Challenges and open problems related to the algebraic diagrammatic construction scheme

Michael F. Herbst

Franco-German Workshop Aachen 2018

11th September 2018

#### Contents



- 2 Sketching the derivation
  - Via many-body Green's function theory
  - Via intermediate states
  - Broader prospect
- Output: Solving ADC
  - Solving by diagonalisation
  - Solving linear-response-like





### Contents



- Sketching the derivation
  - Via many-body Green's function theory
  - Via intermediate states
  - Broader prospect
- 3 Numerically solving ADC
  - Solving by diagonalisation
  - Solving linear-response-like
- Open questions and problems



### Why excited-state calculations?

- Interaction light and matter
  - Spectroscopy (UV/vis, UV, X-ray)
  - Photoreactivity
- Application in materials and chemistry:
  - Colour
  - Energy production, storage and transport
  - UV durability / Photosynthesis
  - Molecular motors / sensors

Open questions and problems

#### Comparison of methods for $n = 2^1$

|                                    | CISD      | CC2         | ADC(2)     |
|------------------------------------|-----------|-------------|------------|
| Ground state<br>Ground state order | CISD<br>3 | CC2<br>3    | MP2<br>2   |
| Size consistency<br>Hermiticity    | No<br>Yes | (Yes)<br>No | Yes<br>Yes |
| Max. excitation                    | 2         | 2           | 2          |
| Order properties                   | 2         | 2           | 2          |
| Naive scaling                      | $n^6$     | $n^5$       | $n^5$      |

<sup>1</sup>M. Wormit, D. R. Rehn, P. H. Harbach, J. Wenzel, C. M. Krauter, E. Epifanovsky and A. Dreuw. Mol. Phys., **112**, 774 (2014)

Open questions and problems

#### Comparison of methods for $n = 3^1$

|                                    | CISDT      | CC3         | ADC(3)     |
|------------------------------------|------------|-------------|------------|
| Ground state<br>Ground state order | CISDT<br>4 | CC3<br>4    | MP3<br>3   |
| Size consistency<br>Hermiticity    | No<br>Yes  | (Yes)<br>No | Yes<br>Yes |
| Max. excitation                    | 3          | 3           | 2          |
| Order properties                   | 3          | 3           | 3          |
| Naive scaling                      | $n^8$      | $n^7$       | $n^6$      |

<sup>1</sup>M. Wormit, D. R. Rehn, P. H. Harbach, J. Wenzel, C. M. Krauter, E. Epifanovsky and A. Dreuw. Mol. Phys., **112**, 774 (2014)

### Current status of ADC methods

- ADC(2): Established, excitation errors around 0.5eV
- ADC(3): Error comparable to benchmark methods
- Specialised variants exist (ionisation, core, spin-flip)
- Method limits:
  - Strong multi-reference cases
  - MP ground state fails
- Mathematical and numerical aspects:
  - Barely investigated
  - $\bullet\,$  E.g. solvers unreliable for poor guesses / challenging cases

### Contents

#### A brief overview of ADC

- 2 Sketching the derivation
  - Via many-body Green's function theory
  - Via intermediate states
  - Broader prospect
- 3 Numerically solving ADC
  - Solving by diagonalisation
  - Solving linear-response-like
- Open questions and problems



Via many-body Green's function theory

## Green's functions and the polarisation propagator

• One-particle Green's function or propagator:

$$G_{p,p'}\left(t_p - t_{p'}\right) = -\imath \left\langle \Psi_0^N \middle| \hat{\mathcal{T}} \hat{\mathbf{c}}_p(t_p) \hat{\mathbf{c}}_{p'}^{\dagger}(t_{p'}) \middle| \Psi_0^N \right\rangle$$

