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High-throughput DFT

Typical density-functional theory (DFT) workflow
1 Formulate research question

Start with structure / lattice
Select quantities of interest:

Free energy, band gap, excitation energies, . . .

2 Choose DFT model
DFT functional

Pseudopotential

. . .

3 Choose numerics

4 Run calculation

5 If failure: Tweak numerics, repeat 4

6 Convergence study

7 Physics appropriately modelled?
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High-throughput DFT

High-throughput DFT applications

High-throughput screening: Systematic computation

Narrow down 10k candidates to O(10)

⇒ Preselect for later investigation
Applications:

In silico design of novel materials

Catalysis, battery research, structure determination

⇒ Reduce expensive experiments / manual work

⇒ Requires high degree of automation
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High-throughput DFT

Obstacles for high-throughput screening

Accuracy-related parameters chosen by experience

Empirical balance: Accuracy versus speed versus reliability
⇒ Need to reduce number of parameters:

Use physics: Reliable black-box preconditioners (this work)

Use maths: Error estimates and automatic error balancing

⇒ Requires code base to support developments and applications
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High-throughput DFT

Demands for interdisciplinary software
Mathematicians: Toy models and unphysical edge cases

High-performance person: Exploit hardware specialities

Scientist: Design new models, not tweak numerics

Practitioner: Reliable, black-box code, high-level interface

for multidisciplinary research:
Walks like Python, talks like Lisp, runs like FORTRAN

Rich ecosystem (Optimisation, PDEs, stochastic processes,
GPUs, Machine-Learning, Statistics, Linear Algebra . . . )

No two-language problem (high-level, compiled and hackable)

⇒ Write code once, re-use for many back ends / machines . . .

https://michael-herbst.com/learn-julia
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High-throughput DFT

DFTK— https://dftk.org

16 months of development, ≈ 5000 lines of
Sizeable feature list (see https://docs.dftk.org):

Ground state and a bit of response theory

Compose your model: Gross-Pitaevskii, analytic potentials . . .

Multitude of SCF approaches (> 800 electrons possible)

Multi-level threading

1D / 2D / 3D systems

Arbitrary floating point type

Integration with materials-related python modules

Performance: Within factor 2 of established codes

Platform for multidisciplinary collaboration

Documentation and examples: https://docs.dftk.org 8 / 34
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High-throughput DFT

A few recent DFTK projects

Numerical analysis of SCF1
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a = 11.2 Bohrs, gap = 1.8 · 10−2
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SCF and direct minimisation
Convergence wrt. spectral gap
Numerical tests in DFTK

Error estimates for Kohn-Sham2
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A posteriori estimates for
non-self-consistent Kohn-Sham
Estimation of arithmetic error
Elevated floating-point type
Time to publication: 10 weeks

1E. Cancès, G. Kemlin, A. Levitt. arXiv 2004.09088 (2020)
2M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. In press. (2020)
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High-throughput DFT

Algorithm selection in self-consistent field iterations

Screening studies: Crash of SCF not acceptable
What about challenging systems: Disorder, spin, . . . ?

Black-box and reliable SCF methods?

Systems with new physics can be the tough ones!

Focus of this work: Algorithm selection for SCF

Preconditioning of SCF iterations ≡ mixing
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The essence of density-functional theory

γ0 = arg min
γ∈PN

EDFT(γ)

Energy functional (LDA)

EDFT(γ) = trL2

(
−1

2∆γ
)

+
∫
ργ(r)VNuc(r) dr

+ 1
2

∫
ργ(r)vC(r, r′)ργ(r′) dr dr′ + Exc,ργ

Density matrix γ ∈ PN
Density ργ(r) = γ(r, r)

Coulomb kernel vC(r, r′) = 1/ ‖r − r′‖

Exchange-correlation energy Exc,ργ

XC potential Vxc,ρ(r) = dExc,ρ
dρ(r) and kernel fxc,ρ(r, r′) = d2Exc,ρ

dρ(r) dρ(r′)
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The self-consistent field procedure
Euler-Lagrange equations (LDA):

γ0 = fεF

(
−1

2∆ + Vγ0

)
with εF s.t. γ0 ∈ PN

Vγ = VNuc +
∫

(vCργ) + Vxc,ργ ,

ργ(r) = γ(r, r), γ ∈ PN
where

fεF

(
F̂
)

=
∑
n

f

(
εn − εF
T

)
|ψn〉 〈ψn| with F̂ψn = εnψn

Fermi-Dirac distribution

f(x) = 1
1 + exp(x)
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fεF

(
F̂
)

