Coulomb Sturmian basis functions in electronic structure theory

Michael F. Herbst

Matherials team, CERMICS, Ecole des Ponts ParisTech

3rd May 2019

https://michael-herbst.com/talks/2019.05.03_coulomb_sturmians_metz.pdf

Electronic structure theory	Basis functions	CS properties	CS convergence studies	Ongoing work	A & Q 000

Contents

- Electronic structure theory
 - 2 Basis functions
- Properties of Coulomb Sturmian functions
- 4 Coulomb-Sturmian HF convergence studies
- 5 Ongoing work
 - Correlated quantum-chemical methods
 - Unrelated projects

Electronic structure theory	Basis functions	CS properties	CS convergence studies	Ongoing work	A & Q 000
Electronic structure theory					

Describing chemistry

Electronic structure theory	Basis functions	CS properties	CS convergence studies	Ongoing work	A & Q 000
Electronic structure theory					

Electronic structure theory

- Goal: Describing chemical reactivity / properties
- Electronic Schrödinger equation:

$$\hat{\mathcal{H}}\Psi_i = E_i \Psi_i$$

- Operator $\hat{\mathcal{H}}$: Physical description of molecular system
- Most important: Ground state, i.e. E_0 and Ψ_0

Solving the Schrödinger equation: How hard can it be?

• Main ingredient: Min-max principle

$$E_0 \le \min_{\Psi \in S} \mathcal{E}(\Psi) = \min_{\Psi \in S} \frac{\left\langle \Psi \middle| \hat{\mathcal{H}} \Psi \right\rangle}{\left\langle \Psi \middle| \Psi \right\rangle}$$

where $S\subset H^1(\mathbb{R}^{3N},\mathbb{C})$ and $L^2(\mathbb{R}^{3N},\mathbb{C})$ inner product $\langle\,\cdot\,|\,\cdot\,\rangle$

- Discretisation: Curse of dimensionality:
 - $\langle \, \cdot \, | \, \cdot \, \rangle$ involves integral over 3N-dim. space
 - Assume 2 quadrature points only
 - Chloromethane: $N=26 \Rightarrow 2^{78} \approx 3\cdot 10^{23}$ quadrature points
 - $\Rightarrow\,$ Finished in 1 year: ≈ 100 attoseconds per quadrature point

Electronic structure theory	Basis functions 000000	CS properties	CS convergence studies	Ongoing work	A & Q 000
Electronic structure theory					

Now what?

- Need a suitable inexact model
- Plenty have been developed
- Our focus: Hartree-Fock approximation
 - Single-particle functions: $\psi_i \in H^1(\mathbb{R}^3, \mathbb{R})$
 - Slater-determinant:

$$\Phi = \frac{1}{\sqrt{N}} \det \begin{pmatrix} \psi_1(\underline{r}_1) & \psi_2(\underline{r}_1) & \cdots & \psi_N(\underline{r}_1) \\ \psi_1(\underline{r}_2) & \psi_2(\underline{r}_2) & \cdots & \psi_N(\underline{r}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1(\underline{r}_N) & \psi_2(\underline{r}_N) & \cdots & \psi_N(\underline{r}_N) \end{pmatrix}$$

 $\bullet\,$ Subspace S: Choose the best single-determinant subspace

Hartree-Fock approximation

• For trial determinant $\tilde{\Phi}$ made up of $\{\tilde{\psi}_i\}_i$:

$$E_0 \le E_0^{\mathsf{HF}} \le \mathcal{E}^{\mathsf{HF}}\left(\tilde{\Phi}\right)$$

- \Rightarrow Minimisation problem for $\{\tilde{\psi}_i\}_i$
 - Unique minimising set $\Theta^0 = \{\psi_i^0\}_i$ exists!
 - Euler-Lagrange equations:

$$\hat{\mathcal{F}}_{\Theta^0}\psi_i^0 = \varepsilon_i\psi_i^0 \qquad \qquad \left\langle \psi_i^0 \middle| \psi_j^0 \right\rangle = \delta_{ij}$$