Time-evolution of wave function

• Two-particle Green's function or two-particle propagator:

$$G_{pq,p'q'}(t_p, t_q, t_{p'}, t_{q'}) = -\imath \left\langle \Psi_0^N \middle| \hat{\mathcal{T}} \hat{c}_p(t_p) \hat{c}_q(t_q) \hat{c}_{p'}^{\dagger}(t_{p'}) \hat{c}_{q'}^{\dagger}(t_{q'}) \middle| \Psi_0^N \right\rangle$$

Time-evolution of  $G_{p,p'}$ 

• Polarisation propagator or particle-hole propagator:

$$\Pi_{jk,j'k'}(t-t') = -\imath \left\langle \Psi_0^N \middle| \hat{\mathcal{T}} \hat{\mathbf{c}}_j(t) \hat{\mathbf{c}}_{k'}(t') \hat{\mathbf{c}}_k^{\dagger}(t) \hat{\mathbf{c}}_{j'}^{\dagger}(t') \middle| \Psi_0^N \right\rangle$$

Special case of  $G_{pq,p^\prime q^\prime}(t_p,t_q,t_{p^\prime},t_{q^\prime})$ , evolution after excitation

## Polarisation propagator $(1)^1$

• Spectral or Lehmann representation:

$$\begin{split} \Pi_{jk,j'k'}(\omega) &= \sum_{m \neq 0} \frac{\left\langle \Psi_0 \middle| \hat{\mathbf{c}}_k^{\dagger} \hat{\mathbf{c}}_j \middle| \Psi_m \right\rangle \left\langle \Psi_m \middle| \hat{\mathbf{c}}_{j'}^{\dagger} \hat{\mathbf{c}}_{k'} \middle| \Psi_0 \right\rangle}{\omega - (E_m - E_0) + \imath \eta} \\ &- \sum_{m \neq 0} \frac{\left\langle \Psi_0 \middle| \hat{\mathbf{c}}_{j'}^{\dagger} \hat{\mathbf{c}}_{k'} \middle| \Psi_m \right\rangle \left\langle \Psi_m \middle| \hat{\mathbf{c}}_k^{\dagger} \hat{\mathbf{c}}_j \middle| \Psi_0 \right\rangle}{\omega + (E_m - E_0) - \imath \eta}, \end{split}$$

where  $\eta \to 0$ 

- Both terms contain same physical information:
  - Poles: Excitation energies  $E_m E_0$
  - Transition amplitudes

$$x_{m,jk} \equiv x_{m,j\leftarrow k} = \left\langle \Psi_m \middle| \hat{\mathbf{c}}_j^{\dagger} \hat{\mathbf{c}}_k \middle| \Psi_0 \right\rangle$$

<sup>1</sup>J. Schirmer. Phys. Rev. A, 26, 2395 (1982)

Sketching the derivation

Numerically solving ADC

Open questions and problems

Via many-body Green's function theory

## Polarisation propagator $(2)^1$

• Only consider

$$\begin{split} \Pi_{jk,j'k'}^{+}(\omega) &= \sum_{m \neq 0} \frac{\left\langle \Psi_{0} \middle| \hat{\mathbf{c}}_{k}^{\dagger} \hat{\mathbf{c}}_{j} \middle| \Psi_{m} \right\rangle \left\langle \Psi_{m} \middle| \hat{\mathbf{c}}_{j'}^{\dagger} \hat{\mathbf{c}}_{k'} \middle| \Psi_{0} \right\rangle}{\omega - (E_{m} - E_{0})} \\ &= \underline{x}_{jk}^{\dagger} \left( \omega \mathbf{I} - \mathbf{\Omega} \right)^{-1} \underline{x}_{j'k'} \\ \end{split}$$
where
$$\begin{aligned} \omega_{i} &\equiv E_{i} - E_{0} \\ \mathbf{\Omega} &\equiv \operatorname{diag}(\omega_{1}, \omega_{2}, \dots, \omega_{m}) \\ x_{m,jk} &= \left\langle \Psi_{m} \middle| \hat{\mathbf{c}}_{j}^{\dagger} \hat{\mathbf{c}}_{k} \middle| \Psi_{0} \right\rangle \end{split}$$

