Black-box inhomogeneous preconditioning for density-functional theory

Michael F. Herbst, Antoine Levitt

CERMICS, Inria Paris and École des Ponts ParisTech

24th September 2020

École des Ponts ParisTech

 \rightarrow

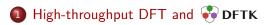
https://michael-herbst.com/talks/2020.09.24_ldos_preconditioning.pdf

Contents

2 Self-consistent field iterations

SCF preconditioning based on the local density of states

Contents



2 Self-consistent field iterations

SCF preconditioning based on the local density of states

00000000

Typical density-functional theory (DFT) workflow

- 1 Formulate research question
 - Start with structure / lattice
 - Select quantities of interest:
 - Free energy, band gap, excitation energies, ...
- 2 Choose DFT model
 - DFT functional
 - Pseudopotential
 - . . .
- Choose numerics
- 4 Run calculation
- **5** If failure: Tweak numerics, repeat 4
- 6 Convergence study

Typical density-functional theory (DFT) workflow

1 Formulate research question

- Start with structure / lattice
- Select quantities of interest:
 - Free energy, band gap, excitation energies, ...
- Ochoose DFT model
 - DFT functional
 - Pseudopotential
 - ...

High-throughput DFT and 🙀 DFTK

●●●●●●● High-throughput DFT

- 3 Choose numerics
 - Discretisation: Basis size, k-point mesh
 - Convergence thresholds: SCF, eigensolver, ...
 - Algorithm: SCF guess, preconditioners, mixing, ...
 - Election point type

Typical density-functional theory (DFT) workflow

- 1 Formulate research question
- Ochoose DFT model
 - DFT functional
 - Pseudopotential
 - . . .

High-throughput DFT and 🙀 DFTK

●●●●●●● High-throughput DFT

- Ochoose numerics
 - Discretisation: Basis size, k-point mesh
 - Convergence thresholds: SCF, eigensolver, ...
 - Algorithm: SCF guess, preconditioners, mixing, ...
 - Floating-point type
- 4 Run calculation
- If failure: Tweak numerics, repeat 4

- 1 Formulate research question
- Ochoose DFT model
- 8 Choose numerics

●●●●●●● High-throughput DFT

- Discretisation: Basis size, k-point mesh
- Convergence thresholds: SCF, eigensolver, ...
- Algorithm: SCF guess, preconditioners, mixing, ...
- Floating-point type
- 4 Run calculation
- 5 If failure: Tweak numerics, repeat 4 -
- 6 Convergence study
- Physics appropriately modelled?

- 1 Formulate research question
- Ochoose DFT model
- 8 Choose numerics

●●●●●●● High-throughput DFT

- ④ Run calculation ←
- If failure: Tweak numerics, repeat 4 ⊥
- 6 Convergence study
 - Repeat 4 (and 5) until results converged -
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

- 1 Formulate research question
- Ochoose DFT model
- 8 Choose numerics

●●●●●●● High-throughput DFT

- If failure: Tweak numerics, repeat 4 [⊥]
- 6 Convergence study
 - Repeat 4 (and 5) until results converged [⊥]
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

Typical density-functional theory (DFT) workflow

- 1 Formulate research question
- 2 Choose DFT model \leftarrow
- 8 Choose numerics

High-throughput DFT and S DFTK

●●●●●●● High-throughput DFT

- 4 Run calculation \leftarrow \leftarrow
- If failure: Tweak numerics, repeat 4 ⊥
- 6 Convergence study
 - Repeat 4 (and 5) until results converged -
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

High-throughput DFT applications

- High-throughput screening: Systematic computation
- $\bullet\,$ Narrow down 10k candidates to $\mathcal{O}(10)$
- \Rightarrow Preselect for later investigation
 - Applications:

High-throughput DFT and S DFTK

00000000 High-throughput DFT

- In silico design of novel materials
- Catalysis, battery research, structure determination
- \Rightarrow Reduce expensive experiments / manual work
- \Rightarrow Requires high degree of automation