- Fock operator $\hat{\mathcal{F}}_{\Theta^0}$ depends on solution
- \Rightarrow Self-consistent field problem

The standard approach

- Note: HF is in single-particle space, i.e. 3D
- Discretise $\hat{\mathcal{F}}_{\Theta^0}$ in a basis $\{\varphi_{\mu}\}_{\mu}$
- \Rightarrow Problem now: Find the lowest-energy $\{\psi_i^0\}_i$, built from $\{\varphi_\mu\}_\mu$
 - Self-consistent field procedure:
 - **1** Guess trial coefficients $\mathbf{C}^{(0)}$
 - **2** Build trial Fock matrix $\mathbf{F}^{(0)}$
 - **③** Solve Euler-Lagrange equations \Rightarrow New $\mathbf{C}^{(1)}$
 - ${f 0}$ Build next Fock matrix ${f F}^{(1)}$
 - 6 Repeat

Electronic structure theory	Basis functions	CS properties	CS convergence studies	Ongoing work	A & Q 000
<u> </u>					

Contents

Electronic structure theory

2 Basis functions

- Properties of Coulomb Sturmian functions
- 4 Coulomb-Sturmian HF convergence studies

5 Ongoing work

- Correlated quantum-chemical methods
- Unrelated projects

Electron-repulsion integrals

• Electron-repulsion integrals (ERI)

$$\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\varphi_{\mu}^*(\underline{\boldsymbol{r}}_1) \varphi_{\nu}(\underline{\boldsymbol{r}}_1) \ \varphi_{\lambda}^*(\underline{\boldsymbol{r}}_2) \varphi_{\kappa}(\underline{\boldsymbol{r}}_2)}{\|\underline{\boldsymbol{r}}_1 - \underline{\boldsymbol{r}}_2\|} \, \mathrm{d}\underline{\boldsymbol{r}}_1 \, \mathrm{d}\underline{\boldsymbol{r}}_2$$

- Occur in computation of Fock matrix
- Most expensive step (in a naive SCF)
- Depending on the basis: Easier or harder
- \Rightarrow Especially easy: Gaussians

Design of the molsturm quantum-chemistry framework

Electronic structure theory

The standard basis: Gaussian-type basis sets

CS properties

CS convergence studies

Ongoing work

A & Q

Basis functions

000000

10 / 45

Electronic structure theory Basis functions CS properties CS convergence studies Ongoing work A & Q

Beyond Gaussian-type orbitals

- Issues of cGTOs:
 - Representing the core region?
 - Representing the exponential decay?
 - Error estimates?
 - Black box modelling?
 - Distributed memory parallelisation?
- \Rightarrow Playing field to try other basis function types

Electronic structure theory Basis functions CS properties CS convergence studies Ongoing work A & Q 000000 Design of the molsturm quantum-chemistry framework

Basis function types

- Gaussian-type orbitals
- Geminals
- Slater-type orbitals
- Sturmian-type orbitals
- . . .

- Plane waves
- Augmented plane waves
- Wavelets
- Finite elements
- . . .

The potential of Coulomb Sturmians

- Prospect of CS:
 - Exponential-type basis functions
 - ✓ Represent the core region
 - ✓ Represent exponential decay
 - ? Error estimates
 - ? Black box modelling
 - ?? Distributed memory parallelisation

 \Rightarrow (Atomic) implementation inside molsturm¹ and sturmint

¹M. F. Herbst, A. Dreuw and J. E. Avery. J. Chem. Phys., **149**, 84106 (2018)

Electronic structure theory	Basis functions 000000	CS properties	CS convergence studies	Ongoing work	A & Q 000
Contents					

- Electronic structure theory
- 2 Basis functions
- 3 Properties of Coulomb Sturmian functions
- 4 Coulomb-Sturmian HF convergence studies
- Ongoing work
 - Correlated quantum-chemical methods
 - Unrelated projects

