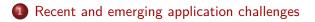
High-throughput density-functional theory: An interdisciplinary challenge

Michael F. Herbst, Antoine Levitt, Eric Cancès

CERMICS, Inria Paris and École des Ponts ParisTech

17th December 2020


cole des Pont ParisTech

 \rightarrow

https://michael-herbst.com/talks/2020.12.17_scientific_computing_kl.pdf

Contents

- 2 Density-functional theory
- OFTK The density-functional toolkit
 - A posteriori error analysis
 - Reliable SCF algorithms
 - Lowering the entrance barrier for researchers

Contents

Recent and emerging application challenges

Density-functional theory

-) 😯 DFTK— The density-functional toolkit
 - A posteriori error analysis
 - Reliable SCF algorithms
 - Lowering the entrance barrier for researchers

Electronic structure theory

• Modelling and understanding behaviour of electrons in matter

Electronic structure theory

Modelling and understanding behaviour of electrons in matter

Materials and semiconductors

CC-by-3.0 https://en.wikipedia.org/ wiki/File:Silicon.jpg

Chemical and pharmaceutical industry

CC-by-1.0 https://en.wikipedia.org/ wiki/File:Lab_bench.jpg

Domains and societal challenges

- Renewable energies
- Catalyst design
 - Fertilisation, cleaner chemical processes, ...
- Battery materials
 - Electric cars, energy storage, ...
- IT materials
 - Usage of topological materials, spintronics, twisttronics, ...
- Drug discovery

Aren't experiments good enough?

- Experiments are expensive (money, people, time)
- 1 droplet water¹: $1.7 \cdot 10^{21}$ particles
- Experiments only measure averages
- Sometimes hard to link to physical laws
- \Rightarrow Cooperative research of experiment and theory
- \Rightarrow Standard practice in industry and research

¹Assume $0.05 \,\mathrm{ml}$.

The need for high-throughput

- Design space is absolutely vast
- E.g. to propose new catalyst, need to consider possibilities in

 Host materials 	$30\ {\rm transition}\ {\rm metals}$
 Dopants 	$30 \ {\rm transition} \ {\rm metals}$
• Surface terminations	$\simeq 3-5$
• Reaction intermediates	$\simeq 10$
• Adsorption configurations	$\simeq 30$

- $\Rightarrow \simeq 10^5 10^6$ possibilities!
- State-of-the-art: Density-functional theory (DFT)
- One calculation: $\mathcal{O}(\text{hours})$

So can't I just do machine learning?

• Yes (ongoing research), but ...

 $^1\text{L.}$ Chanussot et. al. The Open Catalyst 2020 (OC20) Dataset, 2020, arXiv 2010.09990.

²Z. Ulissi, private communication in ARPAE differentiate group seminar, Dec 2020.

So can't I just do machine learning?

- Yes (ongoing research), but ...
- ... I still need DFT as training data
- Open Catalyst Project¹
 - 1.3 million DFT calculations
 - $\bullet\ > 250$ million DFT energy evaluations
 - Workflow success rate: $\simeq 50\%^2$
- \Rightarrow Need high degree of automation
- \Rightarrow Reliability needs to be improved!

¹L. Chanussot *et. al.* The Open Catalyst 2020 (OC20) Dataset, 2020, arXiv 2010.09990. ²Z. Ulissi, private communication in ARPAE differentiate group seminar. Dec 2020.

So can't I just do machine learning?

- Yes (ongoing research), but ...
- ... I still need DFT as training data
- Open Catalyst Project¹
 - 1.3 million DFT calculations
 - $\bullet\ > 250$ million DFT energy evaluations
 - Workflow success rate: $\simeq 50\%^2$
- \Rightarrow Need high degree of automation
- \Rightarrow Reliability needs to be improved!

¹L. Chanussot et. al. The Open Catalyst 2020 (OC20) Dataset, 2020, arXiv 2010.09990.

²Z. Ulissi, private communication in ARPAE differentiate group seminar, Dec 2020.

Contents

2 Density-functional theory

-) 😽 DFTK The density-functional toolkit
 - A posteriori error analysis
 - Reliable SCF algorithms
 - Lowering the entrance barrier for researchers

Why is electronic structure theory so hard?

