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High-throughput DFT

Typical density-functional theory (DFT) workflow
1 Formulate research question

Start with structure / lattice
Select quantities of interest:

Free energy, band gap, excitation energies, . . .

2 Choose DFT model
DFT functional

Pseudopotential

. . .

3 Choose numerics

4 Run calculation

5 If failure: Tweak numerics, repeat 4

6 Convergence study

7 Physics appropriately modelled?
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High-throughput DFT

High-throughput DFT applications

High-throughput screening: Systematic computation

Narrow down 10k candidates to O(10)

⇒ Preselect for later investigation
Applications:

In silico design of novel materials

Catalysis, battery research, structure determination

⇒ Reduce expensive experiments / manual work

⇒ Requires high degree of automation
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High-throughput DFT

Obstacles for high-throughput screening

Accuracy-related parameters chosen by experience

Empirical balance: Accuracy versus speed versus reliability
⇒ Need to reduce number of parameters:

Use physics: Reliable black-box SCF algorithms

Use maths: Error estimates and error balancing (this work)

⇒ Need code base to support mathematical developments and
scale-up to the level of applications

6 / 37



High-throughput DFT and DFTK Error analysis for DFT A posteriori error for linear KS A & Q

High-throughput DFT

Demands for interdisciplinary software
Mathematicians: Toy models and unphysical edge cases

High-performance person: Exploit hardware specialities

Scientist: Design new models, not tweak numerics

Practitioner: Reliable, black-box code, high-level interface

for multidisciplinary research:
Walks like Python, talks like Lisp, runs like FORTRAN

Rich ecosystem (Optimisation, PDEs, stochastic processes,
GPUs, Machine-Learning, Statistics, Linear Algebra . . . )

No two-language problem (high-level, compiled and hackable)

⇒ Write code once, re-use for many back ends / machines . . .

https://michael-herbst.com/learn-julia
7 / 37
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High-throughput DFT

DFTK— https://dftk.org

17 months of development, ≈ 5500 lines of
Sizeable feature list (see https://docs.dftk.org):

Ground state and a bit of response theory (new including spin)

Multitude of SCF approaches (> 800 electrons possible)

Compose your model (e.g. analytic potentials, . . . )

1D / 2D / 3D systems

Arbitrary floating point type

Integration with materials-related python modules

Performance: Within factor 2 of established codes

Documentation and examples: https://docs.dftk.org
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High-throughput DFT

A few recent DFTK projects

Numerical analysis of SCF1
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a = 11.2 Bohrs, gap = 1.8 · 10−2

Anderson
β = 1
β = 0.5
β = 0.2
β = 0.1

SCF and direct minimisation
Convergence wrt. spectral gap
Numerical tests in DFTK

SCF for inhomogeneous systems2

SCFs for large inhomogeneous
materials hard to converge
Black-box and parameter-free mixing
scheme (unlike other approaches)

⇒ Platform for multidisciplinary collaboration
1E. Cancès, G. Kemlin, A. Levitt. arXiv 2004.09088 (2020)
2M. F. Herbst, A. Levitt. arXiv 2009.01665 (2020)
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A posteriori error

Aim of a posteriori error analysis
Starting point: Problem has been solved numerically

Question: How good is the answer?
Annotate guaranteed upper bound on numerical error:
' Error bars of experimental science

6' Statistical error

Prospect: Automatic selection of accuracy parameters
Challenges: Error bounds are useless unless . . .

. . . they are computable

. . . they are sharp / accurate

Better error bounds ⇒ Restricted scope
Basis type, quantity of interest, . . . 11 / 37
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A posteriori error

Errors everywhere . . .
1 Formulate research question, define quantity of interest

2 Choose DFT model (Model error)
3 Choose numerics

Discretisation: Basis size, k-point mesh (Discretisation error)

Convergence thresholds: SCF, eigensolver, . . . (Algorithm error)

Algorithm: SCF guess, preconditioners, mixing, . . .

Floating-point type (Arithmetic error)

4 Run calculation (Programming error, hardware error)

5 . . .

⇒ Error terms known ⇒ Identify accuracy-limiting parameters

⇒ Automatically deduced refined setup
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A posteriori error

A posteriori error estimation
Hamiltonian H, eigenstates (ε, u), quantity of interest q
Calculation yields approximations ε̃, ũ, q̃ (at current parameter set)

Error ‖q − q̃‖V (for some norm V )
Examples: ‖ρ− ρ̃‖V , |E − Ẽ|

But q is unknown!

⇒ Need residual-error relationship, i.e. find constant C and
norms W , s.t.

