Challenges and prospects of a posteriori error estimation in density-functional theory

Michael F. Herbst, Antoine Levitt, Eric Cancès

CERMICS, Inria Paris and École des Ponts ParisTech

14th October 2020

École des Ponts ParisTech

https://michael-herbst.com/talks/2020.10.14_aposteriori_error.pdf

Contents

2 Overview of a *posteriori* error analysis for DFT

3 A posteriori error for linear Kohn-Sham

Contents

Overview of a posteriori error analysis for DFT

3 A posteriori error for linear Kohn-Sham

- 1 Formulate research question
 - Start with structure / lattice
 - Select quantities of interest:
 - Free energy, band gap, excitation energies, ...
- 2 Choose DFT model
 - DFT functional
 - Pseudopotential
 - . . .
- Choose numerics
- 4 Run calculation
- **5** If failure: Tweak numerics, repeat 4
- 6 Convergence study

High-throughput DFT

Typical density-functional theory (DFT) workflow

1 Formulate research question

- Start with structure / lattice
- Select quantities of interest:
 - Free energy, band gap, excitation energies, ...

Ohoose DFT model

- DFT functional
- Pseudopotential
- ...

3 Choose numerics

- Discretisation: Basis size, k-point mesh
- Convergence thresholds: SCF, eigensolver, ...
- Algorithm: SCF guess, preconditioners, mixing, ...
- Election point type

- 1 Formulate research question
- Ochoose DFT model
 - DFT functional
 - Pseudopotential
 - . . .
- Ochoose numerics
 - Discretisation: Basis size, k-point mesh
 - Convergence thresholds: SCF, eigensolver, ...
 - Algorithm: SCF guess, preconditioners, mixing, ...
 - Floating-point type
- 4 Run calculation
- If failure: Tweak numerics, repeat 4

- 1 Formulate research question
- 2 Choose DFT model
- Octoose numerics
 - Discretisation: Basis size, k-point mesh
 - Convergence thresholds: SCF, eigensolver, ...
 - Algorithm: SCF guess, preconditioners, mixing, ...
 - Floating-point type

4 Run calculation

- ⑤ If failure: Tweak numerics, repeat 4 -
- 6 Convergence study
- Physics appropriately modelled?

- 1 Formulate research question
- Ochoose DFT model
- Ochoose numerics
- ④ Run calculation ←
- \bullet If failure: Tweak numerics, repeat 4 $^{\perp}$
- 6 Convergence study
 - Repeat 4 (and 5) until results converged -
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

- 1 Formulate research question
- Ochoose DFT model
- Ochoose numerics
- ④ Run calculation ←
- If failure: Tweak numerics, repeat 4 ⊥
- 6 Convergence study
 - Repeat 4 (and 5) until results converged $^{\perp}$
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

- 1 Formulate research question
- 2 Choose DFT model \leftarrow
- Ochoose numerics
- 4 Run calculation \leftarrow \leftarrow
- **6** If failure: Tweak numerics, repeat 4 $^{\perp}$
- 6 Convergence study
 - Repeat 4 (and 5) until results converged -
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

High-throughput DFT applications

- High-throughput screening: Systematic computation
- $\bullet\,$ Narrow down 10k candidates to $\mathcal{O}(10)$
- \Rightarrow Preselect for later investigation
 - Applications:
 - In silico design of novel materials
 - Catalysis, battery research, structure determination
- \Rightarrow Reduce expensive experiments / manual work
- \Rightarrow Requires high degree of automation

Typical DFT workflow (2)

- 1 Formulate research question
- 2 Choose DFT model +
- **8** Choose numerics (thresholds, algorithms ...)
- If failure: Tweak numerics, repeat 4 [⊥]
- 6 Convergence study
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

High-throughput DFT

Typical DFT workflow (2)

- 1 🐮 Formulate research question
- 2 🐮 Choose DFT model 🗧
- 8 Choose numerics (thresholds, algorithms ...)
- 4 🐝 Run calculation —
- 5 📽 If failure: Tweak numerics, repeat 4 -
- 👩 🐗 Convergence study -
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

High-throughput DFT

Typical DFT workflow (2)

- 1 皆 Formulate research question
- 2 🐮 Choose DFT model 🗧
- 8 Choose numerics (thresholds, algorithms ...)
- 4 🐗 Run calculation —
- 5 😤 If failure: Tweak numerics, repeat 4 -
- 👩 🐗 Convergence study -
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