- Regime of quantum mechanics
- System: Hamiltonian $\hat{\mathcal{H}}$, differential operator
- \bullet Minimisation problem: Ground state Ψ with energy

$$E = \min_{\Psi} \int_{\mathbb{R}^{3N}} \Psi\left(\underline{\boldsymbol{r}}_{1}, \underline{\boldsymbol{r}}_{2}, \dots, \underline{\boldsymbol{r}}_{N}\right) \hat{\mathcal{H}} \Psi\left(\underline{\boldsymbol{r}}_{1}, \underline{\boldsymbol{r}}_{2}, \dots, \underline{\boldsymbol{r}}_{N}\right) \mathrm{d}\underline{\boldsymbol{r}}_{1} \cdots \mathrm{d}\underline{\boldsymbol{r}}_{N}$$

- Electronic properties: Derivatives of the energy
- Challenge: Size of N, e.g. 2 silicon atoms: N = 28
- 2 quadrature points per DOF \Rightarrow $\mathbf{2}^{84} \approx 2 \cdot 10^{25}$ integrand evals
- \Rightarrow Finished in 1 year:

Why is electronic structure theory so hard?

- Regime of quantum mechanics
- System: Hamiltonian $\hat{\mathcal{H}}$, differential operator
- \bullet Minimisation problem: Ground state Ψ with energy

$$E = \min_{\Psi} \int_{\mathbb{R}^{3N}} \Psi\left(\underline{\boldsymbol{r}}_{1}, \underline{\boldsymbol{r}}_{2}, \dots, \underline{\boldsymbol{r}}_{N}\right) \hat{\mathcal{H}} \Psi\left(\underline{\boldsymbol{r}}_{1}, \underline{\boldsymbol{r}}_{2}, \dots, \underline{\boldsymbol{r}}_{N}\right) \mathrm{d}\underline{\boldsymbol{r}}_{1} \cdots \mathrm{d}\underline{\boldsymbol{r}}_{N}$$

- Electronic properties: Derivatives of the energy
- Challenge: Size of N, e.g. 2 silicon atoms: N = 28
- 2 quadrature points per DOF \Rightarrow $\mathbf{2}^{84} \approx 2 \cdot 10^{25}$ integrand evals
- \Rightarrow Finished in 1 year: $\approx 1.5~{\rm attoseconds}$ per eval

Density-functional theory

- \Rightarrow Brute force won't cut it
- $\Rightarrow\,$ Cost / quality balance of approximate models ($\simeq 10^3 10^4)$
- \Rightarrow E.g. density-functional theory (DFT) approximation
 - Amongst the most-used family of models
 - Effective one-particle model (N = 1)
 - May construct DFT model for specific context
 - Discretisation basis: Build known physics into model
 - But: Non-convex, non-linear minimisation

Self-consistent field procedure

• Euler-Lagrange equations (DFT):

$$\begin{cases} \hat{\mathcal{F}}_{\rho} = -\frac{1}{2}\Delta + V_{\rho} \\ \rho(\underline{r}) = \sum_{i} f_{\varepsilon_{F}}(\varepsilon_{i}) |\psi_{i}(\underline{r})|^{2} \quad \text{with } \hat{\mathcal{F}}_{\rho}\psi_{i} = \varepsilon_{i}\psi_{i}, \\ \varepsilon_{F} \text{ chosen such that } \int \rho \,\mathrm{d}\underline{r} = N, \\ \text{ and } f_{\varepsilon_{F}}(x) = \left[1 + \exp\left(\frac{x - \varepsilon_{F}}{T}\right)\right]^{-1} \end{cases}$$

- Self-consistent field procedure (SCF):
 - (1) Guess initial density ρ
 - (2) Build Kohn-Sham operator $\hat{\mathcal{F}}_{\rho}$
 - (3) Diagonalise it to get new $\{\psi_i\}_i$
 - (4) Build new ρ go to (2).

