mathcal{V}(\mathcal{D}(V_n)) - V_n \right]$$

$$\nabla^2 E_{|V=V_n} \simeq -\chi_0 \left[1 - K_{\mathsf{Hxc}} \chi_0 \right]$$

⇒ Use model to find damping automatically!

Adaptive damping

- No preconditioner (P = I)
- Non-linear SCF behaviour in initial steps

Localised states, spin

- Adaptive damping as black-box safeguard
- Ensures energy / residual decrease
- Interplay with Anderson tricky to interpret

Adaptive damping

- No preconditioner (P = I)
- Non-linear SCF behaviour in initial steps

- Unsuitable Kerker preconditioner
- Localised states, spin
- Adaptive damping as black-box safeguard
- Ensures energy / residual decrease
- Interplay with Anderson tricky to interpret

Adaptive damping

Summary

- **FTK** usage:
 - First develop LDOS scheme on test systems (1D, toy problems)
 - Tests on > 800 electrons (in the same code!)
 - Key quantities (χ_0, K_{xc}) fully accessible
- Towards error-controlled methods:
 - Mathematically guided numerics matching the error of models
- LDOS preconditioner:
 - Parameter-free ⇒ Highly suitable for high-throughput
 - Adaptive preconditioning for inhomogeneous systems
- Adaptive damping scheme:
 - Safe guard if preconditioner not perfect / tricky system
 - Reduction of the human factor

Benjamin Stamm Eric Cancès all DFTK contributors

Ínría_

- PDFTK https://dftk.org
 - julia: https://michael-herbst.com/learn-julia
 - mfherbst
 - https://michael-herbst.com/blog
 - herbst@acom.rwth-aachen.de

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Self-consistent field (SCF) as a fixed-point problem

• Self-consistent field equations:

$$\begin{cases} \hat{\mathcal{F}}_{\rho} = -\frac{1}{2}\Delta + \mathcal{V}(\rho) \\ \rho(\underline{r}) = \sum_{i} f\left(\frac{\varepsilon_{i} - \varepsilon_{F}}{T}\right) \left|\psi_{i}(\underline{r})\right|^{2} & \text{with } \hat{\mathcal{F}}_{\rho}\psi_{i} = \varepsilon_{i}\psi_{i}, \end{cases}$$

ullet Potential-to-density map ${\mathcal D}$

$$\mathcal{D}(V) = \sum_{i=1}^{\infty} f\left(\frac{\varepsilon_i - \varepsilon_F}{T}\right) |\psi_i|^2$$

with (ε_i, ψ_i) eigenpairs of $-\frac{1}{2}\Delta + V$.

⇒ Fixed-point problem

$$\rho = \mathcal{D}(\mathcal{V}(\rho))$$

Analysis of SCF convergence

• Fixed-point problem $\rho = \mathcal{D}(\mathcal{V}(\rho)) \Rightarrow$ Use damped update

$$\rho_{n+1} = \rho_n + \alpha P^{-1} \left[\mathcal{D}(\mathcal{V}(\rho_n)) - \rho_n \right]$$

with preconditioner ("mixing") P

Near a fixed-point the error goes as

$$e_{n+1} \simeq \left[1 - \alpha P^{-1} \epsilon^{\dagger}\right] e_n$$

where $\epsilon^{\dagger} = 1 - \chi_0 K_{\mathsf{Hxc}}$ (dielectric matrix)

- χ_0 : Susceptibility (derivative of \mathcal{D}), K_{Hxc} : Kernel (deriv. of \mathcal{V})
- \bullet Convergence iff $-1<\left\lceil 1-\alpha P^{-1}\epsilon^{\dagger}\right\rceil <1$
 - \Rightarrow Need $P^{-1} \simeq \left(\epsilon^{\dagger}\right)^{-1}$ (matching preconditioner) or small α
 - $\Rightarrow \kappa \left(P^{-1} \epsilon^{\dagger} \right)$ determines convergence rate