Obstacles for high-throughput screening

- Accuracy-related parameters chosen by experience
- Empirical balance: Accuracy versus speed versus reliability
- \Rightarrow Need to reduce number of parameters:
 - Use physics: Reliable black-box SCF algorithms
 - Use maths: Error estimates and error balancing (this work)
- ⇒ Need code base to support mathematical developments and scale-up to the level of applications

Demands for interdisciplinary software

- Mathematicians: Toy models and unphysical edge cases
- High-performance person: Exploit hardware specialities
- Scientist: Design new models, not tweak numerics
- Practitioner: Reliable, black-box code, high-level interface
- julia for multidisciplinary research:
 - Walks like Python, talks like Lisp, runs like FORTRAN
 - Rich ecosystem (Optimisation, PDEs, stochastic processes, GPUs, Machine-Learning, Statistics, Linear Algebra ...)
 - No two-language problem (high-level, compiled and hackable)
 - \Rightarrow Write code once, re-use for many back ends / machines ...
- https://michael-herbst.com/learn-julia

DFTK — https://dftk.org

- 17 months of development, pprox 5500 lines of julia
- Sizeable feature list (see https://docs.dftk.org):
 - Ground state and a bit of response theory (new including spin)
 - Multitude of SCF approaches (> 800 electrons possible)
 - Compose your model (e.g. analytic potentials, ...)
 - $\bullet~1D~/~2D~/~3D$ systems
 - Arbitrary floating point type
 - Integration with materials-related python modules
- Performance: Within factor 2 of established codes
- Documentation and examples: https://docs.dftk.org

High-throughput DFT and **OFTK**

Error analysis for DFT 000000

A posteriori error for linear KS

High-throughput DFT

A few recent 😵 DFTK projects

Numerical analysis of SCF¹

- SCF and direct minimisationConvergence wrt. spectral gap
- Numerical tests in 😽 DFTK

SCF for inhomogeneous systems²

- SCFs for large inhomogeneous materials hard to converge
- Black-box and parameter-free mixing scheme (unlike other approaches)

⇒ Platform for multidisciplinary collaboration

¹E. Cancès, G. Kemlin, A. Levitt. arXiv 2004.09088 (2020)
²M. F. Herbst, A. Levitt. arXiv 2009.01665 (2020)

Contents

2 Overview of a posteriori error analysis for DFT

A posteriori error

Aim of a posteriori error analysis

- Starting point: Problem has been solved numerically
- Question: How good is the answer?
- Annotate guaranteed upper bound on numerical error:
 - \simeq Error bars of experimental science
 - $\not\simeq$ Statistical error
- Prospect: Automatic selection of accuracy parameters
- Challenges: Error bounds are useless unless
 - ... they are computable
 - \bullet \ldots they are sharp / accurate
- Better error bounds \Rightarrow Restricted scope
 - Basis type, quantity of interest, ...

Errors everywhere ...

- 1 Formulate research question, define quantity of interest
- Ochoose DFT model (Model error)
- Ochoose numerics
 - Discretisation: Basis size, k-point mesh (Discretisation error)
 - Convergence thresholds: SCF, eigensolver, ... (Algorithm error)
 - Algorithm: SCF guess, preconditioners, mixing, ...
 - Floating-point type (Arithmetic error)
- **4** Run calculation (Programming error, hardware error)
- **5** . . .
- \Rightarrow Error terms known \Rightarrow Identify accuracy-limiting parameters
- \Rightarrow Automatically deduced refined setup

Errors everywhere ...