Typical DFT workflow

- 1 Formulate research question
- Ochoose DFT model +
- **3** Choose numerics (thresholds, algorithms ...)
- 4 Run calculation \leftarrow
- If failure: Tweak numerics, repeat 4 [⊥]
- 6 Convergence study
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

Typical DFT workflow

- 1 皆 Formulate research question
- 🥹 🚰 Choose DFT model 🗧
- 8 Choose numerics (thresholds, algorithms ...)
- 4 🐝 Run calculation —
- 5 🐮 If failure: Tweak numerics, repeat 4 -
- 6 🗱 Convergence study -
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

Typical DFT workflow

- 1 皆 Formulate research question
- 🥹 🚰 Choose DFT model 🗧
- 8 Choose numerics (thresholds, algorithms ...)
- 4 🐗 Run calculation —
- 5 皆 If failure: Tweak numerics, repeat 4 -
- 👩 🐗 Convergence study -
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

Obstacles for high-throughput screening

- SCF requires nested layers of solvers:
 - Eigenproblem inside fixed-point problem
 - Algorithms? Preconditioning? Tolerances?
- Accuracy-related parameters chosen by experience
 - Even in automated workflows!¹
- ⇒ Empirical balance: Accuracy versus speed versus reliability
 - Promising aspects, hardly explored:
 - Numerical analysis to reduce number of parameters
 - More specific preconditioners to capture physics
 - Precision reduction, GPGPU, other accelerators

¹L. Chanussot et. al. The Open Catalyst 2020 (OC20) Dataset, 2020, arXiv 2010.09990.

- Mathematicians: Toy models and unphysical edge cases
- High-performance person: Exploit hardware specialities
- Scientist: Design new models, not tweak numerics
- Practitioner: Reliable, black-box code, high-level interface
- State-of-the-art DFT codes:
 - Difficult problem \Rightarrow Complex codes
 - Hard-coded: Workflow / algorithms / hardware optimisations
 - Huge code bases (1M lines and beyond)
 - Non-standard input syntax and API
 - Two-language problem: Where to cut?

A & Q

Contents

- 1 Recent and emerging application challenges
- 2 Density-functional theory
- OFTK The density-functional toolkit
 - A posteriori error analysis
 - Reliable SCF algorithms
 - Lowering the entrance barrier for researchers

🔂 DFTK — https://dftk.org

- < 2 years of development, pprox 6000 lines of julia
- Sizeable feature list (see https://docs.dftk.org):
 - Ground state and a bit of response theory
 - Multitude of SCF approaches (> 800 electrons possible)
 - Compose your model (e.g. analytic potentials, ...)
 - 1D / 2D / 3D systems
 - Arbitrary floating point type
 - Mixed MPI-Thread-based parallelism
 - Integration with materials-related python modules
- Performance: Within factor 2 of established codes
- Documentation and examples: https://docs.dftk.org

A & Q

Walks like Python, talks like Lisp, runs like FORTRAN

- Rich ecosystem (Optimisation, PDEs, stochastic processes, GPUs, Machine-Learning, statistics, linear algebra ...)
- High-level, compiled and hackable
- No two-language problem: Everything stays within julia
- Multiple dispatch:
 - Generic fallbacks, fast code for special cases
 - \Rightarrow First get it to work then get it to work *fast*
 - \Rightarrow Write code once, re-use for many data structures / back ends
- https://michael-herbst.com/learn-julia

A & Q

Current research with 👽 DFTK

- \Rightarrow Vision: Improve high-throughput workflows:
 - Use physics: Reliable black-box SCF algorithms¹
 - Use maths: Error estimates and automatic error balancing²
 - Better algorithms: Numerical analysis of SCF methods³
 - \Rightarrow Reduction of parameters in workflows
 - Key unique features of 🐳 DFTK :
 - Support mathematical developments and scale-up to regime relevant to applications
 - Low entrance barrier for researchers

¹M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. In press. (2020).

²M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

³E. Cancès, G. Kemlin, A. Levitt. arXiv 2004.09088 (2020).