<sup>1</sup>J. Schirmer. Phys. Rev. A, 26, 2395 (1982)

Open questions and problems

#### Via many-body Green's function theory

### Algebraic-diagrammatic construction (ADC) (1)

• Last slide: Diagonal representation

$$\Pi_{jk,j'k'}^{+}(\omega) = \underline{x}_{jk}^{\dagger} \left( \omega \mathbf{I} - \mathbf{\Omega} \right)^{-1} \underline{x}_{j'k'}$$

• Insert unitary transformation Y to generalise:

$$\Pi_{jk,j'k'}^{+}(\omega) = \underline{x}_{jk}^{\dagger} \mathbf{Y}^{\dagger} \mathbf{Y} (\omega \mathbf{I} - \mathbf{\Omega})^{-1} \, \mathbf{Y}^{\dagger} \mathbf{Y} \underline{x}_{j'k'}$$

 $\Rightarrow$  ADC representation

$$\Pi_{jk,j'k'}^{+}(\omega) = \underline{f}_{jk}^{\dagger} \left(\omega \mathbf{I} - \mathbf{M}\right)^{-1} \underline{f}_{j'k'}$$

with

- Modified transition amplitudes  $\underline{f}_{jk} = \mathbf{Y} \underline{x}_{jk}$
- ADC matrix  $\mathbf{M}=\mathbf{Y}\mathbf{\Omega}\mathbf{Y}^{\dagger}$



## Algebraic-diagrammatic construction $(2)^1$

• Well-known expansion via Feynman-Dyson perturbation theory:

$$\Pi^+ = \Pi^{(0)} + \Pi^{(1)} + \Pi^{(2)} + \cdots$$

• From these diagrams ADC scheme constructs

$$\mathbf{M} = \mathbf{M}^{(0)} + \mathbf{M}^{(1)} + \mathbf{M}^{(2)} + \cdots$$
$$\underline{f}_{jk} = \underline{f}_{jk}^{(0)} + \underline{f}_{jk}^{(1)} + \underline{f}_{jk}^{(2)} + \cdots$$

based on Møller-Plesset partitioning and HF reference

 $\Rightarrow$  *n*-th order in M &  $\underline{f}_{ik}$  equivalent to *n*-th order in  $\Pi^+$ 

<sup>1</sup>J. Schirmer. Phys. Rev. A, 26, 2395 (1982)

Open questions and problems

#### Via many-body Green's function theory

## Algebraic-diagrammatic construction (3)

- Some ambiguity in construction of terms<sup>1</sup> ( $\mathbf{M}^{(n)}$  versus  $\boldsymbol{f}^{(n)}$ )
- $\Rightarrow$  ADC: Make **M** least diagonal
  - Avoids "dangerous denominators"<sup>2</sup>
  - ${\ensuremath{\,\bullet\)}}$  Leads to "compactness advantage"  $^2$  in  ${\ensuremath{\mathbf{M}}}$
  - Other choices<sup>2</sup>:
    - Rayleigh-Schrödinger perturbation theory (RSPT) ( $\mathbf{Y}=\mathbf{I})$
    - Configuration-interaction (CI)

- <sup>1</sup>J. Schirmer. Phys. Rev. A, **26**, 2395 (1982)
- <sup>2</sup>J. Schirmer. Phys. Rev. A, 43, 4647 (1991)

A brief overview of ADC Sketching the derivation

Numerically solving ADC

Open questions and problems

Via many-body Green's function theory

## Algebraic-diagrammatic construction (4)

Diagonal representation

$$\Pi_{jk,j'k'}^{+}(\omega) = \underline{x}_{jk}^{\dagger} \left(\omega \mathbf{I} - \mathbf{\Omega}\right)^{-1} \underline{x}_{j'k'}$$

 $\Rightarrow$  Directly yields  $\omega_m$  and  $x_{m,jk}$ 

#### ADC representation

$$\Pi^{+}_{jk,j'k'}(\omega) = \underline{f}^{\dagger}_{jk} \left(\omega \mathbf{I} - \mathbf{M}\right)^{-1} \underline{f}_{j'k'}$$

• Obtain  $N_{\rm states}$  lowest eigenpairs  $(\omega_m, \underline{y}_m)$  $\mathbf{M} y_m = \omega_m y_m$ 

where 
$$\underline{\boldsymbol{y}}_m$$
 is *m*-th column of  $\mathbf{Y}$ , the *m*-th transition vector.