Typical DFT workflow (2)

High-throughput DFT and 🙀 DFTK

00000000 High-throughput DFT

- 1 Formulate research question
- 2 Choose DFT model +
- **3** Choose numerics (thresholds, algorithms ...)
- 4 Run calculation \leftarrow
- If failure: Tweak numerics, repeat 4 [⊥]
- 6 Convergence study
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

Typical DFT workflow (2)

- 1 皆 Formulate research question
- 🥑 🏰 Choose DFT model 🤆
- 8 Choose numerics (thresholds, algorithms ...)
- 4 🐝 Run calculation —
- 5 🐮 If failure: Tweak numerics, repeat 4 -
- 👩 🐗 Convergence study -
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

Typical DFT workflow (2)

- 1 皆 Formulate research question
- 🥑 🏰 Choose DFT model 🤆
- 8 Choose numerics (thresholds, algorithms ...)
- 4 🐗 Run calculation —
- 5 皆 If failure: Tweak numerics, repeat 4 -
- 👩 🐗 Convergence study -
- Physics appropriately modelled?
 - No: Back to 2 and repeat!
 - Yes: Hooray! Done!

Obstacles for high-throughput screening

High-throughput DFT and S DFTK

000000000 High-throughput DFT

- Accuracy-related parameters chosen by experience
- Empirical balance: Accuracy versus speed versus reliability
- \Rightarrow Need to reduce number of parameters:
 - Use physics: Reliable black-box preconditioners (this work)
 - Use maths: Error estimates and automatic error balancing
- ⇒ Requires code base to support developments and applications

Demands for interdisciplinary software

High-throughput DFT and S DFTK

000000000 High-throughput DFT

- Mathematicians: Toy models and unphysical edge cases
- High-performance person: Exploit hardware specialities
- Scientist: Design new models, not tweak numerics
- Practitioner: Reliable, black-box code, high-level interface
- julia for multidisciplinary research:
 - Walks like Python, talks like Lisp, runs like FORTRAN
 - Rich ecosystem (Optimisation, PDEs, stochastic processes, GPUs, Machine-Learning, Statistics, Linear Algebra ...)
 - No two-language problem (high-level, compiled and hackable)
 - \Rightarrow Write code once, re-use for many back ends / machines ...
- https://michael-herbst.com/learn-julia

😽 DFTK — https://dftk.org

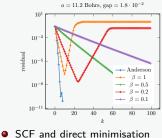
- 16 months of development, pprox 5000 lines of julia
- Sizeable feature list (see https://docs.dftk.org):
 - Ground state and a bit of response theory
 - Compose your model: Gross-Pitaevskii, analytic potentials
 - Multitude of SCF approaches (> 800 electrons possible)
 - Multi-level threading
 - 1D / 2D / 3D systems
 - Arbitrary floating point type
 - Integration with materials-related python modules
- Performance: Within factor 2 of established codes
- Platform for multidisciplinary collaboration
- Documentation and examples: https://docs.dftk.org

Self-consistent field iterations

High-throughput DFT

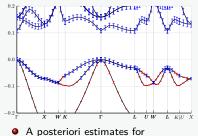
A few recent 😯 DFTK projects

Numerical analysis of SCF¹



- Convergence wrt. spectral gap
- Numerical tests in DFTK

Error estimates for Kohn-Sham²



- A posteriori estimates for non-self-consistent Kohn-Sham
- Estimation of arithmetic error
- Elevated floating-point type
- Time to publication: 10 weeks

 $^1E.$ Cancès, G. Kemlin, A. Levitt. arXiv 2004.09088 (2020) $^2M.$ F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. In press. (2020)

Algorithm selection in self-consistent field iterations

High-throughput DFT and S DFTK

00000000 High-throughput DFT

- Screening studies: Crash of SCF not acceptable
 - What about challenging systems: Disorder, spin, ...?
 - Black-box and reliable SCF methods?
 - Systems with new physics can be the tough ones!
- Focus of this work: Algorithm selection for SCF
- Preconditioning of SCF iterations \equiv mixing