=
∑
n

f

(
εn − εF
T

)
|ψn〉 〈ψn| with F̂ψn = εnψn

Self-consistent field procedure:
(1) Guess initial ργ

(2) Build Kohn-Sham Hamiltonian − 1
2 ∆ + Vγ

(3) Diagonalise it to get new {ψi}i

(4) Build new ργ , go to (2). 13 / 34
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The SCF procedure as a fixed-point problem
Euler-Lagrange equations (LDA)

γ0 = fεF

(
−1

2∆ + Vγ0

)
with εF s.t. γ0 ∈ PN

Vγ = VNuc +
∫

(vCργ) + Vxc,ργ ,

ργ(r) = γ(r, r), γ ∈ PN

Define the potential-to-density map F by

F (V )(r) =
[
fεF

(
−1

2∆ + V

)]
(r, r)

and the density-to-potential map by

V(ρ) = VNuc +
∫

(vCργ) + Vxc,ργ

⇒ SCF solves ρ = F (V(ρ))
14 / 34
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The SCF Jacobian
SCF solves ρ = F (V(ρ))

Consider damped fixed-point scheme:
ρn+1 = ρn + α [F (V(ρn))− ρn]

Near a fixed-point the error goes as

en+1 '
[
1− αε†

]
en

where ε† = 1− χ0(vC + fxc,ρ)

χ0: Independent-particle susceptibility (derivative of F )

⇒ Jacobian Jα = 1− αε† determines SCF convergence

ε = 1− (vC + fxc,ρ)χ0 is the dielectric matrix

⇒ Convergence of SCF linked to dielectric properties of material
15 / 34
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Dielectric matrix and SCF instabilities

Dielectric adjoint: ε† = 1− χ0(vC + fxc,ρ)

fxc,ρ usually small. If ignored ε† ' 1− χ0vC is positive.

⇒ Dampened iteration
ρn+1 = ρn + α [F (V(ρn))− ρn] Jα = 1− αε†

converges for small enough α > 0.

But: Required α can be painfully small if
ε† has small eigenvalues (e.g. symmetry breaking)

χ0 has large eigenvalues (localised states)

Large charge-sloshing modes of vC are uncompensated by χ0.

This work: Only charge-sloshing
16 / 34
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Charge sloshing and mixing
In Fourier space: (̂vCρ)(q) = 4πρ̂(q)

|q|2

Smallest q ∼ 1/L where L is crystal length

⇒ λmax(vC) ∼ L2

⇒ condition number (roughly) grows as L2 (charge sloshing)

Can imply λmax(ε†) ∼ L2 (e.g. in metals, next slide)

⇒ Infeasible to do some large systems with damped SCF

Mixing schemes: Preconditioned quasi-Newton updates
ρn+1 = ρn + αP−1 [F (V(ρn))− ρn]

where P−1 ≈
(
ε†
)−1

.
17 / 34
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Construction of preconditioners: Bulk metals

To prevent charge-sloshing need model in small-q regime

limq→0 χ0(q) ' −D with density of states D > 0

Approximate dielectric:

ε(q) = 4πD + |q|2

|q|2
λmax(ε) ∼ L2

Kerker mixing (kTF > 0)

P−1(q) = |q|2

|q|2 + k2
TF

Based on Thomas-Fermi theory (where kTF =
√

4πD)
18 / 34
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Preconditioners: Bulk insulators / semiconductors

limq→0 χ0(q) ' −qTσ0q where σ0 is polarisability tensor

Approximate dielectric:

lim
q→0

ε(q) = 1 + 4π
qTσ0q

|q|2

σ0 isotropic: ε(0) = 1 + 4πσ0 ≡ εr, i.e. dielectric constant

For larger q: Empirically interpolate to known behaviour
q →∞1:

ε(q) =
εr + (εr − 1) |q|

2

k2
TF

1 + (εr − 1) |q|
2

k2
TF

⇒ Construct Dielectric mixing
1M. F. Herbst, A. Levitt. arXiv 2009.01665 (2020)
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Comparison of model dielectric functions

Differing behaviour for small q

Different preconditioning for each required
20 / 34
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Convergence results for bulk materials1

silica (SiO2) insulator
gallium arsenide (GaAs)
semiconductor
aluminium (Al) metal

40 randomised repeats
Optimal damping
Anderson acceleration

1M. F. Herbst, A. Levitt. arXiv 2009.01665 (2020)
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Problems with the discussed approaches

Preconditioner / mixing scheme manually chosen

What is in screening study material properties change?

How to deal with unknown material?

How to deal with inhomogeneous materials?