2 Transition amplitude is

$$x_{m,jk} = \left(\underline{\boldsymbol{y}}_{m}\right)^{\dagger} \underline{\boldsymbol{f}}_{jk}$$

Open questions and problems

A brief overview of ADC

## Algebraic-diagrammatic construction (5)

- ADC generalises to higher excitations: doubles, triples, ...
  - Transition amplitudes  $x_{m,j \leftarrow k,j' \leftarrow k'}$
  - Modif. transition amplitudes  $f_{iajb,j\leftarrow k,j'\leftarrow k'}$
  - Transition vectors  $Y_{iajb,m}$
- Collect block-wise: E.g. transition vector

$$\mathbf{Y} = \begin{pmatrix} \vdots & \vdots & \ddots \\ Y_{ia,1} & Y_{ia,2} & \cdots \\ \vdots & \vdots & \ddots \\ Y_{iajb,1} & Y_{iajb,2} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \qquad \qquad \underbrace{\boldsymbol{y}} = \begin{pmatrix} \vdots \\ y_{ia} \\ \vdots \\ y_{iajb} \\ \vdots \end{pmatrix}$$

• Elements written as  $Y_{I,m}$  and  $y_I$  where I runs over all index tuples (i, a) and (i, a, j, b)

Open questions and problems

A brief overview of ADC 00000 Via intermediate states

### Intermediate states representation (1)

- Basis of Ω: Exact Schrödinger states
- Alternative basis for this space:

$$\left\{\Psi_0,\ \hat{\mathbf{c}}_a^{\dagger}\hat{\mathbf{c}}_i\Psi_0,\ \hat{\mathbf{c}}_b^{\dagger}\hat{\mathbf{c}}_j\hat{\mathbf{c}}_a^{\dagger}\hat{\mathbf{c}}_i\Psi_0,\ \dots\right\} \equiv \left\{\hat{\mathbf{C}}_I\Psi_0\right\}_I$$

where  $\Psi_0$  is the  $\mathit{exact}$  ground state

- $\bullet~{\bf Y}$  unitary transforms  ${\bf \Omega}$  to  ${\bf M}$
- $\Rightarrow$  Direct construction of intermediate state basis  $\{\tilde{\Psi}_I\}_I$ :
  - Intermediate states representation<sup>1</sup>:

$$M_{IJ} = \left\langle \tilde{\Psi}_{I} \middle| \hat{\mathcal{H}} - E_{0} \middle| \tilde{\Psi}_{J} \right\rangle$$
$$f_{I,jk} = \left\langle \tilde{\Psi}_{I} \middle| \hat{c}_{j}^{\dagger} \hat{c}_{k} \middle| \Psi_{0} \right\rangle$$

<sup>1</sup>J. Schirmer. Phys. Rev. A, 43, 4647 (1991)

#### Via intermediate states

## Intermediate states (2)

- $\bullet$  Based on MP partitioning of  $\hat{\mathcal{H}}_{elec}$
- Use MP ground state and build  $\{\hat{C}_I \Psi_0\}_I$
- Block-wise QR orthogonalsation singles, doubles, triples, ...
- ⇒ Intermediate states
  - Allows systematic construction:
    - M (shifted Hamiltonian)
    - f (state projection)
    - arbitrary operators