Contents

2 Self-consistent field iterations

3 SCF preconditioning based on the local density of states

The essence of density-functional theory

$$\gamma_0 = \operatorname*{arg\,min}_{\gamma \in \mathcal{P}_N} \mathcal{E}_{\mathsf{DFT}}(\gamma)$$

• Energy functional (LDA)

$$\begin{aligned} \mathcal{E}_{\mathsf{DFT}}(\gamma) &= \operatorname{tr}_{L^2}\left(-\frac{1}{2}\Delta\gamma\right) + \int \rho_{\gamma}(\underline{\boldsymbol{r}}) V_{\mathsf{Nuc}}(\underline{\boldsymbol{r}}) \,\mathrm{d}\underline{\boldsymbol{r}} \\ &+ \frac{1}{2}\int \rho_{\gamma}(\underline{\boldsymbol{r}}) v_{C}(\underline{\boldsymbol{r}},\underline{\boldsymbol{r}}') \rho_{\gamma}(\underline{\boldsymbol{r}}') \,\mathrm{d}\underline{\boldsymbol{r}} \,\mathrm{d}\underline{\boldsymbol{r}}' + E_{\mathsf{xc},\rho_{\gamma}} \end{aligned}$$

- Density matrix $\gamma \in \mathcal{P}_N$
- Density $\rho_{\gamma}(\underline{r}) = \gamma(\underline{r}, \underline{r})$
- Coulomb kernel $v_C(\underline{r}, \underline{r}') = 1/\|\underline{r} \underline{r}'\|$
- Exchange-correlation energy $E_{\mathrm{xc},\rho_{\gamma}}$
- XC potential $V_{\text{xc},\rho}(\underline{r}) = \frac{\mathrm{d}E_{\text{xc},\rho}}{\mathrm{d}\rho(\underline{r})}$ and kernel $f_{\text{xc},\rho}(\underline{r},\underline{r}') = \frac{\mathrm{d}^2 E_{\text{xc},\rho}}{\mathrm{d}\rho(\underline{r}) \,\mathrm{d}\rho(\underline{r}')}$

The self-consistent field procedure

• Euler-Lagrange equations (LDA):

$$\begin{cases} \gamma_{0} = f_{\varepsilon_{F}} \left(-\frac{1}{2} \Delta + V_{\gamma_{0}} \right) & \text{with } \varepsilon_{F} \text{ s.t. } \gamma_{0} \in \mathcal{P}_{N} \\ V_{\gamma} = V_{\text{Nuc}} + \int (v_{C} \rho_{\gamma}) + V_{\text{xc}, \rho_{\gamma}}, \\ \rho_{\gamma}(\underline{r}) = \gamma(\underline{r}, \underline{r}), \gamma \in \mathcal{P}_{N} \end{cases}$$

where

$$f_{\varepsilon_F}\left(\hat{\mathcal{F}}\right) = \sum_n f\left(\frac{\varepsilon_n - \varepsilon_F}{T}\right) \left|\psi_n\right\rangle \left\langle\psi_n\right| \qquad \text{with} \qquad \hat{\mathcal{F}}\psi_n = \varepsilon_n \psi_n$$

Fermi-Dirac distribution

$$f(x) = \frac{1}{1 + \exp(x)}$$

The self-consistent field procedure

• Euler-Lagrange equations (LDA):

$$\begin{cases} \gamma_{0} = f_{\varepsilon_{F}} \left(-\frac{1}{2} \Delta + V_{\gamma_{0}} \right) & \text{with } \varepsilon_{F} \text{ s.t. } \gamma_{0} \in \mathcal{P}_{N} \\ V_{\gamma} = V_{\text{Nuc}} + \int (v_{C} \rho_{\gamma}) + V_{\text{xc}, \rho_{\gamma}}, \\ \rho_{\gamma}(\underline{r}) = \gamma(\underline{r}, \underline{r}), \gamma \in \mathcal{P}_{N} \end{cases}$$

where

$$f_{\varepsilon_F}\left(\hat{\mathcal{F}}\right) = \sum_n f\left(\frac{\varepsilon_n - \varepsilon_F}{T}\right) \left|\psi_n\right\rangle \left\langle\psi_n\right| \qquad \text{with} \qquad \hat{\mathcal{F}}\psi_n = \varepsilon_n \psi_n$$