22 / 34
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Approximating χ0

ε† = 1− χ0(vC + fxc,ρ)
So far:

Closed-form approximation for ε(q)

Neglect of local field effects

⇒ Closed form P−1(q) '
(
ε(q)

)−1 in q

Now: Approximate χ0 directly

Try a non-local approximation χ̃0(r, r′) ' χ0(r, r′)

Obtain iteratively

P−1δρ = (1− χ̃0vC))−1 δρ

24 / 34
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Plot of (exact) χ0

1D system (Chain of 10 Sodium atoms and 10 helium atoms)
25 / 34
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Local density of states (LDOS)

Kohn Sham eigenpairs (εn, ψn), Fermi-Dirac distribution f ,
temperature T , Fermi level εF

Occupations and occupation derivative:

fn = f

(
εn − εF
T

)
f ′n = 1

T
f ′
(
εn − εF
T

)

Local density of states

Dloc(r) = −
∑
n

f ′n|ψn(r)|2

Satisfies
∫

ΩDloc(r) dr = D

26 / 34
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LDOS approximation for χ0
1

Adler-Wiser formula

χ0(r, r′) =
∑
n,m

fn − fm
εn − εm

ψn(r)ψ∗m(r)ψm(r′)ψ∗n(r′)

+ Dloc(r)Dloc(r′)
D

Main interest: Large-scale variations

⇒ Argue r′ 7→ χ
(1)
0 (r, r′) more localised around r than V (r):∫

χ
(1)
0 (r, r′)V (r′) dr′ ' V (r)

∫
χ

(1)
0 (r, r′) dr′

= V (r)
∑
n,m

fn − fm
εn − εm

ψn(r)ψ∗m(r)δmn

= V (r)Dloc(r)
1M. F. Herbst, A. Levitt. arXiv 2009.01665 (2020) 27 / 34
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LDOS preconditioning (examples)

20 repeats of aluminium + 20 repeats vacuum / silica
TFW: local Thomas-Fermi-von Weizsäcker mixing1

LDOS automatically interpolates between Kerker mixing (in the metallic
region) and no mixing (insulating region)

⇒ Parameter-free and black-box
1D. Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. 64, 121101 (2001).
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LDOS preconditioning (examples)
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LDOS preconditioning

Advantages
Parameter-free, adaptive mixing for inhomogeneous systems

For metals, insulators and vacuum

Great for high-throughput studies on surfaces

Disadvantages
Cannot treat semiconductors properly yet

LDOS quality depends on BZ / temperature (ok in practice)

Ok-ish solution for semiconductors:
Just add models: χ̃0 = χLDOS0 + χdielectric0

Introduces εr as a parameter (via Dielectric model)

30 / 34
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LDOS preconditioning results

None Dielectric Kerker LDOS LDOS+
Dielectric

N it κ it κ it κ it κ it κ

SiO2+vacuum 10 11 3.3 26 19.7 50 95.7 11 3.3 26 19.7
20 12 3.4 30 24.4 n.c. 351.5 12 3.4 30 21.7

GaAs+vacuum 10 17 13.4 18 6.2 23 67.0 17 12.4 18 10.4
20 20 15.5 22 12.9 n.c. 312.2 20 15.5 22 12.9

Al+vacuum 10 19 51.5 24 44.3 22 64.4 9 3.7 16 10.3
20 47 170.8 49 168.5 n.c. 323.9 9 3.5 20 10.5

GaAs+SiO2
a 10 45 13.7 19 8.9 34 52.4 45 13.4 19 8.8

20 n.c. 18.2 20 10.2 n.c. 170.1 n.c. 18.2 20 10.2
Al+SiO2 10 43 93.1 29 33.6 30 50.9 17 6.1 20 9.2

20 n.c. 316.6 n.c. 118.4 n.c. 159.4 14 5.4 20 10.1
Al+GaAs 10 n.c. 144.0 24 22.4 16 9.0 15 7.2 11 3.5

20 n.c. 485.0 40 59.0 26 28.8 26 21.4 13 5.0

Al+GaAs+SiO2 10 n.c. 149.5 34 50.4 36 62.9 26 21.5 19 9.0

Coloured: Condition number κ less than doubled on doubling system size
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Summary and outlook

LDOS preconditioner:
Adaptive preconditioning for inhomogeneous systems

Parameter-free ⇒ Highly suitable for high-throughput

DFTK usage:
First develop LDOS scheme on test systems (1D, toy problems)

Test scheme on > 800 electrons (in the same code!)

Next steps for a full black-box SCF preconditioner:
Spin / XC term

Black-box model for semiconductors

Localised states
32 / 34
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Questions?

DFTK https://dftk.org

: https://michael-herbst.com/learn-julia

� mfherbst

� https://michael-herbst.com/blog

R michael.herbst@inria.fr

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International Licence.
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