‖q − q̃‖V ≤ C ‖r̃‖W (a posteriori error)

Where r̃ is some residual, e.g. the eigenpair residual
r̃ = Hũ− ε̃ũ

Note: Exact H unknown ⇒ ‖r̃‖W unknown (but easier . . . )
13 / 37
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A posteriori error

Finding the right norms is not always easy . . .

Residual-error relationship ‖q − q̃‖V ≤ C ‖r̃‖W
Which norms to pick? ‖·‖∞ ‖·‖2 ‖·‖H1 ‖·‖H−1

⇒ Depends on quantity of interest!

⇒ Error bounds depend on quantity of interest

Consider linear response problem Ax = b

x should be plotted ⇒ ‖·‖V = ‖·‖∞
Oettli-Prager relation:

‖x̃− x‖∞ ≤
‖Ax̃− b‖∞

‖A‖∞ ‖x̃‖1 + ‖b‖∞
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A posteriori error

Status of error estimation in DFT

A priori error (plane-wave)1

A posteriori (FE, assuming exact solution)2

k-point sampling3

Cluster bounds4

Non-linear eigenproblems5

⇒ So far just good building blocks

Our contribution: Computable bounds for linear KS model6
1E. Cancès, R. Chakir, Y. Maday. ESIAM: M2AN, 49, 755 (2015)
2H. Chen, X. Dai et. al. Mulscale. Model. Sim. 12, 1828 (2014)
3E. Cancès and V. Ehrlacher et. al. Numer. Math. 144, 479 (2020)
4E. Cancès, G. Dusson et. al. Math. Comp. In print (2020)
5E. Cancès, G. Dusson et. al. Comp. Rend. Math. 352, 941 (2014)
6M. F. Herbst, A. Levitt, E. Cancès. Faraday Discus. (2020) DOI 10.1039/D0FD00048E
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Non-self-consistent Kohn-Sham

Setting: Model1

Quantity of interest: Band structure

Need eigenpairs Hu = εu with periodic Kohn-Sham
Hamiltonian (treated k point per k point)

H = 1
2(−i∇+ k)2 + V +����VH[{u}] +�����VXC[{u}]

Only support linear terms in KS Hamiltonian (for now)
Error contributions tackled:

Discretisation error due to finite basis size

Algorithm error due to convergence threshold

Arithmetic error due to floating-point precision
1M. F. Herbst, A. Levitt, E. Cancès. Faraday Discus. (2020) DOI 10.1039/D0FD00048E
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Non-self-consistent Kohn-Sham

Setting: Basis functions1

Normalised plane-wave basis (Ω: Unit cell volume):

eG(r) = 1√
|Ω|

eiG·r

Basis set determined by finite cutoff Ecut:

X = span
{
eG

∣∣∣∣ 1
2 |G+ k|2 ≤ Ecut

}
For this basis:

〈eG|HeG′〉 = 1
2 |G+ k|2 δGG′ + 〈eG|V eG′〉 G,G′ ∈ X

⇒ Kinetic energy is diagonal
1M. F. Herbst, A. Levitt, E. Cancès. Faraday Discus. (2020) DOI 10.1039/D0FD00048E
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Non-self-consistent Kohn-Sham

Setting: Potentials1

Goedecker-Teter-Hutter (GTH) pseudopotential

local & non-local term V = Vloc + Vnl with

V = Vloc + Vnl

〈eG|VloceG′〉 = v̂loc(G−G′)
|Ω|

〈eG|VnleG′〉 =
∑
Lij

dLij pLi(k +G) pLj(k +G′)

Local term determined by Fourier coefficients v̂loc(∆G)

Non-local term is sum of projectors pLi(k +G)

1M. F. Herbst, A. Levitt, E. Cancès. Faraday Discus. (2020) DOI 10.1039/D0FD00048E
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Non-self-consistent Kohn-Sham

Main result: Band structure with error bars

Fully guaranteed a posteriori bounds

Numerical error proven to be within error bars

Cohen-Bergstresser Silicon

Γ XX WW KK ΓΓ LL UU WW LL K|U X
−0.2

−0.1

0.0

0.1

0.2

Simple model: Vnl = 0, only finite
non-zero v̂loc(∆G)

⇒ H is known exactly

non-self-consistent Silicon

Γ XX WW KK ΓΓ LL UU WW LL K|U X
−0.2

−0.1

0.0

0.1

0.2

XC, Hartree dropped
GTH pseudos

⇒ H not known exactly
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Non-self-consistent Kohn-Sham

Assumptions for our error estimate1

Plane-wave basis set ⇒ kinetic energy is diagonal
Fourier coefficients v̂loc(G) decay for |G| > qmin