Coulomb Sturmians

 \bullet Iso-energetic solutions φ_{nlm} to hydrogen-like equation^1

$$\left(-\frac{1}{2}\Delta - \beta_n \frac{Z}{r}\right)\varphi_{nlm}(\underline{r}) = E\varphi_{nlm}(\underline{r})$$

• Scaling factor β_n chosen to uniform energy:

$$\beta_n = \frac{kn}{Z} \quad \Rightarrow \quad E = -\frac{k^2}{2}$$

- φ_{nlm} look like hydrogenic orbitals with $\frac{Z}{n}$ replaced by k
- Radial part R_{nl} satisfies

$$\left(-\frac{1}{2r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{l(l+1)}{2r^2} - \frac{nk}{r} - E\right)R_{nl}(r) = 0.$$

\Rightarrow Sturm-Liouville equation²

- ¹H. Shull and P.-O. Löwdin. J. Chem. Phys., **30**, 617 (1959)
- ²M. Rotenberg. Ann. Phys., **19**, 262 (1962)

The functional form of Coulomb Sturmians

Electronic structure theory

Examples of the Coulomb Sturmian radial parts

Basis functions

$$\varphi_{\mu}(\underline{\boldsymbol{r}}) \equiv \varphi_{nlm}(\underline{\boldsymbol{r}}) = R_{nl}(r)Y_l^m(\underline{\hat{\boldsymbol{r}}})$$

CS properties

00000000

CS convergence studies

Ongoing work

A & Q

	n	l		$R_{nl}(r)$	
1s	1	0	$2k^{3/2}$		$\exp(-kr)$
2s	2	0	$2k^{3/2}$	(1-kr)	$\exp(-kr)$
2p	2	1	$2k^{3/2}$	kr	$\exp(-kr)$
3s	3	0	$2k^{3/2}$	$\left(1 - 2kr + \frac{2}{3}(kr)^2\right)$	$\exp(-kr)$
3p	3	1	$2k^{3/2}$	$\frac{2\sqrt{2}}{3}kr\left(1-\frac{kr}{2}\right)$	$\exp(-kr)$
3d	3	2	$2k^{3/2}$	$\frac{\sqrt{2}}{3\sqrt{5}}(kr)^2$	$\exp(-kr)$
general			$2k^{3/2}$	$P_{nl}(kr)$	$\exp(-kr)$

Hydrogen vs. CS radial distribution functions (k = 1.0)

Hydrogen vs. CS radial distribution functions (k = 0.1)

Classical turning point and concentration

- Classical turning point: Zero kinetic energy
- Hydrogen-like functions:

$$-\frac{1}{n^2} = -\frac{Z}{r_T} \iff r_T = Zn^2$$

Coulomb Sturmians:

$$-\frac{k^2}{2} = -\beta_n \frac{Z}{r_T} \iff r_T = \frac{2Z\beta_n}{k^2} = \frac{2n}{k}$$

⇒ Hydrogen-like functions escape too fast into continuum ⇒ Exponent k allows to tune concentration of CS
 Electronic structure theory
 Basis functions
 CS properties
 CS convergence studies

 00000000
 000000
 00000000
 000000000
 0000000000

Ongoing work A & Q

Properties of Coulomb Sturmians

Coulomb-Sturmians vs Gaussians (for hydrogen)

Properties of Coulomb Sturmians

Electronic structure theory

Coulomb-Sturmians vs Gaussians (for hydrogen)

CS properties

00000000

Basis functions

$$\varphi_{\mu}^{\mathsf{CS}}(\underline{\boldsymbol{r}}) = 2k^{3/2} P_{nl}(2kr) \exp(-kr) \cdot Y_l^m(\underline{\hat{\boldsymbol{r}}})$$

CS convergence studies

Ongoing work

A & Q

(Atomic) Coulomb-Sturmians properties overview

- Complete (Schauder) basis¹²
- More physical: Nuclear cusp and exponential decay
- CS exponent k:
 - Identical for each basis function
 - Controls concentration of basis functions
- One-electron integrals sparse and analytic
- Two-electron integrals sparse tensor contraction
- Generalisation to molecules possible³