- 1 Formulate research question, define quantity of interest
- Ochoose DFT model (Model error)
- Ochoose numerics
 - Discretisation: Basis size, k-point mesh (Discretisation error)
 - Convergence thresholds: SCF, eigensolver, ... (Algorithm error)
 - Algorithm: SCF guess, preconditioners, mixing, ...
 - Floating-point type (Arithmetic error)
- **4** Run calculation (Programming error, hardware error)
- **6** . . .
- \Rightarrow Error terms known \Rightarrow Identify accuracy-limiting parameters
- \Rightarrow Automatically deduced refined setup

- Hamiltonian H, eigenstates (ε, u) , quantity of interest q
- Calculation yields approximations $\tilde{\varepsilon}$, \tilde{u} , \tilde{q} (at current parameter set)

A & Q

- Error $\|q \tilde{q}\|_V$ (for some norm V)
 - Examples: $\| \rho \tilde{\rho} \|_V$, $|E \tilde{E}|$
- But q is unknown!
- ⇒ Need residual-error relationship, i.e. find constant C and norms W, s.t. $\|q - \tilde{q}\|_{V} \le C \|\tilde{r}\|_{W} \qquad (a \text{ posteriori error})$
 - Where \tilde{r} is some residual, e.g. the eigenpair residual

$$\tilde{r} = H\tilde{u} - \tilde{\varepsilon}\tilde{u}$$

• Note: Exact H unknown $\Rightarrow \|\tilde{r}\|_W$ unknown (but easier ...)

A posteriori error

Finding the right norms is not always easy ...

- Residual-error relationship $\|q \tilde{q}\|_V \leq C \, \|\tilde{r}\|_W$
- Which norms to pick? $\|\cdot\|_{\infty}$ $\|\cdot\|_2$ $\|\cdot\|_{H^1}$ $\|\cdot\|_{H^{-1}}$
- \Rightarrow Depends on quantity of interest!
- \Rightarrow Error bounds depend on quantity of interest
 - Consider linear response problem Ax = b
 - x should be plotted $\Rightarrow \left\|\cdot\right\|_{V} = \left\|\cdot\right\|_{\infty}$
 - Oettli-Prager relation:

$$\|\tilde{x} - x\|_{\infty} \leq \frac{\|A\tilde{x} - b\|_{\infty}}{\|A\|_{\infty} \|\tilde{x}\|_{1} + \|b\|_{\infty}}$$

A posteriori error

Status of error estimation in DFT

- A priori error (plane-wave)¹
- A posteriori (FE, assuming exact solution)²
- k-point sampling³
- Cluster bounds⁴
- Non-linear eigenproblems⁵
- \Rightarrow So far just good building blocks

• Our contribution: Computable bounds for linear KS model⁶

- ¹E. Cancès, R. Chakir, Y. Maday. ESIAM: M2AN, 49, 755 (2015)
- ²H. Chen, X. Dai et. al. Mulscale. Model. Sim. 12, 1828 (2014)
- ³E. Cancès and V. Ehrlacher et. al. Numer. Math. 144, 479 (2020)
- ⁴E. Cancès, G. Dusson et. al. Math. Comp. In print (2020)
- ⁵E. Cancès, G. Dusson *et. al.* Comp. Rend. Math. **352**, 941 (2014)
- ⁶M. F. Herbst, A. Levitt, E. Cancès. Faraday Discus. (2020) DOI 10.1039/D0FD00048E

Contents

3 A posteriori error for linear Kohn-Sham

Setting: Model¹

- Quantity of interest: Band structure
- Need eigenpairs $Hu = \varepsilon u$ with periodic Kohn-Sham Hamiltonian (treated k point per k point)

$$H = \frac{1}{2}(-i\nabla + k)^2 + V + \underbrace{V_{\mathsf{H}}}_{\mathsf{H}}[\{u\}] + \underbrace{V_{\mathsf{X}}}_{\mathsf{X}}[\{u\}]$$

- Only support linear terms in KS Hamiltonian (for now)
- Error contributions tackled:
 - Discretisation error due to finite basis size
 - Algorithm error due to convergence threshold
 - Arithmetic error due to floating-point precision

¹M. F. Herbst, A. Levitt, E. Cancès. Faraday Discus. (2020) DOI 10.1039/D0FD00048E

Setting: Basis functions¹

Normalised plane-wave basis (Ω: Unit cell volume):

$$e_G(r) = \frac{1}{\sqrt{|\Omega|}} e^{iG \cdot r}$$

• Basis set determined by finite cutoff E_{cut} :

$$X = \operatorname{span}\left\{e_G \left| \frac{1}{2} \left| G + k \right|^2 \le E_{\mathsf{cut}} \right\}\right.$$

For this basis:

$$\langle e_G | \mathbf{H} e_{G'} \rangle = \frac{1}{2} |G + k|^2 \,\delta_{GG'} + \langle e_G | V e_{G'} \rangle \qquad G, G' \in X$$

