High-throughput electronic-structure simulations: Where reliability really matters

Michael F. Herbst

Applied and Computational Mathematics, RWTH Aachen University https://michael-herbst.com

05th May 2021

https://michael-herbst.com/talks/2021.05.05_high_throughput_reliability.pdf

Contents

📵 High-throughput DFT and 🐳 DFTK

2 Molecular systems

- Algebraic-diagrammatic construction methods
- Fast continuum solvation models

Societal challenges of 21st century

- Renewable energy
- Green chemistry and catalysts
- Drug design
- Transportation
- Data storage and communication
- \Rightarrow Need for novel materials
- ⇒ High-throughput computational screening
- \Rightarrow Common approach: Density-functional theory (DFT)

Typical scale

- \bullet One DFT calculation: $\mathcal{O}(\text{hours})$ to $\mathcal{O}(\text{days})$
- E.g. Open Catalyst Project¹
 - $\bullet~1.3$ million DFT calculations
 - $\bullet\ > 250$ million DFT energy evaluations
 - Workflow success rate: $\simeq 50\%^2$
- \Rightarrow Need high degree of automation
- \Rightarrow Reliability needs to be improved!
 - Multidisciplinary research problem

¹L. Chanussot et. al. The Open Catalyst 2020 (OC20) Dataset, 2020, arXiv 2010.09990.

²Z. Ulissi, private communication in ARPAE differentiate group seminar, Dec 2020.

Density-functional toolkit (DFTK)

- https://dftk.org
- 2 years of development
- Pure julia code
- Supports mathematical developments and scale-up to regime relevant to applications
- Low entrance barrier: Only 6k lines of code!
- Scales to > 800 electrons
- https://docs.dftk.org

Walks like Python, talks like Lisp, runs like FORTRAN

- Rich ecosystem (Optimisation, PDEs, stochastic processes, GPUs, Machine-Learning, statistics, linear algebra ...)
- High-level, compiled and hackable
- No two-language problem: Everything stays within julia
- Multiple dispatch:
 - Generic fallbacks, fast code for special cases
 - \Rightarrow First get it to work then get it to work *fast*
 - \Rightarrow Write code once, re-use for many data structures / back ends
- https://michael-herbst.com/learn-julia

Current research with 😽 DFTK

- ⇒ Vision: Improve high-throughput workflows:
 - Use physics: Reliable black-box SCF algorithms¹
 - Use maths: Error estimates and automatic error balancing²
 - Better algorithms: Numerical analysis of SCF methods³
 - \Rightarrow Reliable automatic selection of parameters in DFT workflows
 - International and interdisciplinary user base:
 - RWTH Aachen, ENPC Paris, MIT, CMU, ...
 - Involved in multidisciplinary research projects:
 - ACED-DIFFERENTIATE, EMC2 erc synergy, CESMIX

¹M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

²M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. 224, 227 (2020).

³E. Cancès, G. Kemlin, A. Levitt. arXiv 2004.09088 (2020).

Molecular systems

Highlighted **DFTK** projects

Error estimates for Kohn-Sham¹

- A posteriori estimates for non-self-consistent Kohn-Sham
- Estimation of basis error, diagonalisation error, arithmetic error
- Time to publication: 10 weeks

- SCFs for large inhomogeneous materials hard to converge
- LDOS: Black-box and parameter-free mixing scheme
- Same implementation for initial exploration and > 800 electrons

 1M . F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. **224**, 227 (2020). 2M . F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

- Adaptive damping based on quadratic model
- Let the maths choose the damping
- Replace trial-and-error by something more rigorous
- Work in progress ...

Ongoing 🗳 DFTK projects

- Feshbach-Schur methods for Schrödinger operators (Stamm)
- Towards full *a posteriori* error analysis (Stamm, Dusson, Cancès, Levitt)
- Improved initial guesses
 - Reduced order modelling (Stamm)
 - Machine learning (Viswanathan)

Outlook

- Combination of adaptive damping an LDOS mixing
- Localised states / semiconductors (Blügel)
- RPA and post-DFT (Friesecke, Thicke)
- Mixed-precision methods on GPU (Edelman)
- Multi-fidelity methods (Marzouk)

ADC in one slide

- Algebraic-diagrammatic construction (ADC) approach to electronic excitations
- Post-HF: Builds on Møller-Plesset PT ground states
- Intermediate states

$$\left|\Psi_{n}\right\rangle = \sum_{I} X_{I,n} \left|\tilde{\Psi}_{I}\right\rangle$$

• Hermitian eigenvalue problem

$$\mathbf{M}\mathbf{X} = \mathbf{\Omega}\mathbf{X}, \qquad \mathbf{X}^{\dagger}\mathbf{X} = \mathbf{I},$$

with ${\bf M}$ ADC matrix and ${\boldsymbol \Omega}$ excitation energies.

ullet M sparse, so iterative methods employed (Jacobi-Davidson)

High-throughput DFT and 😯 DFTK

Algebraic-diagrammatic construction methods

Some questions related to ADC

- ADC exists for multiple variants:
 - Core-valence separation (CVS)
 - Spin-flip
 - Frozen-core (FC) / frozen-virtual (FV)
- More specific numerics?
 - LOBPCG, Schur complement, preconditioning?
- Errors of CVS, FC, FV? Can these be undone?
- Interpolating from ADC(n) to ADC(n+1)
- \Rightarrow Difficult to address in previous frameworks
 - Recently developed: *adcc* Python package (https://adc-connect.org)

Current research with adcc: CVS relaxation²

- CVS approximation used to target core excitations
- How large is the error?
- Used [⊅] adcc¹ to develop numerical correction scheme

 1 M. F. Herbst, M. Scheurer, T. Fransson *et. al.* Wiley Interdiscip. Rev. Comput. Mol. Sci. **10**, e1462 (2020).

²M. F. Herbst and T. Fransson. J. Chem. Phys. **153** 054114 (2020).

Algebraic-diagrammatic construction methods

Typical 1s excitation (Fluoroethene)

- Error moderate for 1s core excitations
- WIP: 2s, 2p, ... (Error definitely larger!)
- Joint with Thomas Fransson (KTH) and Sokolov group (Ohio)

High-throughput DFT and Street DFTK

Molecular systems

Continuum solvation models based on domain decomposition¹

- Linear scaling, recently FMM acceleration
- Dissemination into modular package ddX (Stamm, Lipparini)
- WIP: Integration with Gaussian, Psi4, pyscf, adcc, ...

¹F. Lipparini, G. Scalmani, L. Lagadère, et. al. J. Chem. Phys. 141 184108 (2014).

Summary

- Mathematical developments for eigenvalue problems
- Plane-wave Kohn-Sham DFT ground state & response theory
- $\bullet~{\rm Supports}~{\rm LDA}~/~{\rm GGA}>800~{\rm electrons}$
- Broad development platform
- \Rightarrow High-throughput DFT methods
- Molecular systems
 - Error analysis / computational spectroscopy using [⊕]ac
 - $\bullet\,$ linear-scaling continuum solvation with ddX

Questions?

Dadcc https://adc-connect.org

Solution of the second state of the second sta

julia https://michael-herbst.com/learn-julia

mfherbst

▶ herbst@acom.rwth-aachen.de

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.