• Self-consistent field procedure:

- (1) Guess initial ρ_{γ}
- (2) Build Kohn-Sham Hamiltonian $-\frac{1}{2}\Delta + V_{\gamma}$
- (3) Diagonalise it to get new $\{\psi_i\}_i$
- (4) Build new ρ_{γ} , go to (2).

Self-consistent field iterations

The SCF procedure as a fixed-point problem

• Euler-Lagrange equations (LDA)

$$\begin{cases} \gamma_0 = f_{\varepsilon_F} \left(-\frac{1}{2} \Delta + V_{\gamma_0} \right) & \text{with } \varepsilon_F \text{ s.t. } \gamma_0 \in \mathcal{P}_N \\ V_\gamma = V_{\text{Nuc}} + \int (v_C \rho_\gamma) + V_{\text{xc}, \rho_\gamma}, \\ \rho_\gamma(\underline{r}) = \gamma(\underline{r}, \underline{r}), \gamma \in \mathcal{P}_N \end{cases} \end{cases}$$

 $\bullet\,$ Define the potential-to-density map F by

$$F(V)(\underline{\boldsymbol{r}}) = \left[f_{\varepsilon_F}\left(-\frac{1}{2}\Delta + V\right)\right](\underline{\boldsymbol{r}},\underline{\boldsymbol{r}})$$

and the density-to-potential map by

$$\mathcal{V}(
ho) = V_{\mathsf{Nuc}} + \int (v_C
ho_\gamma) + V_{\mathsf{xc},
ho_\gamma}$$

 $\Rightarrow \text{ SCF solves } \rho = F(\mathcal{V}(\rho))$

The SCF Jacobian

- SCF solves $\rho = F(\mathcal{V}(\rho))$
- Consider damped fixed-point scheme:

$$\rho_{n+1} = \rho_n + \alpha \left[F(\mathcal{V}(\rho_n)) - \rho_n \right]$$

• Near a fixed-point the error goes as

$$e_{n+1} \simeq \left[1 - \alpha \epsilon^{\dagger}\right] e_n$$

where $\epsilon^{\dagger} = 1 - \chi_0 (v_C + f_{ imes c,
ho})$

- χ_0 : Independent-particle susceptibility (derivative of F)
- \Rightarrow Jacobian $J_{\alpha} = 1 \alpha \epsilon^{\dagger}$ determines SCF convergence
 - $\epsilon = 1 (v_C + f_{\mathrm{xc},\rho})\chi_0$ is the dielectric matrix
- \Rightarrow Convergence of SCF linked to dielectric properties of material

Dielectric matrix and SCF instabilities

- Dielectric adjoint: $\epsilon^{\dagger} = 1 \chi_0 (v_C + f_{\mathrm{xc},\rho})$
- $f_{{\rm xc},\rho}$ usually small. If ignored $\epsilon^{\dagger}\simeq 1-\chi_0 v_C$ is positive.
- \Rightarrow Dampened iteration

$$\rho_{n+1} = \rho_n + \alpha \left[F(\mathcal{V}(\rho_n)) - \rho_n \right] \qquad J_\alpha = 1 - \alpha \epsilon^{\dagger}$$

converges for small enough $\alpha > 0$.