#### Broader prospect

### Other propagators for ADC

- Polarisation propagator: Evolution after excitation
- Complex polarisation propagator: Models relaxation as well
- Particle propagator: Evolution after particle attachment
- Hole propagator: Evolution after particle removal
- $\Rightarrow$  Can apply ADC scheme to all of them!
- $\Rightarrow$  Very similar structure of equations

## Connection to RPA<sup>1</sup>

• ADC: Eigenproblem, p-h, 2p-2h, ...

$$\mathbf{M}\underline{\boldsymbol{y}} = \omega \underline{\boldsymbol{y}}$$

• RPA: Pseudo-Eigenproblem, p-h, h-p

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\dagger} & \mathbf{A} \end{pmatrix} \begin{pmatrix} \underline{y} \\ \underline{z} \end{pmatrix} = \omega \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & -\mathbf{I} \end{pmatrix} \begin{pmatrix} \underline{y} \\ \underline{z} \end{pmatrix}$$

- RPA and TDA excitation energies: Both exact up to first order
  - Generally too large
  - Note: RPA no increase in perturbation order<sup>1</sup>
- ADC(1) exci. energies  $\equiv$  CIS / TDA-RPA on HF reference
- <sup>1</sup>J. Schirmer. Phys. Rev. A, 26, 2395 (1982)

### Contents



- 2 Sketching the derivation
  - Via many-body Green's function theory
  - Via intermediate states
  - Broader prospect
- Output Solving ADC
  - Solving by diagonalisation
  - Solving linear-response-like





| A brief overview of ADC                                                                      | Sketching t                                                            | he derivation                                               | Numerically solving ADC  |                                                 | Open questions and problems |         |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------|-------------------------------------------------|-----------------------------|---------|--|--|--|--|--|--|
| Solving by diagonalisation                                                                   |                                                                        |                                                             |                          |                                                 |                             |         |  |  |  |  |  |  |
| Structure of the ADC matrix (1)                                                              |                                                                        |                                                             |                          |                                                 |                             |         |  |  |  |  |  |  |
| $\tilde{\Psi}^{a}_{i}$ $\tilde{\Psi}^{a}_{i}$ $M^{(11)}$ $\tilde{\Psi}^{ab}_{ij}$ $M^{(21)}$ | $	ilde{\Psi}^{ab}_{ij}$ $\mathbf{M}^{(21)\dagger}$ $\mathbf{M}^{(22)}$ | $\tilde{\Psi}^a_i$ $\tilde{\Psi}^a_i$ $\tilde{\Psi}^a_{ij}$ | $	ilde{\Psi}^{ab}_{ij}$  | $ar{\Psi}^a_i$ $ar{\Psi}^a_i$ $ar{\Psi}^a_{ij}$ | ${ar \Psi}^{ab}_{ij}$       |         |  |  |  |  |  |  |
|                                                                                              |                                                                        |                                                             | DC(0)                    |                                                 | ADC(1)                      |         |  |  |  |  |  |  |
| $	ilde{\Psi}^a_i$                                                                            | $\tilde{\Psi}^{ab}_{ij}$                                               | $\tilde{\Psi}^a_i$                                          | $\tilde{\Psi}^{ab}_{ij}$ | $\tilde{\Psi}_i^a$                              | $\tilde{\Psi}^{ab}_{ij}$    | 1       |  |  |  |  |  |  |
| $	ilde{\Psi}^a_i$ 2                                                                          | 1                                                                      | $\tilde{\Psi}_{i}^{a}$ 2                                    | 1                        | $\tilde{\Psi}_i^a$ 3                            | 2                           |         |  |  |  |  |  |  |
| $\tilde{\Psi}^{ab}_{ij}$ 1                                                                   |                                                                        | $	ilde{\Psi}^{ab}_{ij}$ 1                                   | 1                        | $	ilde{\Psi}^{ab}_{ij}$ 2                       | 1                           |         |  |  |  |  |  |  |
| A                                                                                            | ADC(2)                                                                 | ADO                                                         | C(2)-x                   |                                                 | ADC(3)                      | 21 / 36 |  |  |  |  |  |  |