 \Rightarrow Kinetic energy is diagonal

¹M. F. Herbst, A. Levitt, E. Cancès. Faraday Discus. (2020) DOI 10.1039/D0FD00048E

Setting: Potentials¹

- Goedecker-Teter-Hutter (GTH) pseudopotential
- local & non-local term $V = V_{\text{loc}} + V_{\text{nl}}$ with

$$\begin{split} V &= V_{\mathsf{loc}} + V_{\mathsf{nl}} \\ \langle e_G | V_{\mathsf{loc}} e_{G'} \rangle &= \frac{\hat{v}_{\mathsf{loc}} (G - G')}{|\Omega|} \\ \langle e_G | V_{\mathsf{nl}} e_{G'} \rangle &= \sum_{Lij} d_{Lij} \, p_{Li} (k + G) \, \overline{p_{Lj} (k + G')} \end{split}$$

- Local term determined by Fourier coefficients $\hat{v}_{\text{loc}}(\Delta G)$
- Non-local term is sum of projectors $p_{Li}(k+G)$

¹M. F. Herbst, A. Levitt, E. Cancès. Faraday Discus. (2020) DOI 10.1039/D0FD00048E

Main result: Band structure with error bars

- Fully guaranteed a posteriori bounds
- Numerical error proven to be within error bars

Assumptions for our error estimate¹

- Plane-wave basis set \Rightarrow kinetic energy is diagonal
- \bullet Fourier coefficients $\hat{v}_{\mathrm{loc}}(G)$ decay for $|G|>q_{\mathrm{min}}$
 - (i.e. $v_{\text{loc}}(r)$ sufficiently regular)
- \bullet The GTH projectors $p_{Li}(k+G)$ decay for $|G+k|>q_{\min}$
- \bullet Potential V can be computed on extended basis

$$Y = \operatorname{span}\left\{e_G \left| \frac{1}{2} \left|G + k\right|^2 \le E_{\mathsf{cut}}^{(2)}\right\}\right.$$

with $E_{cut}^{(2)} \ge \frac{1}{2}q_{min}^2 > E_{cut}$ • (i.e. until decay sets in)

 \Rightarrow Satisfied for GTH pseudos / Cohen-Bergstresser model

¹M. F. Herbst, A. Levitt, E. Cancès. Faraday Discus. (2020) DOI 10.1039/D0FD00048E

Non-self-consistent Kohn-Sham

A posteriori error for linear KS

Algorithm and discretisation error: Overview

- Residual $\tilde{r} = H\tilde{u} \tilde{\varepsilon}\tilde{u}$
- Possible residual-error relationships:

$$\begin{split} |\tilde{\varepsilon} - \varepsilon| &\leq \|\tilde{r}\| & \text{Bauer-Fike} \\ |\tilde{\varepsilon} - \varepsilon| &\leq \frac{\|\tilde{r}\|^2}{\delta} & \text{Kato-Temple, gap } \delta \end{split}$$

- Strategy:
 - $\bullet\,$ Need lower bound on gap $\delta\,$
 - $\bullet\,$ Need upper bound on $\|\tilde{r}\|$

Estimating the residual

- P_X : Projector into X basis
- Split up residual into contributions:

 $\|\tilde{r}\| = \|P_X\tilde{r}\| + \|P_{X^{\perp}}\tilde{r}\| = \|P_XH\tilde{u} - \tilde{\varepsilon}\tilde{u}\| + \|P_{X^{\perp}}V\tilde{u}\|$

(Use $P_X \tilde{u} = \tilde{u}$ and diagonal kinetic operator)

- $||P_X \tilde{r}||$: Residual inside X (algorithm error)
- $||P_{X^{\perp}}\tilde{r}||$: Residual outside X (discretisation error)

Estimating the residual (2)

- Dual-basis approach:
 - X is discretisation basis (used for main computation)
 - $Y \supset X$: Basis on which V can be computed
- Second split:

$$\|P_{X^{\perp}}V\tilde{u}\| = \|P_{X^{\perp}\cap Y}V\tilde{u}\| + \|P_{Y^{\perp}}V\tilde{u}\|$$

