Simulating chemistry Enabling novel approaches for modelling the electronic structure of molecules

Michael F. Herbst

Heidelberg laureate forum 2018

26th September 2018

Why "computer chemistry"?	Top to bottom	A platform to try things 000000	Questions 0000
Contents			

1 Why "computer chemistry"?

2 Top to bottom

• Sketching models and equations

A platform to try things

• molsturm

Why "computer chemistry"? ●○	Top to bottom	A platform to try things	Questions 0000
Contents			

Why "computer chemistry"?

Sketching models and equations

• molsturm

Why "computer chemistry"?

- Experiments are expensive (money, people, time)
- 1 droplet water¹: $1.7 \cdot 10^{21}$ particles
- Experiments only measure averages
- Sometimes hard to link to physical laws
- \Rightarrow Cooperative research of experiment and theory
- \Rightarrow Standard practice in industry and research

¹Assume 0.05 ml.

Why "computer chemistry"?	Top to bottom	A platform to try things	Questions
00	●○○○○○○○○	000000	
Combonie			

Contents

2 Top to bottom

• Sketching models and equations

A platform to try things

• molsturm

Why "computer chemistry"?	Top to bottom	A platform to try things	Questions
Sketching models and equations			

Describing chemistry

Quantum chemistry

- Goal: Describing chemical reactivity / properties
- Physics at the atomic level: Quantum physics
- $\bullet~\mbox{Quantum physics}$ + chemistry $\rightarrow~\mbox{quantum chemistry}$
- ⇒ Electronic Schrödinger equation:

$$\hat{\mathcal{H}}\Psi_i = E_i \Psi_i$$

- Defines energy E_i
- Solving allows to probe arbitrary properties via Ψ_i

Electronic Schrödinger equation

• Electronic Schrödinger equation:

$$\hat{\mathcal{H}}\Psi_i = E_i \Psi_i$$

- \bullet Hamiltonian $\hat{\mathcal{H}}:$ Contains physics and molecular structure
- State $\Psi_i \in H^2(\mathbb{R}^{3N}, \mathbb{C})$ (N: Number of electrons)
- Energy $E_i \in \mathbb{R}$: Eigenvalue corresponding to Ψ_i
- Most important: Ground state energy E_0 and Ψ_0
- One $\hat{\mathcal{H}}$ for each structure
- \Rightarrow Many equations to solve

Solving the Schrödinger equation: How hard can it be?

• Main ingredient: Min-max principle¹:

$$E_0 \le \min_{\Psi \in S} \mathcal{E}(\Psi) = \min_{\Psi \in S} \frac{\left\langle \Psi \middle| \hat{\mathcal{H}} \Psi \right\rangle}{\left\langle \Psi \middle| \Psi \right\rangle}$$

where $S\subset H^1(\mathbb{R}^{3N},\mathbb{C})$ and $L^2(\mathbb{R}^{3N},\mathbb{C})$ inner product $\langle\,\cdot\,|\,\cdot\,\rangle$

- Discretisation: Curse of dimensionality:
 - $\langle \, \cdot \, | \, \cdot \, \rangle$ involves integral over 3N-dim. space
 - Assume 2 quadrature points only
 - Chloromethane: $N=26 \Rightarrow 2^{78} \approx 3\cdot 10^{23}$ quadrature points

¹Because of technical details we can use H^1 instead of H^2 .

Now what?

- Need a suitable inexact model
- Plenty have been developed
- Our focus: Hartree-Fock approximation
 - Single-particle functions: $\psi_i \in H^1(\mathbb{R}^3, \mathbb{R})$
 - Slater-determinant:

$$\Phi = \frac{1}{\sqrt{N}} \det \begin{pmatrix} \psi_1(\underline{r}_1) & \psi_2(\underline{r}_1) & \cdots & \psi_N(\underline{r}_1) \\ \psi_1(\underline{r}_2) & \psi_2(\underline{r}_2) & \cdots & \psi_N(\underline{r}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1(\underline{r}_N) & \psi_2(\underline{r}_N) & \cdots & \psi_N(\underline{r}_N) \end{pmatrix}$$

 $\bullet\,$ Subspace S: Choose the best single-determinant subspace

Hartree-Fock approximation

• For trial determinant $\tilde{\Phi}$ made up of $\{\tilde{\psi}_i\}_i$:

$$E_0 \le E_0^{\mathsf{HF}} \le \mathcal{E}^{\mathsf{HF}}\left(\tilde{\Phi}\right)$$

- \Rightarrow Minimisation problem for $\{\tilde{\psi}_i\}_i$
 - Unique minimising set $\Theta^0 = \{\psi_i^0\}_i$ exists!
 - Euler-Lagrange equations:

$$\hat{\mathcal{F}}_{\Theta^0}\psi_i^0 = \varepsilon_i\psi_i^0 \qquad \qquad \left\langle \psi_i^0 \middle| \psi_j^0 \right\rangle = \delta_{ij}$$