(i.e. vloc(r) sufficiently regular)

The GTH projectors pLi(k +G) decay for |G+ k| > qmin

Potential V can be computed on extended basis

Y = span
{
eG

∣∣∣∣ 1
2 |G+ k|2 ≤ E(2)

cut

}

with E(2)
cut ≥ 1

2q
2
min > Ecut

(i.e. until decay sets in)

⇒ Satisfied for GTH pseudos / Cohen-Bergstresser model
1M. F. Herbst, A. Levitt, E. Cancès. Faraday Discus. (2020) DOI 10.1039/D0FD00048E
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Non-self-consistent Kohn-Sham

Algorithm and discretisation error: Overview

Residual r̃ = Hũ− ε̃ũ

Possible residual-error relationships:

|ε̃− ε| ≤ ‖r̃‖ Bauer-Fike

|ε̃− ε| ≤ ‖r̃‖
2

δ
Kato-Temple, gap δ

Strategy:
Need lower bound on gap δ

Need upper bound on ‖r̃‖
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Non-self-consistent Kohn-Sham

Estimating the residual

PX : Projector into X basis

Split up residual into contributions:

‖r̃‖ = ‖PX r̃‖+ ‖PX⊥ r̃‖ = ‖PXHũ− ε̃ũ‖+ ‖PX⊥V ũ‖

(Use PX ũ = ũ and diagonal kinetic operator)

‖PX r̃‖: Residual inside X (algorithm error)

‖PX⊥ r̃‖: Residual outside X (discretisation error)

23 / 37
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Non-self-consistent Kohn-Sham

Estimating the residual (2)
Dual-basis approach:

X is discretisation basis (used for main computation)

Y ⊃ X: Basis on which V can be computed

Second split:
‖PX⊥V ũ‖ = ‖PX⊥∩Y V ũ‖+ ‖PY ⊥V ũ‖

First term computable, second term is

‖PY ⊥V ũ‖
2 =

∑
G∈Y ⊥

∣∣∣∣∣∣
∑
G′∈X

〈eG|V eG′〉 ũ(G′)

∣∣∣∣∣∣
2

By construction: v̂loc(G) and pLi(k +G) decay outside Y

⇒ Elements 〈eG|V eG′〉 coupling X and Y ⊥ are small!

⇒ Can derive upper bound for ‖PY ⊥V ũ‖ 24 / 37
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Non-self-consistent Kohn-Sham

Numerical results for residual estimate

E
(2)
cut (and thus Y ) fixed empirically to 4Ecut

20 40 60 80 100

10−2

10−4

10−6

10−8

10−10

10−12

Ecut

estimated ‖V ũ‖
‖PY V ũ‖
estimated ‖PY ⊥V ũ‖

25 / 37



High-throughput DFT and DFTK Error analysis for DFT A posteriori error for linear KS A & Q

Non-self-consistent Kohn-Sham

Estimating the gap

Assume there is a gap (i.e. no degeneracy)
If not use Bauer-Fike

Lower bound on gap δ for eigenvalue εn
⇒ Lower bound on εn+1 − εn and on εn − εn−1

⇒ Upper bound on εn and εn−1 / lower bound on εn+1 and εn

Upper bounds are easy (variational principle):

εn ≤ ε̃n

Rigorous lower bounds are more tricky . . .

26 / 37
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Non-self-consistent Kohn-Sham

Lower bounds on eigenvalue εn+1

Imagine we knew a µ with εn ≤ µ ≤ εn+1

⇒ It were a good lower bound to εn+1

For such a µ we had σ−(H − µ) = n, i.e. H − µ had exactly
n negative eigenvalues

Partition shifted H into part in X and outside:

H − µ =
(
HXX − µ VXX⊥
VX⊥X HX⊥X⊥ − µ

)
(kin. op. diagonal)

Haynsworth inertia additivity formula:
σ−(H − µ) = σ−(HXX − µ) + σ−(Sµ)

where the Schur complement
Sµ = (HX⊥X⊥ − µ)− VX⊥X (HXX − µ)−1 VXX⊥
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Non-self-consistent Kohn-Sham

Lower bounds on eigenvalue εn+1 (2)

Now take µ ∈ (ε̃n, ε̃n+1) as a reasonable guess

For such a µ by construction: σ−(HXX − µ) = n

Therefore: σ−(Sµ) = 0⇔ σ−(H − µ) = n⇔ µ ≤ εn+1

⇒ Remaining job is to adjust µ such that it is guaranteed:

(HX⊥X⊥ − µ)− VX⊥X (HXX − µ)−1 VXX⊥ = Sµ ≥ 0

Now:
By construction of X: Kinetic part of HX⊥X⊥ is bounded from
below by Ecut

Operator norm ‖V ‖op is upper bound to eigenvalues of V

⇒ HX⊥X⊥ − µ ≥ Ecut + ‖VX⊥X⊥‖op − µ
28 / 37
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Non-self-consistent Kohn-Sham

Lower bounds on eigenvalue εn+1 (3)

(HX⊥X⊥ − µ)− VX⊥X (HXX − µ)−1 VXX⊥︸ ︷︷ ︸
=Bµ

= Sµ ≥ 0

Compute a dense eigendecomposition HXX = Ũ Λ̃Ũ †

Then using the larger grid Y :

−Bµ ≥−
∥∥∥∥(VX⊥X Ũ) (Λ̃− µ

)−1 (
VX⊥X Ũ

)†∥∥∥∥
op

≥−
∥∥∥∥(VX⊥∩Y,X Ũ) (Λ̃− µ

)−1 (
VX⊥∩Y,X Ũ

)†∥∥∥∥
op

− 2
∥∥∥∥(VX⊥∩Y,X Ũ) (Λ̃− µ

)−1
∥∥∥∥
op

∥∥∥VX,Y ⊥∥∥∥op − ‖VXY ⊥‖
2
op

ε̃n − µ

⇒ Bound on ‖VX⊥X⊥‖op and ‖VXY⊥‖op, rest computable
29 / 37
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Non-self-consistent Kohn-Sham

Lower bounds on eigenvalue εn+1 (4)
Strategy to find µ:

Guess µ ∈ (ε̃n, ε̃n+1)

Use computed bounds to find largest µ such that
Ecut + ‖VX⊥X⊥‖op − µ−Bµ ≥ 0

⇒ If exists, proves that µ is guaranteed lower bound to δ

10 20 30 40 50 60

0.0

0.1

0.2

0.3

0.4

Ecut

ε̃2,X − ε̃1,X

µ∗
2 − ε̃1,X (M = dim(X))

µ∗
2 − ε̃1,X (M = 50)

µ∗
2 − ε̃1,X (M = 25)
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Non-self-consistent Kohn-Sham

Discretisation error: What I did not tell you . . .

There are ways to get bound on δ without a full diagonalisation
Bounds on ‖VX⊥X⊥‖op, ‖VXX⊥‖op and ‖VXY ⊥‖op

Again uses that v̂loc(G) and piL(k +G) decay outside Y

Some tricks how to compute things fast . . .
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Non-self-consistent Kohn-Sham

Numerical results for discretisation error

Cohen-Bergstresser Silicon

10 20 30 40 50 60

10−25

10−20

10−15

10−10

10−5

Ecut

Bauer-Fike
Kato-Temple
“true” error

Using elevated precision in DFTK

GTH Silicon

20 40 60 80 100

10−2

10−4

10−6

10−8

10−10

10−12

Ecut

Bauer-Fike
Kato-Temple
“true” error

Gap only found from Ecut = 40

Shown for the first eigenvalue ε1

Kato-Temple clearly the better bound
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Non-self-consistent Kohn-Sham

Arithmetic error
Interval arithmetic: Represent x ∈ R by interval

[a, b] a, b ∈ DP, a ≤ x ≤ b
Can be used as floating-point type in DFTK

⇒ Compute in-basis ‖PX r̃‖: Sum arithmetic + algorithm error

10 20 30 40 50 60 70

10−2

10−4

10−6

10−8

10−10

10−12

Ecut

‖V ũ‖
arithmetic + algorithm error
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Non-self-consistent Kohn-Sham

Extension to other basis functions

For the residual: Need estimates
∥∥∥HX⊥,X ũ

∥∥∥
Plane-waves

Gaussians

For the gap: Need estimates ‖HX⊥X⊥‖op and ‖HX⊥X‖op
Not so easy for Gaussians
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Non-self-consistent Kohn-Sham

Outlook

Other quantities of interest:
Eigenvectors, density, forces, response, . . .

Extend to non-linear Kohn-Sham DFT (with Hartree and XC)
Preliminary work on BZ integration and Gross-Pitaevskii

Automatic balancing of accuracy parameters
User chooses target accuracy

Code chooses basis cutoff, convergence threshold and
floating-point precision

Dynamic selection while SCF converges

⇒ Fully black-box modelling
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Questions?

DFTK https://dftk.org

: https://michael-herbst.com/learn-julia

� mfherbst

� https://michael-herbst.com/blog

R michael.herbst@inria.fr

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International Licence.
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