# Robust and efficient accelerated methods for density-functional theory (DFT)

#### Michael F. Herbst\*, Antoine Levitt

\*Applied and Computational Mathematics, RWTH Aachen University https://michael-herbst.com

20th Mai 2021



# Societal challenges of 21st century

- Renewable energy
- Green chemistry and catalysts
- Drug design
- Transportation
- Data storage and communication
- $\Rightarrow$  Need for novel materials
- $\Rightarrow$  High-throughput computational screening
- $\Rightarrow$  Common approach: Density-functional theory (DFT)

# Typical scale

- $\bullet$  One DFT calculation:  $\mathcal{O}(\text{hours})$  to  $\mathcal{O}(\text{days})$
- E.g. Open Catalyst Project<sup>1</sup>
  - $\bullet~1.3$  million DFT calculations
  - $\bullet\ > 250$  million DFT energy evaluations
  - Workflow success rate:  $\simeq 50\%^2$
- $\Rightarrow$  Need high degree of automation
- $\Rightarrow$  Reliability needs to be improved!
  - Multidisciplinary research problem

<sup>&</sup>lt;sup>1</sup>L. Chanussot et. al. The Open Catalyst 2020 (OC20) Dataset, 2020, arXiv 2010.09990.

<sup>&</sup>lt;sup>2</sup>Z. Ulissi, private communication in ARPAE differentiate group seminar, Dec 2020.

# Density-functional toolkit (DFTK)<sup>1</sup>



- https://dftk.org
- 2 years of development
- Pure julia code
- Supports mathematical developments and scale-up to regime relevant to applications
- Low entrance barrier: Only 6k lines of code!
- International and interdisciplinary user base:
  - Analysis, mathematical physics, applications, ...

<sup>1</sup>M. F. Herbst, A. Levitt and E. Cancès. JuliaCon Proc., **3**, 69 (2021).



# Kohn-Sham DFT

- Minimisation of DFT energy functional under orthogonality.
- Euler-Lagrange: Coupled set of non-linear elliptic PDEs:

$$\left( -\frac{1}{2}\Delta + \mathcal{V}(\rho) \right) \psi_{i} = \varepsilon_{i} \psi_{i}, \quad \int \psi_{i}^{*} \psi_{j} = \delta_{ij}$$

$$\rho = \sum_{i=1}^{\infty} f\left( \frac{\varepsilon_{i} - \varepsilon_{F}}{T} \right) |\psi_{i}|^{2}, \quad \text{with } \varepsilon_{F} \text{ such that } \int \rho = N$$

• Density-dependent potential

$$\mathcal{V}(\rho) = V_{\mathsf{Nuc}} + \int (v_C \rho) + V_{\mathsf{xc}}(\rho)$$

with Coulomb kernel  $v_C(\underline{r},\underline{r}') = \|\underline{r} - \underline{r}'\|^{-1}$ 

- Fermi-Dirac function  $f(x) = 1/(1 + e^x)$
- Temperature T, electron count N
- $\bullet~{\rm Exchange-correlation}$  potential  $V_{\rm xc},$  nuclear attraction  $V_{\rm Nuc}$



# Self-consistent field (SCF) as a fixed-point problem

- $\bullet~$  Density-dependent potential  $\mathcal{V}(\rho)$
- $\bullet~$  Potential-to-density map F

$$F(V) = \sum_{i=1}^{\infty} f\left(\frac{\varepsilon_i - \varepsilon_F}{T}\right) |\psi_i|^2$$

with  $(\varepsilon_i, \psi_i)$  eigenpairs of  $-\frac{1}{2}\Delta + V$ .

- $\Rightarrow \mathsf{SCF} \text{ solves } \rho = F(\mathcal{V}(\rho))$ 
  - Numerically: Damped fixed-point scheme

$$\rho_{n+1} = \rho_n + \alpha P^{-1} \left[ F(\mathcal{V}(\rho_n)) - \rho_n \right]$$



# SCF convergence

$$\rho_{n+1} = \rho_n + \alpha P^{-1} \left[ F(\mathcal{V}(\rho_n)) - \rho_n \right]$$

• Near a fixed-point the error goes as

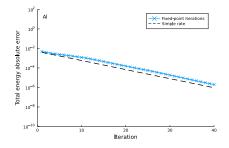
$$e_{n+1} \simeq \left[1 - \alpha P^{-1} \epsilon^{\dagger}\right] e_n$$

where  $\epsilon^{\dagger}=1-\chi_{0}f_{\textrm{Hxc}}$  (dielectric matrix)

- $\chi_0$ : Independent-particle susceptibility (derivative of F)
- $f_{Hxc}$ : kernel (derivative of  $\mathcal{V}$ )
- $\Rightarrow$  SCF convergence linked to dielectric properties
  - Convergence rate depends on conditioning  $\kappa \left( P^{-1} \epsilon^{\dagger} \right)$
  - Preconditioner should capture dielectric properties



## SCF convergence: How bad does it get?



- Aluminium ("simple"),  $\kappa(\varepsilon^{\dagger}) = 18$
- No preconditioning
- $\Rightarrow$  Well, but just use a better preconditioner . . .