A & Q

¹B. Klahn and W. A. Bingel. Theoretica chimica acta, 44, 9 (1977)

²B. Klahn and W. A. Bingel. Theoretica chimica acta, 44, 27 (1977)

³J. E. Avery and J. S. Avery. vol. 70 of Advances in Quantum Chemistry, 265 - 324. Academic Press (2015)

Electronic structure theory	Basis functions	CS properties	CS convergence studies	Ongoing work	A & Q 000
Contents					

- 1 Electronic structure theory
- 2 Basis functions
- Properties of Coulomb Sturmian functions
- 4 Coulomb-Sturmian HF convergence studies
- 5 Ongoing work
 - Correlated quantum-chemical methods
 - Unrelated projects

Construction of CS basis sets

- \bullet All CS basis functions share common exponent k
- Index restrictions by CS equations:

$$n > 0 \qquad \qquad 0 \le l < n \qquad \qquad -l \le m \le l$$

• Basis set construction:¹ Additional restrictions

$$n \le n_{\max}$$
 $l \le l_{\max}$ $m \le m_{\max}$

- Restriction by m_{\max} , sometimes l_{\max} neglected
- ⇒ Physically motivated

¹M. F. Herbst, J. E. Avery and A. Dreuw. Physical Review A, 99, 012512 (2019)

 Electronic structure theory
 Basis functions
 CS properties
 Oscillations
 Ongoing work
 A & Q

 Coulomb-Sturmian HF convergence studies
 Coulomb-Sturmian HF convergence studies
 Coulomb-Sturmian HF convergence studies
 Coulomb-Sturmian HF convergence studies

The parameters n_{\max} , l_{\max} and m_{\max}

• Sturm-Liouville form of radial part (for each *l*):

 $\forall 0 \le l < n : \quad R_{nl} \in \operatorname{span}\{R_{n',0}\}_{n' \le n}$

 $\Rightarrow n_{\max}$ controls radial discretisation

 \Rightarrow l_{\max} and m_{\max} control angular discretisation

• Scaling of basis size if only restricted by n_{\max} :

$$N_{\mathsf{bas}}(n_{\mathsf{max}}) = \frac{(2n_{\mathsf{max}}+1)(n_{\mathsf{max}}+1)n_{\mathsf{max}}}{6} \in \mathcal{O}(n_{\mathsf{max}}^3)$$

• Scaling of basis size if restricted by n_{\max} and l_{\max} :

 $N_{\mathsf{bas}}(n_{\mathsf{max}}) = (n_{\mathsf{max}} - 1)(l_{\mathsf{max}} + 1)^2 \in \mathcal{O}(n_{\mathsf{max}}l_{\mathsf{max}}^2)$

Energy convergence¹

¹M. F. Herbst, J. E. Avery and A. Dreuw. Physical Review A, 99, 012512 (2019)

Basis progressions: Energy versus basis size¹

¹M. F. Herbst, J. E. Avery and A. Dreuw. Physical Review A, 99, 012512 (2019)

Energy convergence: Deviating behaviour of elements¹

¹M. F. Herbst, J. E. Avery and A. Dreuw. Physical Review A, 99, 012512 (2019)

Root mean square coefficient value per l

• Root mean square occupied coefficient par AM *l*:

$$\mathsf{RMSO}_l = \sqrt{\sum_{\mu} \sum_{i} \sum_{\sigma \in \{\alpha, \beta\}} \frac{1}{N_{\mathsf{elec}}^{\sigma} N_{\mathsf{bas}, l}} \left(C_{\mu, i}^{\sigma} f_{ii}^{\sigma} \right)^2}$$

where i runs over orbitals, μ over basis functions and

 $N_{\rm elec}^{\sigma}$ Number of electrons with spin σ

 f_{ii}^{σ} Occupation number

 $N_{\mathsf{bas},l}$ Number of basis functions of AM l

• Measure for importance of *l* in HF wave function

RMSO_l plots¹

¹M. F. Herbst, J. E. Avery and A. Dreuw. Physical Review A, 99, 012512 (2019)