SCF instabilities

$$e_{n+1} \simeq \left[1 - \alpha P^{-1} \epsilon^{\dagger}\right] e_n, \qquad \epsilon^{\dagger} = 1 - \chi_0 (v_C + K_{xc})$$

- SCF instabilities increase condition number κ :
 - ϵ^{\dagger} has small eigenvalues (e.g. symmetry breaking)
 - χ_0 has large eigenvalues (localised states)
 - Large charge-sloshing modes of v_C are uncompensated by χ_0 (metals)
- \Rightarrow Need infeasibly small α or good P
 - Physics where a good mixing P is known:
 - Bulk insulators (P = I)
 - Bulk metals (Kerker mixing)
 - Bulk semiconductors (e.g. Resta's dielectric model)

Convergence results for bulk materials¹

- silica (SiO₂) insulator
- gallium arsenide (GaAs) semiconductor
- aluminium (AI) metal

¹M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

Local density of states (LDOS) approximation for χ_0^{-1}

- ullet Main interest: Large-scale variations from ho_n to ho_{n+1}
- \Rightarrow Assume $\underline{r} \mapsto \chi_0(\underline{r},\underline{r}')$ more localised around \underline{r}' than $V(\underline{r}')$.
 - "Row-sum mass lumping":

$$\int \chi_0(\underline{\boldsymbol{r}}, \underline{\boldsymbol{r}}') V(\underline{\boldsymbol{r}}') \, d\underline{\boldsymbol{r}}' \simeq V(\underline{\boldsymbol{r}}) \int \chi_0(\underline{\boldsymbol{r}}, \underline{\boldsymbol{r}}') \, d\underline{\boldsymbol{r}}'$$
$$= -V(\underline{\boldsymbol{r}}) D_{\mathsf{loc}}(\underline{\boldsymbol{r}})$$

with local density of states

$$D_{\mathsf{loc}}(\underline{\boldsymbol{r}}) = \frac{1}{T} \sum_{i} f' \left(\frac{\varepsilon_{i} - \varepsilon_{F}}{T} \right) |\psi_{i}(\underline{\boldsymbol{r}})|^{2}$$

using Adler-Wiser formula.

¹M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

LDOS preconditioning results¹

		N	one	Die	Dielectric		Kerker		LDOS		LDOS+ Dielectric	
	\mathcal{N}	it	κ	it	κ	it	κ	it	κ	it	κ	
SiO ₂ +vacuum	10	11	3.3	26	19.7	50	95.7	11	3.3	26	19.7	
	20	12	3.4	30	24.4	n.c.	351.5	12	3.4	30	21.7	
GaAs+vacuum	10	17	13.4	18	6.2	23	67.0	17	12.4	18	10.4	
	20	20	15.5	22	12.9	n.c.	312.2	20	15.5	22	12.9	
Al+vacuum	10	19	51.5	24	44.3	22	64.4	9	3.7	16	10.3	
	20	47	170.8	49	168.5	n.c.	323.9	9	3.5	20	10.5	
GaAs+SiO ₂ ^a	10	45	13.7	19	8.9	34	52.4	45	13.4	19	8.8	
	20	n.c.	18.2	20	10.2	n.c.	170.1	n.c.	18.2	20	10.2	
Al+SiO ₂	10	43	93.1	29	33.6	30	50.9	17	6.1	20	9.2	
	20	n.c.	316.6	n.c.	118.4	n.c.	159.4	14	5.4	20	10.1	
Al+GaAs	10	n.c.	144.0	24	22.4	16	9.0	15	7.2	11	3.5	
	20	n.c.	485.0	40	59.0	26	28.8	26	21.4	13	5.0	
Al+GaAs+SiO ₂	10	n.c.	149.5	34	50.4	36	62.9	26	21.5	19	9.0	

 \bullet Coloured: Condition number κ less than doubled on doubling system size

¹M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).