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Societal challenges of 21st century

Renewable energy

Green chemistry and catalysts

Drug design

Transportation

Data storage and communication

⇒ Need for novel materials

⇒ High-throughput computational screening

⇒ Common approach: Density-functional theory (DFT)
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Typical scale

One DFT calculation: O(hours) to O(days)
E.g. Open Catalyst Project1

1.3 million DFT calculations

> 250 million DFT energy evaluations

Workflow success rate: ' 50%2

⇒ Need high degree of automation

⇒ Reliability needs to be improved!

Multidisciplinary research problem

1L. Chanussot et. al. The Open Catalyst 2020 (OC20) Dataset, 2020, arXiv 2010.09990.
2Z. Ulissi, private communication in ARPAE differentiate group seminar, Dec 2020.
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Density-functional toolkit (DFTK)1

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

https://dftk.org
2 years of development
Pure code

Supports mathematical
developments and scale-up to
regime relevant to applications
Low entrance barrier: Only 6k
lines of code!

International and interdisciplinary
user base:

Analysis, mathematical physics,
applications, . . .

1M. F. Herbst, A. Levitt and E. Cancès. JuliaCon Proc., 3, 69 (2021).
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Kohn-Sham DFT
Minimisation of DFT energy functional under orthogonality.

Euler-Lagrange: Coupled set of non-linear elliptic PDEs:(
− 1

2∆ + V(ρ)
)
ψi = εiψi,

∫
ψ∗i ψj = δij

ρ =
∞∑
i=1

f

(
εi − εF
T

)
|ψi|2 , with εF such that

∫
ρ = N

Density-dependent potential
V(ρ) = VNuc +

∫
(vCρ) + Vxc(ρ)

with Coulomb kernel vC(r, r′) = ‖r − r′‖−1

Fermi-Dirac function f(x) = 1/(1 + ex)

Temperature T , electron count N
Exchange-correlation potential Vxc, nuclear attraction VNuc 4 / 18
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Self-consistent field (SCF) as a fixed-point problem

Density-dependent potential V(ρ)

Potential-to-density map F

F (V ) =
∞∑
i=1

f

(
εi − εF
T

)
|ψi|2

with (εi, ψi) eigenpairs of −1
2∆ + V .

⇒ SCF solves ρ = F (V(ρ))

Numerically: Damped fixed-point scheme

ρn+1 = ρn + αP−1 [F (V(ρn))− ρn]
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SCF convergence

ρn+1 = ρn + αP−1 [F (V(ρn))− ρn]

Near a fixed-point the error goes as

en+1 '
[
1− αP−1ε†

]
en

where ε† = 1− χ0fHxc (dielectric matrix)

χ0: Independent-particle susceptibility (derivative of F )

fHxc: kernel (derivative of V)

⇒ SCF convergence linked to dielectric properties
Convergence rate depends on conditioning κ

(
P−1ε†

)
Preconditioner should capture dielectric properties
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SCF convergence: How bad does it get?

Aluminium (“simple”), κ(ε†) = 18

No preconditioning

⇒ Well, but just use a better preconditioner . . .
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Choosing the preconditioner: Not always easy

Standard preconditioners only treat a few simple cases
E.g. bulk insulators, metals, semiconductors

Need to choose a priori!

Preconditioning challenging in important cases:
E.g. challenging magnetic alloys

Inhomogeneous materials (metal clusters, catalytic surfaces . . . )

Partial solution: LDOS Preconditioner1

⇒ Additionally need convergence acceleration techniques

⇒ Not always with the expected result (examples follow)
1M. F. Herbst, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).

8 / 18

https://doi.org/10.1088/1361-648X/abcbdb
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Convergence acceleration (Anderson)
Convergence acceleration as a black box:

ρn+1 = ρn + DIIS
(
αP−1 [F (V(ρn))− ρn]

)
Define f(ρ) = αP−1 [F (V(ρ))− ρ], g(ρ) = ρ+ f(ρ)

DIIS( · ) accelerates g(ρ) = ρ and returns

g(ρn) +
∑
i

βi
[
g(ρi)− g(ρn)

]
− ρn

where {βi} are the minimisers of∥∥∥∥∥f(ρn) +
∑
i

βi
[
f(ρi)− f(ρn)

]∥∥∥∥∥
and {ρi} is a (truncated) history.

Does this work? (Remember: F (V( · )) is not linear) 9 / 18
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Accelerated SCF convergence (Examples)1

(a) κ(ε†) ' 18
(b) 20 repeats, κ(ε†)' 18;

κ(P−1
Kerkerε

†)' 100
(c) 10 repeats, κ(ε†) ' 15

Can we do better?

