A novel black-box preconditioning strategy for high-throughput density-functional theory

Michael F. Herbst* and Antoine Levitt

*Applied and Computational Mathematics, RWTH Aachen University https://michael-herbst.com

17th March 2021

https://michael-herbst.com/talks/2021.03.17_gamm_scf_preconditioning.pdf

Societal challenges of 21st century

- Renewable energy
- Green chemistry and catalysts
- Drug design
- Transportation
- Data storage and communication
- \Rightarrow Need for novel materials
- \Rightarrow High-throughput computational screening
- \Rightarrow Common approach: Density-functional theory (DFT)

- \bullet One DFT calculation: $\mathcal{O}(\text{hours})$ to $\mathcal{O}(\text{days})$
- E.g. Open Catalyst Project¹
 - 1.3 million DFT calculations
 - $\bullet\ > 250$ million DFT energy evaluations
 - Workflow success rate: $\simeq 50\%^2$
- \Rightarrow Need high degree of automation
- \Rightarrow Reliability needs to be improved!
 - Multidisciplinary research problem

A & Q

¹L. Chanussot et. al. The Open Catalyst 2020 (OC20) Dataset, 2020, arXiv 2010.09990.

²Z. Ulissi, private communication in ARPAE differentiate group seminar, Dec 2020.

Density-functional toolkit (DFTK)

- https://dftk.org
- 2 years of development

• Pure julia code

- Supports mathematical developments and scale-up to regime relevant to applications
- Low entrance barrier: Only 6k lines of code!

Current research with 👽 DFTK

- \Rightarrow Vision: Improve high-throughput workflows:
 - Use physics: Reliable black-box SCF algorithms (this work)¹
 - Use maths: Error estimates and automatic error balancing²
 - Better algorithms: Numerical analysis of SCF methods³
 - \Rightarrow Reliable automatic selection of parameters in DFT workflows
 - International and interdisciplinary user base:
 - RWTH Aachen, ENPC Paris, MIT, CMU, ...
 - Involved in multidisciplinary research projects:
 - ACED-DIFFERENTIATE, EMC2 erc synergy, CESMIX

¹M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

²M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. 224, 227 (2020).

³E. Cancès, G. Kemlin, A. Levitt. arXiv 2004.09088 (2020).

Density-functional theory

• Coupled set of non-linear elliptic partial differential equations:

$$\left(-\frac{1}{2}\Delta + \mathcal{V}(\rho) \right) \psi_{i} = \varepsilon_{i} \psi_{i}, \quad \int \psi_{i}^{*} \psi_{j} = \delta_{ij}$$

$$\rho = \sum_{i=1}^{\infty} f\left(\frac{\varepsilon_{i} - \varepsilon_{F}}{T} \right) |\psi_{i}|^{2}, \quad \text{with } \varepsilon_{F} \text{ such that } \int \rho = N$$

• Density-dependent potential

$$\mathcal{V}(\rho) = V_{\text{Nuc}} + \int (v_C \rho) + V_{\text{xc}}(\rho)$$

with Coulomb kernel $v_C(\underline{r},\underline{r}') = \|\underline{r} - \underline{r}'\|^{-1}$

- Fermi-Dirac function $f(x) = 1/(1 + e^x)$
- Temperature T, electron count ${\cal N}$
- Exchange-correlation potential $V_{\rm xc}$, nuclear attraction $V_{\rm Nuc}$

Self-consistent field (SCF) approach

- Here: Periodic boundary conditions, plane-wave basis
- Density-dependent potential

$$\mathcal{V}(
ho) = V_{\mathsf{Nuc}} + \int (v_C
ho) + V_{\mathsf{xc}}(
ho)$$

 $\bullet\,$ Potential-to-density map F

$$F(V) = \sum_{i=1}^{\infty} f\left(\frac{\varepsilon_i - \varepsilon_F}{T}\right) |\psi_i|^2$$

with (ε_i, ψ_i) eigenpairs of $-\frac{1}{2}\Delta + V$.