- First term computable, second term is $\|P_{Y^{\perp}}V\tilde{u}\|^2 = \sum_{G \in Y^{\perp}} \left|\sum_{G' \in X} \left\langle e_G | V e_{G'} \right\rangle \tilde{u}(G') \right|^2$
- \bullet By construction: $\hat{v}_{\mathsf{loc}}(G)$ and $p_{Li}(k+G)$ decay outside Y
- \Rightarrow Elements $\langle e_G | V e_{G'} \rangle$ coupling X and Y^{\perp} are small!
- \Rightarrow Can derive upper bound for $\|P_{Y^{\perp}}V\tilde{u}\|$

Numerical results for residual estimate

• $E_{cut}^{(2)}$ (and thus Y) fixed empirically to $4E_{cut}$

A & Q

Estimating the gap

- Assume there is a gap (i.e. no degeneracy)
 - If not use Bauer-Fike
- Lower bound on gap δ for eigenvalue ε_n
 - \Rightarrow Lower bound on $\varepsilon_{n+1} \varepsilon_n$ and on $\varepsilon_n \varepsilon_{n-1}$
 - \Rightarrow Upper bound on ε_n and ε_{n-1} / lower bound on ε_{n+1} and ε_n
- Upper bounds are easy (variational principle):

$$\varepsilon_n \leq \tilde{\varepsilon}_n$$

• Rigorous lower bounds are more tricky

Non-self-consistent Kohn-Sham

Lower bounds on eigenvalue ε_{n+1}

 \bullet Imagine we knew a μ with $\varepsilon_n \leq \mu \leq \varepsilon_{n+1}$

 \Rightarrow It were a good lower bound to ε_{n+1}

- For such a μ we had $\sigma_-(H-\mu)=n,$ i.e. $H-\mu$ had exactly n negative eigenvalues
- Partition shifted \underline{H} into part in X and outside:

$$H-\mu=egin{pmatrix} H_{XX}-\mu & V_{XX^{\perp}}\ V_{X^{\perp}X} & H_{X^{\perp}X^{\perp}}-\mu \end{pmatrix}$$
 (kin. op. diagonal)

• Haynsworth inertia additivity formula:

$$\sigma_{-}(H-\mu) = \sigma_{-}(H_{XX}-\mu) + \sigma_{-}(S_{\mu})$$

where the Schur complement

$$S_{\mu} = (H_{X^{\perp}X^{\perp}} - \mu) - V_{X^{\perp}X} (H_{XX} - \mu)^{-1} V_{XX^{\perp}}$$

Non-self-consistent Kohn-Sham

Lower bounds on eigenvalue ε_{n+1} (2)

- $\bullet~\mbox{Now take}~\mu\in(\tilde{\varepsilon}_n,\tilde{\varepsilon}_{n+1})$ as a reasonable guess
- For such a μ by construction: $\sigma_{-}(H_{XX} \mu) = n$
- Therefore: $\sigma_{-}(S_{\mu}) = 0 \Leftrightarrow \sigma_{-}(H \mu) = n \Leftrightarrow \mu \leq \varepsilon_{n+1}$
- \Rightarrow Remaining job is to adjust μ such that it is guaranteed:

$$(H_{X^{\perp}X^{\perp}} - \mu) - V_{X^{\perp}X} (H_{XX} - \mu)^{-1} V_{XX^{\perp}} = S_{\mu} \ge 0$$

- Now:
 - By construction of $X\colon$ Kinetic part of $H_{X^{\perp}X^{\perp}}$ is bounded from below by $E_{\rm cut}$
 - Operator norm $\left\|V\right\|_{\mathrm{op}}$ is upper bound to eigenvalues of V

$$\Rightarrow H_{X^{\perp}X^{\perp}} - \mu \ge E_{\mathsf{cut}} + \|V_{X^{\perp}X^{\perp}}\|_{\mathsf{op}} - \mu$$

High-throughput DFT and **OFTK**

Non-self-consistent Kohn-Sham

Lower bounds on eigenvalue ε_{n+1} (3)

$$(H_{X^{\perp}X^{\perp}} - \mu) - \underbrace{V_{X^{\perp}X} (H_{XX} - \mu)^{-1} V_{XX^{\perp}}}_{=B_{\mu}} = S_{\mu} \ge 0$$

