DFTK.jl: A multidisciplinary Julia code for density-functional theory development

Michael F. Herbst

CERMICS, Inria Paris and École des Ponts ParisTech https://michael-herbst.com

3rd February 2021

Contents

Why is density-functional theory so difficult?

DFTK— The density-functional toolkit

Why is electronic structure theory so hard?

- Regime of quantum mechanics
- System: Hamiltonian $\hat{\mathcal{H}}$, differential operator
- ullet Minimisation problem: Ground state Ψ with energy

$$E = \min_{\Psi} \int_{\mathbb{R}^{3N}} \Psi \left(\underline{\boldsymbol{r}}_1, \underline{\boldsymbol{r}}_2, \dots, \underline{\boldsymbol{r}}_N \right) \hat{\mathcal{H}} \Psi \left(\underline{\boldsymbol{r}}_1, \underline{\boldsymbol{r}}_2, \dots, \underline{\boldsymbol{r}}_N \right) d\underline{\boldsymbol{r}}_1 \cdots d\underline{\boldsymbol{r}}_N$$

- Electronic properties: Derivatives of the energy
- Challenge: Size of N, e.g. 2 silicon atoms: N=28
- ullet 2 quadrature points per DOF \Rightarrow ${f 2}^{84} pprox 2 \cdot 10^{25}$ integrand evals
- ⇒ Finished in 1 year:

Why is electronic structure theory so hard?

- Regime of quantum mechanics
- System: Hamiltonian $\hat{\mathcal{H}}$, differential operator
- ullet Minimisation problem: Ground state Ψ with energy

$$E = \min_{\Psi} \int_{\mathbb{R}^{3N}} \Psi \left(\underline{\boldsymbol{r}}_1, \underline{\boldsymbol{r}}_2, \dots, \underline{\boldsymbol{r}}_N \right) \hat{\mathcal{H}} \Psi \left(\underline{\boldsymbol{r}}_1, \underline{\boldsymbol{r}}_2, \dots, \underline{\boldsymbol{r}}_N \right) d\underline{\boldsymbol{r}}_1 \cdots d\underline{\boldsymbol{r}}_N$$

- Electronic properties: Derivatives of the energy
- Challenge: Size of N, e.g. 2 silicon atoms: N=28
- ullet 2 quadrature points per DOF \Rightarrow ${f 2}^{84} pprox 2 \cdot 10^{25}$ integrand evals
- \Rightarrow Finished in 1 year: ≈ 1.5 attoseconds per eval

Density-functional theory

- ⇒ Brute force won't cut it
- \Rightarrow Cost / quality balance of approximate models ($\simeq 10^3 10^4$)
- ⇒ E.g. density-functional theory (DFT) approximation
 - Amongst the most-used family of models
 - Effective one-particle model (N=1)
 - May construct DFT model for specific context
 - Discretisation basis: Build known physics into model
 - But: Non-convex, non-linear minimisation

Self-consistent field procedure

• Euler-Lagrange equations (DFT):

$$\begin{cases} \hat{\mathcal{F}}_{\rho} = -\frac{1}{2}\Delta + V_{\rho} \\ \rho(\underline{r}) = \sum_{i} f_{\varepsilon_{F}}(\varepsilon_{i}) \left| \psi_{i}(\underline{r}) \right|^{2} & \text{with } \hat{\mathcal{F}}_{\rho}\psi_{i} = \varepsilon_{i}\psi_{i}, \\ \varepsilon_{F} \text{ chosen such that } \int \rho \, \mathrm{d}\underline{r} = N, \\ & \text{and } f_{\varepsilon_{F}}(x) = \left[1 + \exp\left(\frac{x - \varepsilon_{F}}{T}\right)\right]^{-1} \end{cases}$$

- Self-consistent field procedure (SCF):
 - (1) Guess initial density ρ
 - (2) Build Kohn-Sham operator $\hat{\mathcal{F}}_{\rho}$
 - (3) Diagonalise it to get new $\{\psi_i\}_i$
 - (4) Build new ρ go to (2).

