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Motivation: Computational challenges

Virtual materials design ⇒ millions of calculations:
design space search, data generation for surrogates, . . .

Key requirements:
Automation (saves human time)

Efficiency (saves computer time)

Reliability (saves computer time & human time)

State of the art:
Many parameters to choose (algorithms, tolerances, models)

Choice by experience

Workflow success rate: ' 50%1

Little rigorous error control (basically trial and error)

1Z. Ulissi, private communication in ARPAE differentiate group seminar, Dec 2020.
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Some questions and hardly explored techniques
Leading questions:

Do we need the same accuracy everywhere?

Where can mathematical insight improve reliability?

Can we tune between accuracy and runtime using only a single
parameter?

Error estimation (a posteriori, UQ, sensitivity analysis)
⇒ Error-guided automatic selection of parameters

Numerical analysis of simulation algorithms
⇒ Towards black-box algorithms

Multi-fidelity methods
⇒ Combination of results of different quality

(functionals, numerics, corrections, . . . )

⇒ Multidisciplinary research setting
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Density-functional toolkit (DFTK)1
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https://dftk.org
2 years of development
Open-source code
Building on ecosystem

Supports mathematical
developments and scale-up to
regime relevant to applications
Low entrance barrier: Only 6k
lines of code!

1M. F. Herbst, A. Levitt and E. Cancès. JuliaCon Proc., 3, 69 (2021).
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DFTK— https://dftk.org

Documentation and examples: https://docs.dftk.org

Ground state (LDA, GGA) and a bit of response theory

Compose your model (e.g. analytic potentials, 1D / 2D, . . . )

Arbitrary floating point type / reduced precision

Automatic differentiation (e.g. stresses, sensitivities)

Mixed MPI-Thread-based parallelism

> 800 electrons possible

Performance: Within factor 2–4 of established codes

Involved in multiple multidisciplinary collaborations:
ARPA-E’s ACED-differentiate, ERC’s EMC2 synergy,
MIT’s Center for the Exascale Simulation of Material Interfaces (CESMIX)
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A posteriori error analysis: First results with DFTK 1
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Reduced model without SCF, otherwise representative setting
Error bars guaranteed: Difference to analytical solution
Hint what to improve: Tolerance, basis, floating-point type

Just a starting point . . .
Model error: Combination of analytical and statistical approaches (BEEF)

1M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. 224, 227 (2020).
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Black-box SCF methods: Our recent ideas

Parameter-free mixing for
inhomogeneous systems1

Adaptive and automatic
selection of the damping
parameter

1M. F. Herbst, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
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Self-consistent field (SCF) as a fixed-point problem
Self-consistent field equations:

F̂ρ = −1
2∆ + V(ρ)

ρ(r) =
∑
i

f
(
εi − εF
T

)
|ψi(r)|2 with F̂ρψi = εiψi,

⇒ Fixed-point problem ρ = F (ρ)

Use damped update with mixing (preconditioner) P :

ρn+1 = ρn + αP−1 [F (ρn)− ρn]

Near a fixed-point the error goes as

en+1 '
[
1− αP−1ε†

]
en

with ε† dielectric matrix

Convergence iff −1 <
[
1− αP−1ε†

]
< 1

⇒ Need P−1 '
(
ε†
)−1 (matching preconditioner) or small α

⇒ κ
(
P−1ε†

)
determines convergence rate
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Drawback of established approaches

1. Ideal mixing P is system-dependent, but manually chosen
Rough idea of dielectric properties needed a priori

Good preconditioners only known for bulk materials

Misses important applications (e.g. inhomogeneous systems)

Examples: Metal clusters, passivated surfaces, heterogeneous
catalysis, . . .

2. No good mixing P known
Damping α found by trial and error

Our motivation: Making these cases more black-box
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Solving 1: LDOS mixing1

Bulk preconditioning models tackle directly P−1 ≈
(
ε†
)−1

But we have ε† = (1− χ0KHxc)

Plot of χ0 (Chain of 10 Sodium atoms and 10 helium atoms):

⇒ Diagonal-dominant, try to approx. χ0(r, r′) ' χ̃0(r)δ(r, r′):
P−1ρn = (1− χ̃0KHxc))−1 ρn (iteratively)

In the case of LDOS mixing:
χ0(r, r′) ' −LDOS(r)δ(r, r′)

1M. F. Herbst, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
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LDOS preconditioning (examples)2

20 repeats of aluminium + 20 repeats vacuum / silica
TFW: local Thomas-Fermi-von Weizsäcker mixing1

LDOS automatically interpolates between Kerker mixing (in the metallic
region) and no mixing (insulating region)

⇒ Parameter-free and black-box

1D. Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. 64, 121101 (2001).
2M. F. Herbst, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
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https://doi.org/10.1103/physrevb.64.121101
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Solving 2: Adaptive damping
Potential mixing:

Vn+1 = Vn + α δVn

δVn = P−1 [V(D(Vn))− Vn]

Quadratic model for DFT energy:

E(Vn + α δVn) ' E(Vn) + α
〈
∇E|V=Vn

∣∣∣δVn〉
+ α2

2
〈
δVn

∣∣∣∇2E|V=VnδVn
〉

After some algebra:

∇E|V=Vn = −χ0 [V(D(Vn))− Vn]
∇2E|V=Vn ' −χ0 [1−KHxcχ0]

⇒ Use model to find damping automatically!
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Adaptive damping

GaAs (with Anderson)

No preconditioner (P = I)
Non-linear SCF behaviour in
initial steps

Fe2CrGa Heusler (without Anderson)

Unsuitable Kerker preconditioner
Localised states, spin

Adaptive damping as black-box safeguard
Ensures energy / residual decrease
Interplay with Anderson tricky to interpret
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Adaptive damping
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Summary https://michael-herbst.com/slides/vmd2021

DFTK usage:
First develop LDOS scheme on test systems (1D, toy problems)

Tests on > 800 electrons (in the same code!)