- Compute a dense eigendecomposition $H_{XX} = \tilde{U}\tilde{\Lambda}\tilde{U}^{\dagger}$
- Then using the larger grid Y:

$$\begin{aligned} -B_{\mu} &\geq - \left\| \left(V_{X^{\perp}X} \tilde{U} \right) \left(\tilde{\Lambda} - \mu \right)^{-1} \left(V_{X^{\perp}X} \tilde{U} \right)^{\dagger} \right\|_{\text{op}} \\ &\geq - \left\| \left(V_{X^{\perp} \cap Y, X} \tilde{U} \right) \left(\tilde{\Lambda} - \mu \right)^{-1} \left(V_{X^{\perp} \cap Y, X} \tilde{U} \right)^{\dagger} \right\|_{\text{op}} \\ &\quad - 2 \left\| \left(V_{X^{\perp} \cap Y, X} \tilde{U} \right) \left(\tilde{\Lambda} - \mu \right)^{-1} \right\|_{\text{op}} \left\| V_{X, Y^{\perp}} \right\|_{\text{op}} - \frac{\left\| V_{XY^{\perp}} \right\|_{\text{op}}^{2}}{\tilde{\varepsilon}_{n} - \mu} \end{aligned}$$

 \Rightarrow Bound on $\|V_{X^{\perp}X^{\perp}}\|_{_{\rm op}}$ and $\|V_{XY^{\perp}}\|_{_{\rm op}}$, rest computable

High-throughput DFT and Street DFTK

Non-self-consistent Kohn-Sham

Lower bounds on eigenvalue ε_{n+1} (4)

- Strategy to find μ :
 - Guess $\mu \in (\tilde{\varepsilon}_n, \tilde{\varepsilon}_{n+1})$

 $\bullet\,$ Use computed bounds to find largest μ such that

$$E_{\mathsf{cut}} + \|V_{X^{\perp}X^{\perp}}\|_{\mathsf{op}} - \mu - B_{\mu} \ge 0$$

 $\Rightarrow\,$ If exists, proves that μ is guaranteed lower bound to $\delta\,$

High-throughput DFT and 😯 DFTK

Non-self-consistent Kohn-Sham

Discretisation error: What I did not tell you ...

- There are ways to get bound on δ without a full diagonalisation
- Bounds on $\|V_{X^{\perp}X^{\perp}}\|_{op}$, $\|V_{XX^{\perp}}\|_{op}$ and $\|V_{XY^{\perp}}\|_{op}$
 - Again uses that $\hat{v}_{\mathrm{loc}}(G)$ and $p_{iL}(k+G)$ decay outside Y
- Some tricks how to compute things fast ...

Error analysis for DFT 000000

A posteriori error for linear KS

Non-self-consistent Kohn-Sham

Numerical results for discretisation error

- Shown for the first eigenvalue ε₁
- Kato-Temple clearly the better bound

100

Arithmetic error

• Interval arithmetic: Represent $x \in \mathbb{R}$ by interval

$$[a,b] \quad a,b \in \mathsf{DP}, \quad a \leq x \leq b$$

- Can be used as floating-point type in 😽 DFTK
- \Rightarrow Compute in-basis $||P_X \tilde{r}||$: Sum arithmetic + algorithm error

Non-self-consistent Kohn-Sham

Extension to other basis functions

- For the residual: Need estimates $\left\| H_{X^{\perp},X} \tilde{u} \right\|$
 - Plane-waves
 - Gaussians
- For the gap: Need estimates $\|H_{X^{\perp}X^{\perp}}\|_{op}$ and $\|H_{X^{\perp}X}\|_{op}$
 - Not so easy for Gaussians

Outlook

- Other quantities of interest:
 - Eigenvectors, density, forces, response, ...
- Extend to non-linear Kohn-Sham DFT (with Hartree and XC)
 - Preliminary work on BZ integration and Gross-Pitaevskii
- Automatic balancing of accuracy parameters
 - User chooses target accuracy
 - Code chooses basis cutoff, convergence threshold and floating-point precision
 - Dynamic selection while SCF converges
- \Rightarrow Fully black-box modelling

Error analysis for DFT 000000

Acknowledgements

Antoine Levitt

Eric Cancès

julia

Other DFTK contributors:			
Gaspard	Kemlin,	Sami	Siraj-Dine,
Zsuzsanna	Toth, Louis	Ponet	

Questions?

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.