Basis progressions: Carbon¹

¹M. F. Herbst, J. E. Avery and A. Dreuw. Physical Review A, 99, 012512 (2019)

k-dependence terms carbon¹

¹M. F. Herbst, J. E. Avery and A. Dreuw. Physical Review A, 99, 012512 (2019)

k-dependence total Hartree-Fock energy¹

¹M. F. Herbst, J. E. Avery and A. Dreuw. Physical Review A, 99, 012512 (2019)

Optimal exponent versus Clementi exponents¹

¹M. F. Herbst, J. E. Avery and A. Dreuw. Physical Review A, 99, 012512 (2019)

Electronic structure theory	Basis functions	CS properties	CS convergence studies	Ongoing work	A & Q 000
<u> </u>					
Contents					

- Electronic structure theory
- 2 Basis functions
- Properties of Coulomb Sturmian functions
- 4 Coulomb-Sturmian HF convergence studies
- 5 Ongoing work
 - Correlated quantum-chemical methods
 - Unrelated projects

• Beryllium, k = 2.1, correlation energy relative to FCI (10, 2, 2)

¹M. F. Herbst. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (2018)

 1 M. F. Herbst. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (2018)

ADC(2) absolute error

ADC(2) absolute error

ADC(2) relative error

Coulomb-Sturmians for correlated methods

- Convergence behaviour?
- Systematic basis set construction?
- Contracted Coulomb-Sturmian basis sets?
- Basis sets with multiple ks?
- Molecular Coulomb Sturmians?

adcc: python-driven ADC for SCF codes

- Joint project with M. Scheurer, T. Fransson, D. R. Rehn, A. L. Dempwolff (Dreuw group, Heidelberg University)
- Algebraic-diagrammatic construction (ADC) approach to electronic excitations
- python layer:
 - Connection to SCF drivers (4 codes so far)
 - Numerical algorithms (eigensolver / linear response)
 - Controls computational workflow
- libtensor¹ C++ library: Heavy tensor-contractions

• Part of Gator framework for computational spectroscopy²

¹E. Epifanovsky, M. Wormit, T. Kuś et al. J. Comput. Chem., **34**, 2293 (2013)

²D. R. Rehn, Z. Rinkevicius, M. F. Herbst, et. al. Gator: A python-driven wave-function correlated program for spectroscopy calculations. In preparation.

DFTK.jl: density-functional theory toolkit

- Joint project with Antoine Levitt and Eric Cancès (Matherials)
- Plane-wave-based density-functional theory
- julia-framework
- Just started, aim:
 - Accessible to mathematicians, physicists, computer scientists
 - Numerical experiments to accompany proof
 - Algorithmic developments
 - $\Rightarrow\,$ Support both toy problems and full-scale applications
- Code: https://github.com/mfherbst/DFTK.jl

Coulomb Sturmians in essence

- Complete, exponential-type basis
 - \Rightarrow May capture cusp and decay behaviour
 - \Rightarrow Parameter k to tune concentration
- Basis set construction for HF problems:¹
 - Physical rationale for arising parameters
 - Convergence explained by physical arguments
 - Implementation for atoms: sturmint and molsturm²
- Extension to molecular integrals feasible
- Basis sets for correlated methods required

¹M. F. Herbst, J. E. Avery and A. Dreuw. Physical Review A, 99, 012512 (2019)

²M. F. Herbst, A. Dreuw and J. E. Avery. J. Chem. Phys., **149**, 84106 (2018)

Basis functions

CS properties

CS convergence studies

Ongoing work A & Q 000000000 •00

Acknowledgements

James Avery

Andreas Dreuw

Papers: M. F. Herbst, A. Dreuw and J. E. Avery. J. Chem. Phys., **149**, 84106 (2018)

M. F. Herbst, J. E. Avery and A. Dreuw. Physical Review A, **99**, 012512 (2019)

Thesis: https://michael-herbst.com/phd-thesis.html

Email: michael.herbst@enpc.fr

Blog: https://michael-herbst.com/blog

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.