Sketching the derivation

Numerically solving ADC

Open questions and problems

Solving by diagonalisation

## Structure of the ADC matrix (2)

#### • Problem: CN• (STO-3G)



Open questions and problems

## Diagonalisation procedure $\mathbf{M}\underline{y} = \omega \underline{y}$

- ullet M quickly becomes large
- Iterative diagonalisation procedures required
- $\bullet$  Usually only smallest few eigenpairs  $(\omega, \boldsymbol{y})$  needed
- ullet M is well diagonally dominant
- $\Rightarrow$  Contraction-based Jacobi-Davidson algorithm
  - Guess: Smallest diagonal elements
  - $\bullet\,$  Davidson-type "preconditioning": Diagonal of  ${\bf M}\,$
  - Expressions to perform block-wise matrix-vector product
  - Typical cases: Convergence within 30 steps

Solving by diagonalisation

### Jacobi-Davidson algorithm

- Subspace algorithm:
  - Current Ritz pair  $\left( heta^{(j)}, oldsymbol{y}^{(j)} 
    ight)$
  - Current residual  $\underline{r}^{(j)} = \mathbf{M} \underline{y}^{(j)} \omega \underline{y}^{(j)}$
- Jacobi orthogonal component correction: Add  $\underline{t}^{(j)} \perp \underline{v}^{(j)}$  to subspace, s.t.

$$\mathbf{M}\left(\underline{\boldsymbol{y}}^{(j)}+\underline{\boldsymbol{t}}^{(j)}\right)=\omega\left(\underline{\boldsymbol{y}}^{(j)}+\underline{\boldsymbol{t}}^{(j)}\right)$$

•  $\omega$  unknown, so instead solve

$$\mathbf{M}_{\theta}\underline{\boldsymbol{t}}^{(j)} \equiv \left(\mathbf{I} - \underline{\boldsymbol{v}}^{(j)}\underline{\boldsymbol{v}}^{(j)*}\right) \left(\mathbf{M} - \boldsymbol{\theta}^{(j)}\mathbf{I}\right) \left(\mathbf{I} - \underline{\boldsymbol{v}}^{(j)}\underline{\boldsymbol{v}}^{(j)*}\right) \underline{\boldsymbol{t}}^{(j)} = -\underline{\boldsymbol{r}}^{(j)}$$

• Davidson suggested to solve:

$$\left(\mathbf{I} - \underline{\boldsymbol{v}}^{(j)} \underline{\boldsymbol{v}}^{(j)*}\right) \left(\mathbf{D} - \boldsymbol{\theta}^{(j)} \mathbf{I}\right) \underline{\boldsymbol{t}}^{(j)} = -\underline{\boldsymbol{r}}^{(j)},$$

where  ${\bf D}$  is an approximation to  ${\bf M}.$ 

Sleijpen-van-der-Vorst preconditioning:

$$\mathbf{K}_{\theta}^{+}\mathbf{M}_{\theta}\underline{t}^{(j)} = -\mathbf{K}_{\theta}^{+}\underline{r}^{(j)}$$

where  $\mathbf{K}_{\theta}^{+}$  is an approximate iterative inverse of  $\mathbf{M}_{\theta}$ .

Solving by diagonalisation

### Jacobi-Davidson algorithm

- Subspace algorithm:
  - Current Ritz pair  $\left( heta^{(j)}, oldsymbol{y}^{(j)} 
    ight)$
  - Current residual  $\underline{r}^{(j)} = \mathbf{M} \underline{y}^{(j)} \omega \underline{y}^{(j)}$
- Jacobi orthogonal component correction: Add  $\underline{t}^{(j)} \perp \underline{v}^{(j)}$  to subspace, s.t.