- But: Required α can be painfully small if
 - ϵ^{\dagger} has small eigenvalues (e.g. symmetry breaking)
 - χ_0 has large eigenvalues (localised states)
 - Large charge-sloshing modes of v_C are uncompensated by χ_0 .
- This work: Only charge-sloshing

A & Q 00

Charge sloshing and mixing

- In Fourier space: $\widehat{(v_C \rho)}(\underline{q}) = \frac{4\pi \hat{\rho}(\underline{q})}{|q|^2}$
- $\bullet~{\rm Smallest}~q\sim 1/L$ where L is crystal length
- $\Rightarrow \lambda_{\max}(v_C) \sim L^2$
- \Rightarrow condition number (roughly) grows as L^2 (charge sloshing)
 - Can imply $\lambda_{\max}(\epsilon^{\dagger}) \sim L^2$ (e.g. in metals, next slide)
- \Rightarrow Infeasible to do some large systems with damped SCF
 - Mixing schemes: Preconditioned quasi-Newton updates $\rho_{n+1}=\rho_n+\alpha P^{-1}\left[F(\mathcal{V}(\rho_n))-\rho_n\right]$

where $P^{-1}\approx \left(\epsilon^{\dagger}\right)^{-1}\!\!.$

Construction of preconditioners: Bulk metals

- To prevent charge-sloshing need model in small-q regime
- $\lim_{q\to 0} \chi_0(\underline{q}) \simeq -D$ with density of states D>0
- Approximate dielectric:

$$\epsilon(\underline{\boldsymbol{q}}) = \frac{4\pi D + |\boldsymbol{q}|^2}{\left|\boldsymbol{q}\right|^2} \quad \lambda_{\max}(\epsilon) \sim L^2$$

• Kerker mixing ($k_{\mathsf{TF}} > 0$)

$$P^{-1}(\underline{\boldsymbol{q}}) = \frac{|\boldsymbol{q}|^2}{|\boldsymbol{q}|^2 + k_{\mathsf{TF}}^2}$$

• Based on Thomas-Fermi theory (where $k_{\text{TF}} = \sqrt{4\pi D}$)

Preconditioners: Bulk insulators / semiconductors

- $\lim_{q\to 0} \chi_0(\underline{q}) \simeq -\underline{q}^T \sigma_0 \underline{q}$ where σ_0 is polarisability tensor
- Approximate dielectric:

$$\lim_{q \to 0} \epsilon(\underline{\boldsymbol{q}}) = 1 + 4\pi \frac{\underline{\boldsymbol{q}}^T \sigma_0 \underline{\boldsymbol{q}}}{|\boldsymbol{q}|^2}$$

- σ_0 isotropic: $\epsilon(0) = 1 + 4\pi\sigma_0 \equiv \varepsilon_r$, i.e. dielectric constant
- For larger q: Empirically interpolate to known behaviour $q \to \infty^1$: $\varepsilon_r + (\varepsilon_r - 1) \frac{|q|^2}{L^2}$

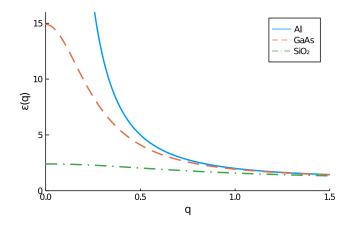
$$\epsilon(\underline{q}) = \frac{\varepsilon_r + (\varepsilon_r - 1)\frac{|q|^2}{k_{\mathsf{TF}}^2}}{1 + (\varepsilon_r - 1)\frac{|q|^2}{k_{\mathsf{TF}}^2}}$$

 \Rightarrow Construct Dielectric mixing

¹M. F. Herbst, A. Levitt. arXiv 2009.01665 (2020)

Self-consistent field iterations

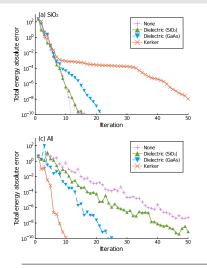
Comparison of model dielectric functions



- $\bullet\,$ Differing behaviour for small q
- Different preconditioning for each required

Self-consistent field iterations

Convergence results for bulk materials¹





Anderson acceleration

¹M. F. Herbst, A. Levitt. arXiv 2009.01665 (2020)

Problems with the discussed approaches

- Preconditioner / mixing scheme manually chosen
- What is in screening study material properties change?
- How to deal with unknown material?
- How to deal with inhomogeneous materials?