Obstacles for (high-throughput) DFT calculations

- SCF requires nested layers of solvers:
 - Eigenproblem inside fixed-point problem
 - Algorithms? Preconditioning? Tolerances?
- Accuracy-related parameters chosen by experience
 - Even in automated workflows!¹
- ⇒ Empirical balance: Accuracy *versus* speed *versus* reliability
 - Promising aspects, hardly explored:
 - Numerical analysis to reduce number of parameters
 - More specific preconditioners to capture physics
 - Precision reduction, GPGPU, other accelerators

¹L. Chanussot et. al. The Open Catalyst 2020 (OC20) Dataset, 2020, arXiv 2010.09990.

Interdisciplinary field \Rightarrow Multidisciplinary community

- Mathematicians: Toy models and unphysical edge cases
- High-performance person: Exploit hardware specialities
- Scientist: Design new models, not tweak numerics
- Practitioner: Reliable, black-box code, high-level interface
- State-of-the-art DFT codes:
 - Difficult problem ⇒ Complex codes
 - Hard-coded: Workflow / algorithms / hardware optimisations
 - Huge code bases (1M lines and beyond)
 - Non-standard input syntax and API
 - Two-language problem: Where to cut?

Density-functional toolkit (DFTK)

♦ DFTK — https://dftk.org

- < 2 years of development, ≈ 6000 lines of julia
- Sizeable feature list (see https://docs.dftk.org):
 - Ground state and a bit of response theory
 - Multitude of SCF approaches (> 800 electrons possible)
 - Compose your model (e.g. analytic potentials, ...)
 - 1D / 2D / 3D systems
 - Arbitrary floating point type
 - Mixed MPI-Thread-based parallelism
 - Integration with materials-related python modules
- Performance: Within factor 2 of established codes
- Documentation and examples: https://docs.dftk.org

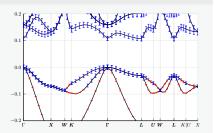
Why julia?

Walks like Python, talks like Lisp, runs like FORTRAN

- Rich ecosystem (Optimisation, PDEs, stochastic processes, GPUs, Machine-Learning, statistics, linear algebra . . .)
- High-level, compiled and hackable
- No two-language problem: Everything stays within julia
- Multiple dispatch:
 - Generic fallbacks, fast code for special cases
 - ⇒ First get it to work then get it to work fast
 - ⇒ Write code once, re-use for many data structures / back ends
- https://michael-herbst.com/learn-julia

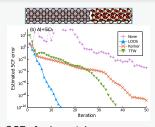
Current research with TFTK

- ⇒ Vision: Improve high-throughput workflows:
 - Use physics: Reliable black-box SCF algorithms¹
 - Use maths: Error estimates and automatic error balancing²
 - Better algorithms: Numerical analysis of SCF methods³
 - ⇒ Reduction of parameters in DFT workflows
 - Key unique features of DFTK:
 - Support mathematical developments and scale-up to regime relevant to applications
 - Low entrance barrier for researchers


¹M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. 224, 227 (2020).

²M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

³E. Cancès, G. Kemlin, A. Levitt. arXiv 2004.09088 (2020).


Highlighted **FTK** projects

Error estimates for Kohn-Sham¹

- A posteriori estimates for non-self-consistent Kohn-Sham
- Estimation of basis error, diagonalisation error, arithmetic error
- Time to publication: 10 weeks

SCF for inhomogeneous systems²

- SCFs for large inhomogeneous materials hard to converge
- LDOS: Black-box and parameter-free mixing scheme
- Same implementation for initial exploration and > 800 electrons

¹M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. **224**, 227 (2020).

²M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

Outlook

- a posteriori error estimates for DFT
 - Adaptive DFT methods with guaranteed error certification
 - Complements uncertainty quantification e.g. in ML, AIMD
 - + Reliability
- Improved SCF algorithms
 - Reduce parameters (for damping, mixing, preconditioners)
 - But: Use physics and maths, not heuristics
 - + Practicability for high-throughput
- Acceleration using GPUs
 - Challenge: Keep flexibility in the code
 - Wide range of suitable tools in Julia
 - + Speed

DEMO time

DEMO

Using **OFTK** in practice

Acknowledgements

Antoine Levitt

Eric Cancès

Other DFTK contributors: E. Berquist, G. Kemlin, L. Ponet, D. Santra, S. Siraj-Dine, Z. Tóth

Questions?

- The state of the contract of t
 - julia https://michael-herbst.com/learn-julia
 - mfherbst
 - https://michael-herbst.com/blog
 - michael.herbst@inria.fr

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.