1M. F. Herbst, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
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Thoughts from the gallium arsenide case

In initial phase exhibits strong non-linearity
⇒ Anderson extrapolates very far off

Practitioners trial and error with damping α
Convergence is guaranteed if damping α small enough

⇒ Adaptive damping strategy
11 / 18
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Adaptive damping (1)
Potential mixing:
Vn+1 = Vn + δVn

δVn = DIIS
(
αP−1 [V(F (Vn))− Vn]

)
Quadratic model for DFT energy:

E(Vn + α δVn) ' E(Vn) + α
〈
∇E|V=Vn

∣∣∣δVn〉
+ α2

2
〈
δVn

∣∣∣∇2E|V=Vn
δVn

〉
Following1

∇E|V=Vn
= −χ0

(
V out
n − Vn

)
∇2E|V=Vn

' −χ0
[
1−

(
vC + fxc

)
χ0
]

1X. Gonze Phys. Rev. B 54, 4383 (1996). 12 / 18

https://doi.org/10.1103/physrevb.54.4383
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Adaptive damping (1)
Potential mixing:
Vn+1 = Vn + α δVn

δVn = DIIS
(
α̃P−1 [V out

n − Vn
] )
/α̃, V out

n = V(F (Vn))

Quadratic model for DFT energy:

E(Vn + α δVn) ' E(Vn) + α
〈
∇E|V=Vn

∣∣∣δVn〉
+ α2

2
〈
δVn

∣∣∣∇2E|V=Vn
δVn

〉
Following1

∇E|V=Vn
= −χ0

(
V out
n − Vn

)
∇2E|V=Vn

' −χ0
[
1−

(
vC + fxc

)
χ0
]

1X. Gonze Phys. Rev. B 54, 4383 (1996). 12 / 18

https://doi.org/10.1103/physrevb.54.4383
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Adaptive damping (2)

Vn+1 = Vn+α δVn, δVn = DIIS
(
α̃P−1 [V out

n − Vn

] )
/α̃, V out

n = V(F (Vn))

Quadratic model (after some algebra):
E(Vn + α δVn) ' E(Vn)− α

〈
V out
n − Vn

∣∣δρn〉
+ α2

2
[
− 〈δVn|δρn〉+

〈
δρn

∣∣∣(vC + fxc
)
δρn

〉 ]
where δρn = F (Vn+1)− F (Vn).

Given Vn → F (Vn), V out
n → δVn, Vn+1 → F (Vn+1) then find

optimal damping α

(Simplified) sketch of adaptive damping algorithm:
Choose trial α̃ = α

Accept if energy or residual decreases

Else: Find optimal damping α, recompute Vn+1 and F (Vn+1) 13 / 18



DFTK and high-throughput Robust accelerated DFT methods A & Q

Convergence acceleration with adaptive damping

Vn+1 = Vn + α δVn, δVn = DIIS
(
α̃P−1 [F (V(Vn))− Vn]

)
/α̃

Adaptive damping α may change between iterations:
f(V ) = P−1 [V(F (Vn))− Vn]

g(V ) = V + α̃f(V )

DIIS( · ) accelerates g(V ) = V and returns

α̃δVn = g(Vn) +
∑
i

βi
[
g(Vi)− g(Vn)

]
− Vn

where {βi} are the minimisers of∥∥∥∥∥f(ρn) +
∑
i

βi
[
f(ρi)− f(ρn)

]∥∥∥∥∥
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Adaptive damping (WIP examples)
GaAs (Gallium arsenide)

Non-linear SCF behaviour in
initial steps
Anderson extrapolation fails

Fe2MnAl Heusler alloy structure

Localised states, spin
No suitable preconditioner P

Adaptive damping as safeguard

But: Tends to be slightly more expensive for “simple” cases 15 / 18
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Summary https://michael-herbst.com/slides/siamla21

DFTK

Toolbox for playing with SCF and DFT methods

Reduced models and tests on > 800 electrons

⇒ One code for mathematical prototyping and applications

SCF convergence:
Interplay between preconditioner, acceleration and damping

Good numerical setup needs to look at the physics

Adaptive damping scheme:
Safe guard for strong non-linearities / no preconditioner

Reduction of the human factor in parameter selection
16 / 18
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Questions? https://michael-herbst.com/slides/siamla21

DFTK https://dftk.org

� mfherbst

� https://michael-herbst.com/blog

R herbst@acom.rwth-aachen.de

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International Licence.
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