- Fock operator $\hat{\mathcal{F}}_{\Theta^0}$ depends on solution
- \Rightarrow Self-consistent field problem

The standard approach

- Note: HF is in single-particle space, i.e. 3D
- Discretise $\hat{\mathcal{F}}_{\Theta^0}$ in a basis $\{\varphi_{\mu}\}_{\mu}$
- \Rightarrow Problem now: Find the lowest-energy $\{\psi_i^0\}_i$, built from $\{\varphi_\mu\}_\mu$
 - Self-consistent field procedure:
 - **1** Guess trial coefficients $\mathbf{C}^{(0)}$
 - **2** Build trial Fock matrix $\mathbf{F}^{(0)}$
 - **③** Solve Euler-Lagrange equations \Rightarrow New $\mathbf{C}^{(1)}$
 - ${f 0}$ Build next Fock matrix ${f F}^{(1)}$
 - 6 Repeat

 Why "computer chemistry"?
 Top to bottom
 A platform to try things
 Questions

 00
 0000000
 000000
 00000

 Sketching models and equations
 0000000
 000000

The standard basis: Gaussian-type basis sets

Why "computer chemistry"?	Top to bottom	A platform to try things	Questions
Contents			

2 Top to bottom

• Sketching models and equations

Alternatives

- Gaussians: Not physical, but cheap
- Tuned to be good in the regions where chemistry happens
- \Rightarrow Implicit assumptions:
 - Electron is close to the nucleus
 - Valence region
 - There are cases where these are violated!
 - How about alternatives?

Alternatives

- Gaussians: Not physical, but cheap
- Tuned to be good in the regions where chemistry happens
- \Rightarrow Implicit assumptions:
 - Electron is close to the nucleus
 - Valence region
 - There are cases where these are violated!
 - How about alternatives?
 - Many exist!

Alternatives: Coulomb-Sturmians

$$\varphi_{\mu}^{\mathsf{CS}}(\underline{r}) = P_{nl}(r) \exp(-kr) \cdot Y_{l}^{m}(\underline{\hat{r}})$$

molsturm

Challenge: Deviating Fock matrix structures

- Required numerical procedures differ
- Details should be hidden from SCF

Why "computer chemistry"?	Top to bottom	A platform to try things	Questions 0000
molsturm			

Aims of molsturm

Integral backends

Post HF methods

molsturm			
00	00000000	00000	0000
Why "computer chemistry"?	Top to bottom	A platform to try things	Questions

molsturm structure

Integral backends

Post HF methods

- Dimensionality of chemistry is enormous
- Modelling actual experiments: Approximate methods
- Sources of error:
 - Method (i.e. Hartree-Fock instead of Schrödinger)
 - Discretisation (i.e. Basis set)
 - Numerics (i.e. convergence tolerance)
- Ideal balancing point strongly dependent on problem
- \Rightarrow Need framework to try things
- \Rightarrow Main motivation for molsturm

Acknowledgements

James Avery

Andreas Dreuw

Adrian Dempwolff

Guido Kanschat

Maximilian Scheurer

Questions?

- Code: https://molsturm.org
- Paper: https://michael-herbst.com/molsturm-design.html
- Thesis: https://michael-herbst.com/phd-thesis.html
- Email: michael.herbst@iwr.uni-heidelberg.de Blog: https://michael-herbst.com/blog

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.

Contents

22 / 21

• Actual expression in source code

 $\begin{aligned} \mathbf{D} &= \mathbf{A} + \mathbf{B}, \\ \mathbf{E} &= \mathbf{D}\mathbf{C}, \\ &\underline{\boldsymbol{y}} &= \mathbf{E}\underline{\boldsymbol{x}}, \end{aligned}$

• Actual expression in source code

D = A + B, E = DC, $\underline{y} = E\underline{x},$

$$\boxed{\mathbf{D}} = \boxed{\mathbf{A}} + \boxed{\mathbf{B}} = \boxed{\mathbf{A}}^{+}_{\mathbf{A}}$$

• Actual expression in source code

$$D = A + B,$$

$$E = DC,$$

$$\underline{y} = E\underline{x},$$

$$\mathbf{E}$$
 = \mathbf{D} · \mathbf{C}

• Actual expression in source code

$$D = A + B,$$

$$E = DC,$$

$$\underline{y} = E\underline{x},$$

$$\mathbf{E} = \mathbf{A}^{+} \mathbf{B} \cdot \mathbf{C} = \mathbf{A}^{+} \mathbf{C}$$

• Actual expression in source code

$$D = A + B,$$

$$E = DC,$$

$$\underline{y} = \underline{E}\underline{x},$$

$$\underline{\underline{y}} = \mathbf{\underline{E}} \underline{\underline{x}} = \underbrace{\mathbf{\underline{x}}}_{\mathbf{\underline{A}} = \mathbf{\underline{B}}} \underbrace{\underline{\underline{x}}}_{\mathbf{\underline{B}}} = (\mathbf{A} + \mathbf{B}) \mathbf{C} \underline{\underline{x}}$$