Contents

2 Self-consistent field iterations

③ SCF preconditioning based on the local density of states

Approximating χ_0

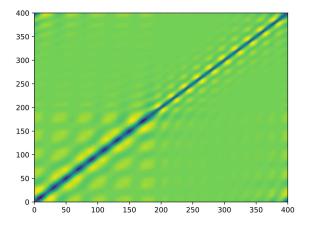
- $\epsilon^{\dagger} = 1 \chi_0 (v_C + f_{\mathrm{xc},\rho})$
- So far:
 - Closed-form approximation for $\epsilon({m q})$
 - Neglect of local field effects

$$\Rightarrow$$
 Closed form $P^{-1}(\underline{q}) \simeq \left(\epsilon(\underline{q})\right)^{-1}$ in q

- Now: Approximate χ_0 directly
- Try a non-local approximation $\widetilde{\chi_0}(\underline{r},\underline{r}') \simeq \chi_0(\underline{r},\underline{r}')$
- Obtain iteratively

$$P^{-1}\delta\rho = (1 - \widetilde{\chi_0} v_C))^{-1} \,\delta\rho$$

Plot of (exact) χ_0



• 1D system (Chain of 10 Sodium atoms and 10 helium atoms)

Local density of states (LDOS)

- Kohn Sham eigenpairs (ε_n, ψ_n) , Fermi-Dirac distribution f, temperature T, Fermi level ε_F
- Occupations and occupation derivative:

$$f_n = f\left(\frac{\varepsilon_n - \varepsilon_F}{T}\right) \qquad f'_n = \frac{1}{T}f'\left(\frac{\varepsilon_n - \varepsilon_F}{T}\right)$$

Local density of states

$$D_{\mathsf{loc}}(\underline{r}) = -\sum_{n} f'_{n} |\psi_{n}(\underline{r})|^{2}$$

• Satisfies $\int_{\Omega} D_{\mathsf{loc}}(\underline{r}) \, \mathrm{d}\underline{r} = D$

LDOS approximation for χ_0^{-1}

Adler-Wiser formula

$$\begin{split} \chi_0(\underline{\boldsymbol{r}},\underline{\boldsymbol{r}}') &= \sum_{n,m} \frac{f_n - f_m}{\varepsilon_n - \varepsilon_m} \psi_n(\underline{\boldsymbol{r}}) \psi_m^*(\underline{\boldsymbol{r}}) \psi_m(\underline{\boldsymbol{r}}') \psi_n^*(\underline{\boldsymbol{r}}') \\ &+ \frac{D_{\mathsf{loc}}(\underline{\boldsymbol{r}}) D_{\mathsf{loc}}(\underline{\boldsymbol{r}}')}{D} \end{split}$$

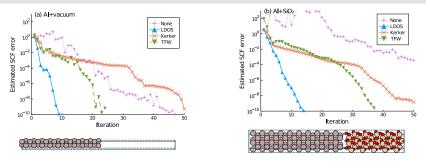
• Main interest: Large-scale variations

 $\Rightarrow \text{ Argue } \underline{r}' \mapsto \chi_0^{(1)}(\underline{r}, \underline{r}') \text{ more localised around } \underline{r} \text{ than } V(\underline{r}):$ $\int \chi_0^{(1)}(\underline{r}, \underline{r}') V(\underline{r}') \, \mathrm{d}\underline{r}' \simeq V(\underline{r}) \int \chi_0^{(1)}(\underline{r}, \underline{r}') \, \mathrm{d}\underline{r}'$ $= V(\underline{r}) \sum_{n,m} \frac{f_n - f_m}{\varepsilon_n - \varepsilon_m} \psi_n(\underline{r}) \psi_m^*(\underline{r}) \delta_{mn}$ $= V(\underline{r}) D_{\mathsf{loc}}(\underline{r})$