- A posteriori error: Upper bound how far solution is off
- Mathematical answer for: Has target accuracy been reached?
- Sources of error in DFT:
 - Model error
 - Discretisation error
 - Algorithm error
 - Arithmetic error
- A posteriori bound on error \Rightarrow Automatic error balancing
- For DFT: Error estimation in its infancy

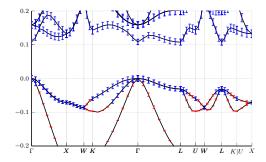
A & Q

🚰 DETK

000000000

A posteriori error analysis

A posteriori error analysis with 🐳 DFTK


- Requirements:
 - Mathematical theory can only treat reduced models
 - Step-by-step expansion
 - Ingredients not yet clear (e.g. form of integrals, derivatives)
 - \Rightarrow Need accessible toolbox for experimentation
 - Arithmetic error: Interval arithmetic, elevated precision
- **W**DFTK offers:
 - Fully customisable model
 - Support for arbitrary floating-point types
 - Use julia ecosystem on 😽 DFTK datastructures:
 - Numerical quadrature, forward-mode AD, ...
 - \Rightarrow Rapid prototyping in numerical linear algebra

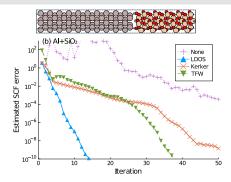
Density-functional theory (DFT) 0000000

A posteriori error analysis

A posteriori error analysis: First results¹

- Reduced model: Non-self-consistent Kohn-Sham
- Estimation of arithmetic error (IntervalArithmetic.jl)
- Used elevated floating-point type (DoubleFloats.jl)
- Time to submission: 10 weeks

¹M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. In press. (2020)


DFTK

Reliable SCF algorithms

- Convergence of SCF depends on dielectric properties
- \Rightarrow Different SCF needed for metals, insulators, semiconductors
 - State-of-the-art schemes based on results for bulk materials
- \Rightarrow What to do e.g. for surfaces?
 - Requirements:
 - 1D / 2D / 3D: Analyse spectral properties (KrylovKit.jl)
 - Rapid prototyping to mix and match ideas
 - \Rightarrow High-level code inside key algorithms
 - Testing requires realistic systems, but first version never works
 - \Rightarrow Scale-up *without* major rewrite of toy code

 Application challenges
 Density-functional theory (DFT)
 Image: Construction of the operation of the

Black-box preconditioner for inhomogeneous systems¹

- Black-box and parameter-free preconditioner scheme (LDOS)
- Works in both metallic and insulating regions

• Same implementation for initial exploration and > 800 electrons

¹M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

💦 DFTK

Lowering the entrance barrier for researchers

- Money: Always tight
- Time: 3-ish years for a PhD, master even less
- State of the art:
 - Some codes require software licences $\mathcal{O}(5k \in)$
 - Usage: Input format and interface
 - Development: Scarce tests, comments, documentation
 - 1M lines of hardly uniform code conventions
 - Original developers have left (PhD is over)

🚰 DETK

Lowering the entrance barrier for researchers

Attempts to lower the barriers in \mathbf{E} DFTK

- julia: Zero cost and great learning resources
- Design goal: Code follows mathematical structure of DFT
- Aim for best agreement between code and equations (Unicode)
- Comments: Hint derivation or point to original articles
- https://docs.dftk.org with plenty of usage example
- Example projects:
 - Publication following master project
 - 8-week student project to toy with GPUs in DFT
 - \Rightarrow Both cases: No familiarity with DFT or **julia**
 - Error estimates paper

Summary and outlook

- High-throughput screening
 - Key Ingredients to design the materials of tomorrow
 - Main obstacle: Large number of parameters
 - Chosen empirically \Rightarrow Reliability limited
- 👽 DFTK : Multidisciplinary software development
 - Closely integrated with julia ecosystem
 - Mix and match to build new algorithms
 - Toy problems and scale-up to realistic applications
- Future directions . . .

Reliability Error estimates and black-box workflows

Efficiency Mixed precision methods

Hardware usage GPU integration

Acknowledgements

Antoine Levitt

Eric Cancès

cole des Ponts ParisTech

Other DFTK contributors: Eric Berquist, Gaspard Kemlin, Louis Ponet, Sami Siraj-Dine, Zsuzsanna Tóth

Questions?

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.