Key quantities (χ0, Kxc) fully accessible

Towards error-controlled methods:
Mathematically guided numerics matching the error of models

LDOS preconditioner:
Parameter-free ⇒ Highly suitable for high-throughput

Adaptive preconditioning for inhomogeneous systems

Adaptive damping scheme:
Safe guard if preconditioner not perfect / tricky system

Reduction of the human factor
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Questions? https://michael-herbst.com/slides/vmd2021

DFTK https://dftk.org

: https://michael-herbst.com/learn-julia

� mfherbst

� https://michael-herbst.com/blog

R herbst@acom.rwth-aachen.de

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International Licence.
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Self-consistent field (SCF) as a fixed-point problem

Self-consistent field equations:
F̂ρ = −1

2∆ + V(ρ)

ρ(r) =
∑
i

f

(
εi − εF
T

)
|ψi(r)|2 with F̂ρψi = εiψi,

Potential-to-density map D

D(V ) =
∞∑
i=1

f

(
εi − εF
T

)
|ψi|2

with (εi, ψi) eigenpairs of −1
2∆ + V .

⇒ Fixed-point problem

ρ = D(V(ρ))
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Analysis of SCF convergence
Fixed-point problem ρ = D(V(ρ)) ⇒ Use damped update

ρn+1 = ρn + αP−1 [D(V(ρn))− ρn]

with preconditioner (“mixing”) P

Near a fixed-point the error goes as

en+1 '
[
1− αP−1ε†

]
en

where ε† = 1− χ0KHxc (dielectric matrix)
χ0: Susceptibility (derivative of D), KHxc: Kernel (deriv. of V)

Convergence iff −1 <
[
1− αP−1ε†

]
< 1

⇒ Need P−1 '
(
ε†
)−1 (matching preconditioner) or small α

⇒ κ
(
P−1ε†

)
determines convergence rate
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SCF instabilities

en+1 '
[
1− αP−1ε†

]
en, ε† = 1− χ0(vC +Kxc)

SCF instabilities increase condition number κ:
ε† has small eigenvalues (e.g. symmetry breaking)

χ0 has large eigenvalues (localised states)

Large charge-sloshing modes of vC are uncompensated by χ0
(metals)

⇒ Need infeasibly small α or good P

Physics where a good mixing P is known:
Bulk insulators (P = I)

Bulk metals (Kerker mixing)

Bulk semiconductors (e.g. Resta’s dielectric model)
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Convergence results for bulk materials1

silica (SiO2) insulator
gallium arsenide (GaAs)
semiconductor
aluminium (Al) metal

1M. F. Herbst, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
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Local density of states (LDOS) approximation for χ0
1

Main interest: Large-scale variations from ρn to ρn+1

⇒ Assume r 7→ χ0(r, r′) more localised around r′ than V (r′).

“Row-sum mass lumping”:∫
χ0(r, r′)V (r′) dr′ ' V (r)

∫
χ0(r, r′) dr′

= −V (r)Dloc(r)

with local density of states

Dloc(r) = 1
T

∑
i

f ′
(
εi − εF
T

)
|ψi(r)|2

using Adler-Wiser formula.

1M. F. Herbst, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
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LDOS preconditioning results1

None Dielectric Kerker LDOS LDOS+
Dielectric

N it κ it κ it κ it κ it κ

SiO2+vacuum 10 11 3.3 26 19.7 50 95.7 11 3.3 26 19.7
20 12 3.4 30 24.4 n.c. 351.5 12 3.4 30 21.7

GaAs+vacuum 10 17 13.4 18 6.2 23 67.0 17 12.4 18 10.4
20 20 15.5 22 12.9 n.c. 312.2 20 15.5 22 12.9

Al+vacuum 10 19 51.5 24 44.3 22 64.4 9 3.7 16 10.3
20 47 170.8 49 168.5 n.c. 323.9 9 3.5 20 10.5

GaAs+SiO2
a 10 45 13.7 19 8.9 34 52.4 45 13.4 19 8.8

20 n.c. 18.2 20 10.2 n.c. 170.1 n.c. 18.2 20 10.2
Al+SiO2 10 43 93.1 29 33.6 30 50.9 17 6.1 20 9.2

20 n.c. 316.6 n.c. 118.4 n.c. 159.4 14 5.4 20 10.1
Al+GaAs 10 n.c. 144.0 24 22.4 16 9.0 15 7.2 11 3.5

20 n.c. 485.0 40 59.0 26 28.8 26 21.4 13 5.0

Al+GaAs+SiO2 10 n.c. 149.5 34 50.4 36 62.9 26 21.5 19 9.0

Coloured: Condition number κ less than doubled on doubling system size

1M. F. Herbst, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
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