# Choosing the preconditioner: Not always easy

- Standard preconditioners only treat a few simple cases
  - E.g. bulk insulators, metals, semiconductors
  - Need to choose a priori!
- Preconditioning challenging in important cases:
  - E.g. challenging magnetic alloys
  - Inhomogeneous materials (metal clusters, catalytic surfaces ...)
  - Partial solution: LDOS Preconditioner<sup>1</sup>
- $\Rightarrow$  Additionally need convergence acceleration techniques
- $\Rightarrow$  Not always with the expected result (examples follow)

<sup>&</sup>lt;sup>1</sup>M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).



## Convergence acceleration (Anderson)

• Convergence acceleration as a black box:

$$\rho_{n+1} = \rho_n + \mathsf{DIIS}\Big(\alpha P^{-1}\left[F(\mathcal{V}(\rho_n)) - \rho_n\right]\Big)$$

- Define  $f(\rho)=\alpha P^{-1}\left[F(\mathcal{V}(\rho))-\rho\right], \quad g(\rho)=\rho+f(\rho)$
- $\bullet~{\rm DIIS}(\,\cdot\,)$  accelerates  $g(\rho)=\rho$  and returns

$$g(\rho_n) + \sum_i \beta_i \Big[ g(\rho_i) - g(\rho_n) \Big] - \rho_n$$

where  $\{\beta_i\}$  are the minimisers of

$$\left\|f(\rho_n) + \sum_i \beta_i \left[f(\rho_i) - f(\rho_n)\right]\right\|$$

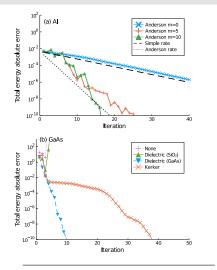
and  $\{\rho_i\}$  is a (truncated) history.

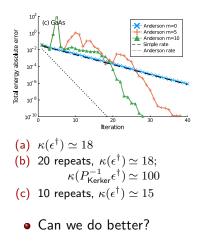
• Does this work? (Remember:  $F(\mathcal{V}(\cdot))$  is not linear)



Robust accelerated DFT methods

# Accelerated SCF convergence (Examples)<sup>1</sup>

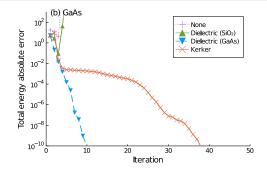




<sup>1</sup>M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).



### Thoughts from the gallium arsenide case



- In initial phase exhibits strong non-linearity
- $\Rightarrow$  Anderson extrapolates very far off
  - $\bullet\,$  Practitioners trial and error with damping  $\alpha$
  - $\bullet\,$  Convergence is guaranteed if damping  $\alpha$  small enough
- $\Rightarrow$  Adaptive damping strategy

# Adaptive damping (1)

• Potential mixing:

$$V_{n+1} = V_n + \delta V_n$$
  
$$\delta V_n = \mathsf{DIIS}\Big(\alpha P^{-1} \left[\mathcal{V}(F(V_n)) - V_n\right]\Big)$$

• Quadratic model for DFT energy:  $E(V_n + \alpha \, \delta V_n) \simeq E(V_n) + \alpha \, \left\langle \nabla E_{|V=V_n} \middle| \delta V_n \right\rangle + \frac{\alpha^2}{2} \left\langle \delta V_n \middle| \nabla^2 E_{|V=V_n} \delta V_n \right\rangle$ 

Following<sup>1</sup>

$$\nabla E_{|V=V_n} = -\chi_0 \left( V_n^{\text{out}} - V_n \right)$$
$$\nabla^2 E_{|V=V_n} \simeq -\chi_0 \left[ 1 - \left( v_C + f_{\text{xc}} \right) \chi_0 \right]$$

<sup>&</sup>lt;sup>1</sup>X. Gonze Phys. Rev. B **54**, 4383 (1996).