- $\Rightarrow \mathsf{SCF} \mathsf{ solves } \rho = F(\mathcal{V}(\rho))$
 - Key computational step of density-functional theory (DFT)

The SCF Jacobian

- SCF solves $\rho = F(\mathcal{V}(\rho))$
- Consider damped fixed-point scheme:

$$\rho_{n+1} = \rho_n + \alpha \left[F(\mathcal{V}(\rho_n)) - \rho_n \right]$$

• Near a fixed-point the error goes as

$$e_{n+1} \simeq \left[1 - \alpha \epsilon^{\dagger}\right] e_n$$

where $\epsilon^{\dagger} = 1 - \chi_0 (v_C + f_{\rm xc})$

- χ_0 : Independent-particle susceptibility (derivative of F)
- f_{xc} : XC kernel (derivative of V_{xc} , usually small)
- \Rightarrow Jacobian $J_{\alpha} = 1 \alpha \epsilon^{\dagger}$ contains dielectric matrix ϵ
- \Rightarrow SCF convergence linked to dielectric properties

How bad can it get?

- In Fourier space: $\widehat{(v_C \rho)}(\underline{q}) = \frac{4\pi \hat{\rho}(\underline{q})}{|q|^2}$
- $\bullet~{\rm Smallest}~q\sim 1/L$ where L is crystal length

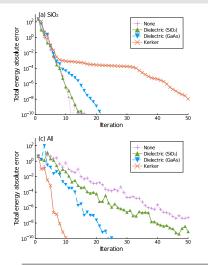
$$\Rightarrow \lambda_{\max}(v_C) \sim L^2$$

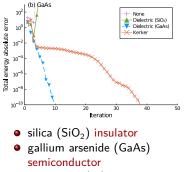
- Can imply $\lambda_{\max}(\epsilon^{\dagger}) \sim L^2$ (e.g. in metals, charge sloshing)
- \Rightarrow SCF condition number grows as L^2
- \Rightarrow Infeasibly small damping α needed for large systems
 - Mixing schemes: Preconditioned quasi-Newton updates

$$\rho_{n+1} = \rho_n + \alpha P^{-1} \left[F(\mathcal{V}(\rho_n)) - \rho_n \right]$$

where $P^{-1} \approx \left(\epsilon^{\dagger}\right)^{-1}$.

Convergence results for bulk materials¹





aluminium (AI) metal

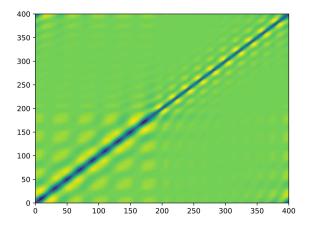
¹M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

Problems with established mixing methods

- $\epsilon^{\dagger} = 1 \chi_0 (v_C + f_{\rm xc})$
- State-of-the art mixing models
 - Directly approximate $P^{-1} = \left(\varepsilon^{\dagger} \right)^{-1}$
 - "Neglect of local field effects" (to get closed expression in q)
 - Either highly material specific or feature many parameters
 - \Rightarrow Need to know properties *a priori* and manually chose
- Our approach: Approximate χ_0 directly
- Try a non-local approximation $\widetilde{\chi_0}(\underline{r},\underline{r}')\simeq \chi_0(\underline{r},\underline{r}')$
- Apply preconditioner iteratively

$$P^{-1}\rho_n = (1 - \widetilde{\chi_0} v_C))^{-1} \rho_n$$

Plot of (exact) χ_0



• 1D system (Chain of 10 Sodium atoms and 10 helium atoms)

- Main interest: Large-scale variations in $\chi_0(\underline{r},\underline{r}')$
- $\Rightarrow \text{ Argue } \underline{r}' \mapsto \chi_0(\underline{r},\underline{r}') \text{ more localised around } \underline{r} \text{ than } V(\underline{r}).$
 - "Row-sum mass lumping":

