A posteriori error estimation for the non-self-consistent Kohn-Sham equations

Michael F. Herbst, Antoine Levitt, Eric Cancès

CERMICS, Inria Paris and École des Ponts ParisTech

03rd September 2020

Aim of a posteriori error analysis

- Starting point: Problem has been solved numerically
- Question: How good is the answer?
- Annotate guaranteed upper bound on numerical error
 - ≃ Error bars of experimental science
- Balance sources of error:
 - Bigger basis? Tighter convergence criterion? Double precision?
 - ⇒ Aim: Automatic selection of accuracy parameters
- ⇒ Need accurate and computable bounds on errors

Sources of error in Kohn-Sham density-functional theory

Model error DFT method

Discretisation error Brillouin-zone sampling

Finite basis size

Algorithm error Convergence threshold for iterative procedures

Arithmetic error Finite floating-point precision

Programming error Bugs, implementation mistakes

Hardware error Error in CPU, RAM, etc.

Ignore non-linear terms (drop Hartree and XC)

Sources of error in Kohn-Sham density-functional theory

Model error DFT method

Discretisation error Brillouin-zone sampling

Finite basis size

Algorithm error Convergence threshold for iterative procedures

Arithmetic error Finite floating-point precision

Programming error Bugs, implementation mistakes

Hardware error Error in CPUL BAM etc.

Ignore non-linear terms (drop Hartree and XC)

Quantity of interest, models and results

- Band structure, i.e. eigenpairs $H_{\mathbf{k}}\psi = \varepsilon \psi$ per **k**-point
- Plane-wave discretisation
- Implementation: **\(\psi\) DFTK**, https://dftk.org

Goedecker-Teter-Hutter pseudos

🌄 DFTK — https://dftk.org

- 16 months of development, ≈ 5000 lines of julia
- Sizeable feature list (see https://docs.dftk.org):
 - Ground state and a bit of response theory
 - Compose your model: Gross-Pitaevskii, analytic potentials ...
 - Multitude of SCF approaches (> 800 electrons possible)
 - Multi-level threading
 - 1D / 2D / 3D systems
 - Arbitrary floating point type
 - Integration with materials-related python modules
- Performance: Within factor 2 of established codes
- Platform for multidisciplinary collaboration
- Documentation and examples: https://docs.dftk.org

Algorithm and discretisation error

• Residual $\tilde{\mathbf{r}} = \underline{H}\tilde{\psi} - \tilde{\varepsilon}\tilde{\psi}$ related to error:

$$\begin{split} |\tilde{\varepsilon} - \varepsilon| &\leq \|\tilde{\mathbf{r}}\| & \text{Bauer-Fike} \\ |\tilde{\varepsilon} - \varepsilon| &\leq \frac{\|\tilde{\mathbf{r}}\|^2}{\delta} & \text{Kato-Temple,} & \text{gap } \delta \end{split}$$

- Two-grid approach:
 - $\bullet \ (\tilde{\varepsilon},\tilde{\psi}) \ {\rm solved} \ {\rm on} \ {\rm basis} \ X$
 - ullet Assume ${\it H}$ computable on extended basis $Y\supset X$
 - \Rightarrow Compute $||P_Y\tilde{\mathbf{r}}||$, get upper bound for $||P_{Y^{\perp}}\tilde{\mathbf{r}}||$
 - \Rightarrow Get lower bound for δ
- ullet Algorithm error: In-basis $\|P_{oldsymbol{X}} ilde{\mathbf{r}}\|$
- Discretisation error: Out-of-basis $\|P_{\mathbf{X}^{\perp}}\tilde{\mathbf{r}}\|$

Arithmetic error

• Interval arithmetic: Represent $x \in \mathbb{R}$ by interval

$$[a,b] \quad a,b \in \mathsf{DP}, \quad a \leq x \leq b$$

- Can be used as floating-point type in 🍑 DFTK
- \Rightarrow By computing in-basis $||P_X\tilde{\mathbf{r}}||$: Arithmetic + algorithm error

Outlook

- Other quantities of interest:
 - Eigenvectors, density, forces, response, ...
- Extend to non-linear Kohn-Sham DFT (with Hartree and XC)
 - Preliminary work on BZ integration and Gross-Pitaevskii
- Automatic balancing of accuracy parameters
 - User chooses target accuracy
 - Code chooses basis cutoff, convergence threshold and floating-point precision
 - Dynamic selection while SCF converges
- ⇒ Fully black-box modelling

Acknowledgements

Antoine Levitt

Eric Cancès

Other DFTK contributors:

@gkemlin, @ssirajdine, @louisponet

Questions?

- FTK https://dftk.org
 - mfherbst
 - ♦ https://michael-herbst.com/blog
 - michael.herbst@inria.fr

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.