# Adaptive damping (1)

• Potential mixing:

$$\begin{split} V_{n+1} &= V_n + \alpha \, \delta V_n \\ \delta V_n &= \mathsf{DIIS} \Big( \tilde{\alpha} P^{-1} \left[ V_n^{\mathsf{out}} - V_n \right] \Big) / \tilde{\alpha}, \qquad V_n^{\mathsf{out}} = \mathcal{V}(F(V_n)) \end{split}$$

Quadratic model for DFT energy:

$$\begin{split} E(V_n + \alpha \, \delta V_n) &\simeq E(V_n) + \alpha \, \left\langle \nabla E_{|V=V_n} \middle| \delta V_n \right\rangle \\ &+ \frac{\alpha^2}{2} \left\langle \delta V_n \middle| \nabla^2 E_{|V=V_n} \delta V_n \right\rangle \end{split}$$

• Following<sup>1</sup>

$$\nabla E_{|V=V_n} = -\chi_0 \left( V_n^{\text{out}} - V_n \right)$$
$$\nabla^2 E_{|V=V_n} \simeq -\chi_0 \left[ 1 - \left( v_C + f_{\text{xc}} \right) \chi_0 \right]$$

<sup>&</sup>lt;sup>1</sup>X. Gonze Phys. Rev. B 54, 4383 (1996).

# Adaptive damping (2)

$$V_{n+1} = V_n + \alpha \, \delta V_n, \quad \delta V_n = \mathsf{DHS}\left(\tilde{\alpha} P^{-1} \left[V_n^{\mathsf{out}} - V_n\right]\right) / \tilde{\alpha}, \quad V_n^{\mathsf{out}} = \mathcal{V}(F(V_n))$$

• Quadratic model (after some algebra):

$$\begin{split} E(V_n + \alpha \, \delta V_n) &\simeq E(V_n) - \alpha \, \left\langle V_n^{\mathsf{out}} - V_n \big| \delta \rho_n \right\rangle \\ &+ \frac{\alpha^2}{2} \Big[ - \left\langle \delta V_n \big| \delta \rho_n \right\rangle + \left\langle \delta \rho_n \big| \Big( v_C + f_{\mathsf{xc}} \Big) \, \delta \rho_n \right\rangle \Big] \\ \text{where } \delta \rho_n &= F(V_{n+1}) - F(V_n). \end{split}$$

- Given  $V_n \to F(V_n), V_n^{\text{out}} \to \delta V_n, V_{n+1} \to F(V_{n+1})$  then find optimal damping  $\alpha$
- (Simplified) sketch of adaptive damping algorithm:
  - Choose trial  $\tilde{\alpha} = \alpha$
  - Accept if energy or residual decreases
  - Else: Find optimal damping  $\alpha$ , recompute  $V_{n+1}$  and  $F(V_{n+1})$  13/18



#### Convergence acceleration with adaptive damping

$$V_{n+1} = V_n + \alpha \, \delta V_n, \quad \delta V_n = \mathsf{DIIS}\Big(\tilde{\alpha} P^{-1} \left[ F(\mathcal{V}(V_n)) - V_n \right] \Big) / \tilde{\alpha}$$

• Adaptive damping  $\alpha$  may change between iterations:

• 
$$f(V) = P^{-1} [\mathcal{V}(F(V_n)) - V_n]$$

• 
$$g(V) = V + \tilde{\alpha}f(V)$$

 $\bullet~ {\rm DIIS}(\,\cdot\,)$  accelerates g(V)=V and returns

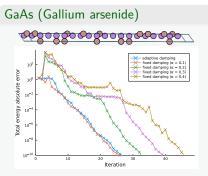
$$\tilde{\alpha}\delta V_{n} = g(V_{n}) + \sum_{i} \beta_{i} \Big[ g(V_{i}) - g(V_{n}) \Big] - V_{n}$$

where  $\{\beta_i\}$  are the minimisers of

$$\left\| f(\rho_n) + \sum_i \beta_i \Big[ f(\rho_i) - f(\rho_n) \Big] \right\|$$

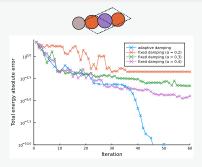


# Adaptive damping (WIP examples)



- Non-linear SCF behaviour in initial steps
- Anderson extrapolation fails
  - Adaptive damping as safeguard
  - But: Tends to be slightly more expensive for "simple" cases

#### Fe<sub>2</sub>MnAl Heusler alloy structure



- Localised states, spin
- No suitable preconditioner P



# Summary

https://michael-herbst.com/slides/siamla21



- Toolbox for playing with SCF and DFT methods
- Reduced models and tests on  $>800\ {\rm electrons}$
- $\Rightarrow$  One code for mathematical prototyping and applications
- SCF convergence:
  - Interplay between preconditioner, acceleration and damping
  - Good numerical setup needs to look at the physics
- Adaptive damping scheme:
  - $\bullet\,$  Safe guard for strong non-linearities / no preconditioner
  - Reduction of the human factor in parameter selection



Robust accelerated DFT methods

# Acknowledgements

https://michael-herbst.com/slides/siamla21



Antoine Levitt

Benjamin Stamm Eric Cancès

all DFTK contributors







École des Ponts ParisTech

julia











#### Questions?

https://michael-herbst.com/slides/siamla21



#### C mfherbst

- Attps://michael-herbst.com/blog
- ▶ herbst@acom.rwth-aachen.de



This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.