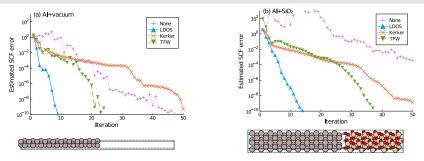
$$\int \chi_0(\underline{\boldsymbol{r}}, \underline{\boldsymbol{r}}') V(\underline{\boldsymbol{r}}') \, \mathrm{d}\underline{\boldsymbol{r}}' \simeq V(\underline{\boldsymbol{r}}) \int \chi_0(\underline{\boldsymbol{r}}, \underline{\boldsymbol{r}}') \, \mathrm{d}\underline{\boldsymbol{r}}'$$
$$= -V(\underline{\boldsymbol{r}}) D_{\mathsf{loc}}(\underline{\boldsymbol{r}})$$

with local density of states

$$D_{\rm loc}(\underline{r}) = \frac{1}{T} \sum_{i} f'\left(\frac{\varepsilon_i - \varepsilon_F}{T}\right) |\psi_i(\underline{r})|^2$$

¹M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

LDOS preconditioning (examples)



- 20 repeats of aluminium + 20 repeats vacuum / silica
- TFW: local Thomas-Fermi-von Weizsäcker mixing¹
- LDOS automatically interpolates between Kerker mixing (in the metallic region) and no mixing (insulating region)
- \Rightarrow Parameter-free and black-box

¹D. Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. **64**, 121101 (2001).

LDOS preconditioning results

		None		Die	Dielectric		Kerker		LDOS		LDOS+ Dielectric	
	\mathcal{N}	it	κ	it	κ	it	κ	it	κ	it	κ	
SiO ₂ +vacuum	10	11	3.3	26	19.7	50	95.7	11	3.3	26	19.7	
2	20	12	3.4	30	24.4	n.c.	351.5	12	3.4	30	21.7	
GaAs+vacuum	10	17	13.4	18	6.2	23	67.0	17	12.4	18	10.4	
	20	20	15.5	22	12.9	n.c.	312.2	20	15.5	22	12.9	
Al+vacuum	10	19	51.5	24	44.3	22	64.4	9	3.7	16	10.3	
	20	47	170.8	49	168.5	n.c.	323.9	9	3.5	20	10.5	
GaAs+SiO ₂ ^a	10	45	13.7	19	8.9	34	52.4	45	13.4	19	8.8	
	20	n.c.	18.2	20	10.2	n.c.	170.1	n.c.	18.2	20	10.2	
AI+SiO ₂	10	43	93.1	29	33.6	30	50.9	17	6.1	20	9.2	
	20	n.c.	316.6	n.c.	118.4	n.c.	159.4	14	5.4	20	10.1	
Al+GaAs	10	n.c.	144.0	24	22.4	16	9.0	15	7.2	11	3.5	
	20	n.c.	485.0	40	59.0	26	28.8	26	21.4	13	5.0	
$AI+GaAs+SiO_2$	10	n.c.	149.5	34	50.4	36	62.9	26	21.5	19	9.0	

• Coloured: Condition number κ less than doubled on doubling system size

Summary and outlook

- LDOS preconditioner:
 - Adaptive preconditioning for inhomogeneous systems
 - $\bullet~\mbox{Parameter-free} \Rightarrow \mbox{Highly suitable for high-throughput}$
- 😽 DFTK usage:
 - First develop LDOS scheme on test systems (1D, toy problems)
 - Test scheme on > 800 electrons (in the same code!)
- Next steps for a full black-box SCF preconditioner:
 - $\bullet~$ Spin /~ XC term
 - Black-box model for semiconductors
 - Localised states

Acknowledgements

Antoine Levitt

Eric Cancès Xavier Gonze Phil Hasnip Lin Lin Chao Yang

suropean Research Council stabilished by the European Commission

ParisTech

Other DFTK contributors: E. Berquist, G. Kemlin, L. Ponet, D. Santra, N. Schmitz, S. Siraj-Dine, Z. Tóth

Questions?

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.