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Societal challenges of 21st century

Renewable energy

@ Green chemistry and catalysts

Drug design

Transportation

@ Data storage and communication

= Need for novel materials
= High-throughput computational screening

= Common approach: Density-functional theory (DFT)
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Typical scale

@ One DFT calculation: O(hours) to O(days)
e E.g. Open Catalyst Project!

e 1.3 million DFT calculations

e > 250 million DFT energy evaluations

o Workflow success rate: ~ 50%?

= Need high degree of automation
= Reliability needs to be improved!

e Multidisciplinary research problem

L. Chanussot et. al. The Open Catalyst 2020 (OC20) Dataset, 2020, arXiv 2010.09990.
2Z. Ulissi, private communication in ARPAE differentiate group seminar, Dec 2020.
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Density-functional toolkit (DFTK)?

@ https://dftk.org
@ 2 years of development
@ Pure julia code

materials
simulations

@ Supports mathematical
developments and scale-up to
regime relevant to applications

@ Low entrance barrier: Only 6k

lines of code!
numerical povteflf_ @ International and interdisciplinary
analysis Sclentiric user base:
models X . .
e Analysis, mathematical physics,
applications, ...

M. F. Herbst, A. Levitt and E. Cances. JuliaCon Proc., 3, 69 (2021).
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Kohn-Sham DFT

@ Minimisation of DFT energy functional under orthogonality.
@ Euler-Lagrange: Coupled set of non-linear elliptic PDEs:
1 *
(=5 +VO)wi=citn [ vy =3y

o0

Z ( )\QM , with ep such that /p:N

@ Density-dependent potential
V() = Viue + [ (vop) + Vaelp)
with Coulomb kernel vo(r, /) = ||lr — /| !
@ Fermi-Dirac function f(z) = 1/(1 + ")
@ Temperature T', electron count N
@ Exchange-correlation potential V.., nuclear attraction Viyyc 4/18
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Self-consistent field (SCF) as a fixed-point problem

@ Density-dependent potential V(p)

@ Potential-to-density map F'

F©) =301 (555 ) il

=1

with (g5, ;) eigenpairs of —%A + V.

= SCF solves p = F(V(p))

@ Numerically: Damped fixed-point scheme

Pn+1 = Pn + aP_l [F(V(,On)> - Pn]
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SCF convergence

prt1 = pn + P [F(V(pn)) — pn]

@ Near a fixed-point the error goes as
entl [1 — aPileT} en

where ¢/ =1 — X fhxe (dielectric matrix)
@ Xo: Independent-particle susceptibility (derivative of F')

® fhxc: kernel (derivative of V)

= SCF convergence linked to dielectric properties
o Convergence rate depends on conditioning r (P~ 'e')

e Preconditioner should capture dielectric properties
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SCF convergence: How bad does it get?

Al —><¢— Fixed-point iterations.
X —— - Simple rate

Total energy absolute error

10
0 10 20 30 40

o Aluminium (“simple”), x(ef) = 18

@ No preconditioning

= Well, but just use a better preconditioner ...
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Choosing the preconditioner: Not always easy

@ Standard preconditioners only treat a few simple cases
e E.g. bulk insulators, metals, semiconductors

o Need to choose a priori!

@ Preconditioning challenging in important cases:
e E.g. challenging magnetic alloys
o Inhomogeneous materials (metal clusters, catalytic surfaces . ..)

o Partial solution: LDOS Preconditioner!

= Additionally need convergence acceleration techniques

= Not always with the expected result (examples follow)

M. F. Herbst, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
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Convergence acceleration (Anderson)
@ Convergence acceleration as a black box:

pnsr = pn+ DIS(aP ™ [F(V(pn)) — pn] )

o Define f(p) = aP~' [F(V(p)) = pl.  g(p) =p+ f(p)
@ DIIS(-) accelerates g(p) = p and returns

9(pa) + > Bi[9(00) = 9(pw)]| = pu

where {3;} are the minimisers of

and {p;} is a (truncated) history.

@ Does this work? (Remember: F(V(-)) is not linear)
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Accelerated SCF convergence (Examples)?
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M. F. Herbst, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
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Thoughts from the gallium arsenide case
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@ In initial phase exhibits strong non-linearity
= Anderson extrapolates very far off
@ Practitioners trial and error with damping «
@ Convergence is guaranteed if damping a small enough

= Adaptive damping strategy
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Adaptive damping (1)
@ Potential mixing:
Vn+1 - Vn +
= DIIS(aP ™ V(F(V2)) - Vi)
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Adaptive damping (1)
@ Potential mixing:
Vier = Vi 4+ a
=DIIS(aP [V - V,])/a, V" = V(F(V,))
@ Quadratic model for DFT energy:
EVy,+aoV,)~E(V,) +« <VE‘V:Vn

)
2
2 ()
e Following?
VEy_y, =—Xo (V,f”t - V)
V2Ejv—v, ~ —xo [1 — (ve + fx)x0]

1X. Gonze Phys. Rev. B 54, 4383 (1996). 12/18
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Adaptive damping (2)

Vi1 = Vota iV, = DIIS(&P’l [V = Vi) >/a Vot = V(F(Vi))

@ Quadratic model (after some algebra):

EVy+aiV,)~EWV,) —a«a <V7f”t—Vn]5pn>

- i) o+ 1) )

2
where dp,, = F(Vy1) — F(Vy,).

e Given V,, — F(V},), Vout — y Vat1 = F(Vy11) then find
optimal damping «

e (Simplified) sketch of adaptive damping algorithm:
@ Choose trial & = o
@ Accept if energy or residual decreases

@ Else: Find optimal damping «, recompute V,, 11 and F(V,41) 13/18
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Convergence acceleration with adaptive damping

Vier = Vi 4+ a6V, 6V, =DIIS (dzfl [F(V(V,)) — u,/])/&

o Adaptive damping o may change between iterations:
o f(V)=P 1 V(F(Vp)) — Vi
o g(V) =V +af(V)

@ DIIS(-) accelerates g(V') =V and returns

aiVi = g(Va) + 3 Bi[9(V)) — 9(Va)] ~ Vi

where {3;} are the minimisers of

‘ fpn +Z@[ pi) WJ}H
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Adaptive damping (WIP examples)

GaAs (Gallium arsenide) Fe,MnAl Heusler alloy structure

Total energy absolute error

Total energy absolute error

Iteration 100 ’\
10 o 10 20 30 40 50 60
. . . Iteration
@ Non-linear SCF behaviour in
initial steps @ Localised states, spin
@ Anderson extrapolation fails @ No suitable preconditioner P

o Adaptive damping as safeguard

@ But: Tends to be slightly more expensive for “simple” cases
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S ummary https://michael-herbst.com/slides/siamla21

o % DFTK

e Toolbox for playing with SCF and DFT methods
o Reduced models and tests on > 800 electrons

= One code for mathematical prototyping and applications

@ SCF convergence:
e Interplay between preconditioner, acceleration and damping

e Good numerical setup needs to look at the physics

o Adaptive damping scheme:
e Safe guard for strong non-linearities / no preconditioner
e Reduction of the human factor in parameter selection
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Q u eStiO nS? https://michael-herbst.com/slides/siamla21

@ DFTK https://dftk.org

() mfherbst
@ https://michael-herbst.com/blog

¥ herbst@acom.rwth-aachen.de

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International Licence.
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