¹M. F. Herbst, A. Levitt. arXiv 2009.01665 (2020)

Self-consistent field iterations

LDOS preconditioning (examples)

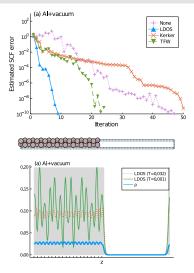


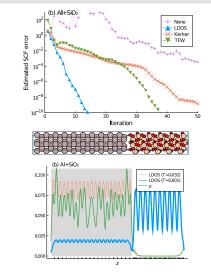
- 20 repeats of aluminium + 20 repeats vacuum / silica
- TFW: local Thomas-Fermi-von Weizsäcker mixing¹
- LDOS automatically interpolates between Kerker mixing (in the metallic region) and no mixing (insulating region)
- \Rightarrow Parameter-free and black-box

¹D. Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. **64**, 121101 (2001).

Self-consistent field iterations

LDOS preconditioning (examples)





LDOS preconditioning

- Advantages
 - Parameter-free, adaptive mixing for inhomogeneous systems
 - For metals, insulators and vacuum
 - Great for high-throughput studies on surfaces
- Disadvantages
 - Cannot treat semiconductors properly yet
 - LDOS quality depends on BZ / temperature (ok in practice)
- Ok-ish solution for semiconductors:
 - Just add models: $\widetilde{\chi_0} = \chi_0^{\rm LDOS} + \chi_0^{\rm dielectric}$
 - Introduces ε_r as a parameter (via Dielectric model)

LDOS preconditioning results

		None		Die	Dielectric		Kerker		LDOS		LDOS+ Dielectric	
	\mathcal{N}	it	κ	it	κ	it	κ	it	κ	it	κ	
SiO ₂ +vacuum	10	11	3.3	26	19.7	50	95.7	11	3.3	26	19.7	
-	20	12	3.4	30	24.4	n.c.	351.5	12	3.4	30	21.7	
GaAs+vacuum	10	17	13.4	18	6.2	23	67.0	17	12.4	18	10.4	
	20	20	15.5	22	12.9	n.c.	312.2	20	15.5	22	12.9	
Al+vacuum	10	19	51.5	24	44.3	22	64.4	9	3.7	16	10.3	
	20	47	170.8	49	168.5	n.c.	323.9	9	3.5	20	10.5	
$GaAs+SiO_2^a$	10	45	13.7	19	8.9	34	52.4	45	13.4	19	8.8	
	20	n.c.	18.2	20	10.2	n.c.	170.1	n.c.	18.2	20	10.2	
AI+SiO ₂	10	43	93.1	29	33.6	30	50.9	17	6.1	20	9.2	
	20	n.c.	316.6	n.c.	118.4	n.c.	159.4	14	5.4	20	10.1	
AI+GaAs	10	n.c.	144.0	24	22.4	16	9.0	15	7.2	11	3.5	
	20	n.c.	485.0	40	59.0	26	28.8	26	21.4	13	5.0	
$AI+GaAs+SiO_2$	10	n.c.	149.5	34	50.4	36	62.9	26	21.5	19	9.0	

• Coloured: Condition number κ less than doubled on doubling system size

Summary and outlook

- LDOS preconditioner:
 - Adaptive preconditioning for inhomogeneous systems
 - $\bullet~\mbox{Parameter-free} \Rightarrow \mbox{Highly suitable for high-throughput}$
- 😽 DFTK usage:
 - First develop LDOS scheme on test systems (1D, toy problems)
 - Test scheme on > 800 electrons (in the same code!)
- Next steps for a full black-box SCF preconditioner:
 - $\bullet~$ Spin /~ XC term
 - Black-box model for semiconductors
 - Localised states

Self-consistent field iterations

Acknowledgements

Antoine Levitt

Eric Cancès Xavier Gonze Phil Hasnip Lin Lin Chao Yang

erc

ParisTech

Other DFTK contributors: @gkemlin, @ssirajdine, @louisponet

Questions?

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.