Achievements of molsturm

- Basis-function independent design
 - Plug and play new discretisations
 - Basis-type agnostic SCF procedure
- Easy-to-use interfaces
 - Integrate with existing code (e.g. Post-HF)
 - Avoid reinventing the wheel
 - Rapid prototyping, testing and analysis

 \Rightarrow Explore methods across basis function types^{1,2}

¹M. F. Herbst, A. Dreuw and J. E. Avery. J. Chem. Phys., 149, 84106 (2018)

²M. F. Herbst. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (2018)

molsturm structure

Integral backends

Post HF methods

Principle ingredient: Contraction-based methods

- Contraction-based methods
 - Avoid storing matrices
 - Employ iterative, subspace-based algorithms
 - Contraction expressions (e.g. matrix-vector products)
 - Common in Post-HF: Working equations
- \Rightarrow SCF code only needs Fock contraction
- \Rightarrow Hide discretisation details inside Fock object
- ⇒ Flexible to exploit discretisation-specific properties

Evaluating Coulomb Sturmian integrals

molsturm interface: Linked codes

Coulomb-Sturmian based MP2 and FCI

• FCI from pyscf¹

Coulomb Sturmians from sturmint²

- ¹Q. Sun et al. WIREs Comput Mol Sci, **8**, e1340 (2017).
- ²J. E. Avery and M. F. Herbst. https://molsturm.org/sturmint (2018)
- ³M. Wormit et al. Mol. Phys., **112**, 774 (2014).
- ⁴E. Valeyev et al. evaleev/libint: 2.3.1 (2017).
- ⁵Q. Sun. J. Comput. Chem., **36**, 1664 (2015)

Coulomb-Sturmian and Gaussian based ADC(2)

- ADC(2) from adcman³
- Gaussians from libint⁴ or libcint⁵

Evaluating integrals: Useful relations

• Potential-weighted orthonormality relation:

$$\int_{\mathbb{R}^3} \varphi_{\mu'}^*(\underline{r}) \frac{n}{kr} \varphi_{\mu}(\underline{r}) \,\mathrm{d}\underline{r} = \delta_{\mu\mu'}$$

• Fourier-transform of Coulomb Sturmians:

$$\hat{\varphi}_{\mu}(\underline{p}) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} \varphi_{\mu}(\underline{r}) e^{-i\underline{p}\cdot\underline{x}} \,\mathrm{d}\underline{r}$$
$$= \frac{4k^{5/2}}{(k^2 + p^2)^2} Y_{\lambda,l,m}(\underline{\hat{u}})$$

with $\underline{\boldsymbol{p}} \equiv (p_1, p_2, p_3)^T$, $\lambda \equiv n-1$ and $\underline{\hat{\boldsymbol{u}}} \equiv \left(\frac{2kp_1}{k^2 + p^2}, \frac{1kp_2}{k^2 + p^2}, \frac{2kp_3}{k^2 + p^2}, \frac{k^2 - p^2}{k^2 + p^2}\right)^T$

• Fock transformation to hyperspherical harmonics $Y_{\lambda,l,m}(\underline{u})^1$ ¹V. Fock. Zeitschrift für Physik, **98**, 145 (1935)

One-electron integrals

• Overlap:

$$S_{\mu',\mu} = \delta_{m',m} \delta_{l',l} \left\{ \begin{array}{rr} n = n' & 1 \\ |n - n'| = 1 & s_{n,n+1}^{(l)} \in \mathbb{R} \\ \text{else} & 0 \end{array} \right.$$

where

$$s_{n,n+1}^{(l)} = -\frac{1}{2}\sqrt{\frac{(n-l)(n+l+1)}{n(n+1)}}$$

• Nuclear attraction:

$$V_{\mu',\mu} = -\delta_{\mu',\mu} \frac{kZ}{n}$$

• Kinetic:

$$T_{\mu',\mu} = k^2 (\delta_{\mu',\mu} - S_{\mu',\mu})$$
^{51/45}

Two-electron integrals

• ERI tensor from kernel $I_{\mu\nu}$

$$(\varphi_{\mu_1}\varphi_{\mu_2}|\varphi_{\mu_3}\varphi_{\mu_4}) = \sum_{\mu\nu} \mathcal{C}^{\mu}_{\mu_2\mu_1} I_{\mu\nu} \mathcal{C}^{\nu}_{\mu_3\mu_4}$$

where

$$I_{\mu\mu'} = \delta_{ll'} \delta_{mm'} I_{nn'}^{(l)},$$

thus sparse and storable (30 kB for n = 20).

• The $\mathcal{C}^{\mu}_{\mu_1\mu_2}$ are the coefficients in

$$\varphi_{\mu_1}^*(\underline{\mathbf{r}})\varphi_{\mu_2}(\underline{\mathbf{r}}) = \sum_{\mu} \mathcal{C}_{\mu_1\mu_2}^{\mu}\varphi_{\mu}(2k,\underline{\mathbf{r}}),$$

again sparse (220 MB for n = 20).

⇒ Like *exact* density fitting

Evaluating molecular CS 1e integrals¹

1

- Let $\tau \equiv (A, n, l, m)$ and $\varphi_{\tau}(\underline{r}) \equiv \varphi_{\mu}(\underline{r} \underline{R}_A)$
- Key quantity: Shibuya-Wulfman integrals

$$\begin{split} \mathfrak{S}_{\tau\tau'} &= \int_{\mathbb{R}^3} \varphi_{\tau}^*(\underline{r}) \left(\frac{-\Delta + k^2}{2k^2} \right) \varphi_{\tau'}(\underline{r}) \,\mathrm{d}\underline{r} \\ &= (2\pi)^{3/2} \sum_{\mu''} f_{n'',l''}(S) \, Y_{l''}^{m''}(\underline{\hat{S}}) \, c_{\mu'';\mu,\mu'} \end{split}$$

with $\underline{\bm{S}}=k(\underline{\bm{R}}_{A}-\underline{\bm{R}}_{A'})\text{, }c_{\mu^{\prime\prime};\mu,\mu^{\prime}}$ sparse and pre-computable

• $f_{nl}(S)$: analytic in S, related to CS radial part $R_{nl}(S)$

¹J. E. Avery and J. S. Avery. vol. 70 of Advances in Quantum Chemistry, 265 - 324. Academic Press (2015)

Evaluating molecular CS ERI integrals¹

• Following a similar idea as before

$$(\varphi_{\tau_1}\varphi_{\tau_2}|\varphi_{\tau_3}\varphi_{\tau_4}) \simeq \sum_{\mu\nu} \mathcal{C}^{\tau}_{\tau_2\tau_1} I_{\tau\tau'} \mathcal{C}^{\tau'}_{\tau_3\tau_4}$$

where

$$\varphi_{\tau_1}(\underline{\boldsymbol{r}})\varphi_{\tau_2}^*(\underline{\boldsymbol{r}}) \simeq \sum_{\tau} \mathcal{C}_{\tau_2\tau_1}^{\tau}\varphi_{\tau}(2k,\underline{\boldsymbol{r}})$$

with $\sum_{\tau} \equiv \sum_{A_1\mu} + \sum_{A_2\mu}$.

• For this: Solve once linear system (thus \simeq):

$$\sum_{\tau'} S_{\tau\tau'}(2k, \underline{S}) \, \mathcal{C}_{\tau_2 \tau_1}^{\tau'} = \int_{\mathbb{R}^3} \varphi_{\tau}^*(2k, \underline{r}) \varphi_{\tau_1}(\underline{r}) \varphi_{\tau_2}^*(\underline{r}) \, \mathrm{d}\underline{r}$$

¹J. E. Avery and J. S. Avery. vol. 70 of Advances in Quantum Chemistry, 265 - 324. Academic Press (2015)