$$\mathbf{M}\left(\underline{\boldsymbol{y}}^{(j)} + \underline{\boldsymbol{t}}^{(j)}\right) = \omega\left(\underline{\boldsymbol{y}}^{(j)} + \underline{\boldsymbol{t}}^{(j)}\right)$$

•  $\omega$  unknown, so instead solve

$$\mathbf{M}_{\theta}\underline{\boldsymbol{t}}^{(j)} \equiv \left(\mathbf{I} - \underline{\boldsymbol{v}}^{(j)}\underline{\boldsymbol{v}}^{(j)*}\right) \left(\mathbf{M} - \boldsymbol{\theta}^{(j)}\mathbf{I}\right) \left(\mathbf{I} - \underline{\boldsymbol{v}}^{(j)}\underline{\boldsymbol{v}}^{(j)*}\right) \underline{\boldsymbol{t}}^{(j)} = -\underline{\boldsymbol{r}}^{(j)}$$

• Davidson suggested to solve:

$$\left(\mathbf{I} - \underline{\boldsymbol{v}}^{(j)} \underline{\boldsymbol{v}}^{(j)*}\right) \left(\mathbf{D} - \boldsymbol{\theta}^{(j)} \mathbf{I}\right) \underline{\boldsymbol{t}}^{(j)} = -\underline{\boldsymbol{r}}^{(j)},$$

where  ${\bf D}$  is an approximation to  ${\bf M}.$ 

• Sleijpen-van-der-Vorst preconditioning:

$$\mathbf{K}_{\theta}^{+}\mathbf{M}_{\theta}\underline{\boldsymbol{t}}^{(j)} = -\mathbf{K}_{\theta}^{+}\underline{\boldsymbol{r}}^{(j)}$$

where  $\mathbf{K}_{\theta}^{+}$  is an approximate iterative inverse of  $\mathbf{M}_{\theta}$ .

Open questions and problems

# Linear-response-like ansatz (1)

Solving linear-response-like

- $\bullet~{\rm HF}$  provides good guesses for  $(\omega,\underline{\pmb{y}}):$  Almost there
- $\Rightarrow$  Why not directly solve

$$\mathbf{M}\underline{y} - \omega \underline{y} = \underline{0}$$

• Jacobi iterations:

$$\underline{\boldsymbol{r}}^{(j)} = \mathbf{M} \underline{\boldsymbol{y}}^{(j)} - \theta^{(j)} \underline{\boldsymbol{y}}^{(j)}$$
$$\underline{\boldsymbol{y}}^{(j+1)} = \underline{\boldsymbol{y}}^{(j)} - \left(\mathbf{D} - \theta^{(j)} \mathbf{I}\right)^{-1} \underline{\boldsymbol{r}}^{(j)}$$

where  $\boldsymbol{\theta}^{(j)}$  is the current Rayleigh quotient

- Anderson / DIIS acceleration
- $\bullet$  Need to solve one linear equation per eigenpair  $(\omega, {\boldsymbol y})$

## Linear-response-like ansatz (2)

- + ADC(2) becomes very fast (next slide)
- Multiple guess pairs  $(\omega, \boldsymbol{y})$  may collapse to one result
- Missing states, unnatural resulting multiplicities
- $\Rightarrow$  Nowadays only done for ADC(2)

A brief overview of ADC 00000

Sketching the derivation

Numerically solving ADC

Open questions and problems

Solving linear-response-like

### PP-ADC: Doubles folding (1)

Enforce zero doubles residual:

$$\underline{\boldsymbol{0}} \stackrel{!}{=} \underline{\boldsymbol{r}}^{(2)} = \mathbf{M}^{(21)} \underline{\boldsymbol{y}}^{(1)} + \left(\mathbf{M}^{(22)} - \theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(2)}$$

$$\Rightarrow \underline{\boldsymbol{y}}^{(2)} = -\left(\mathbf{M}^{(22)} - \theta \mathbf{I}\right)^{-1} \mathbf{M}^{(21)} \underline{\boldsymbol{y}}^{(1)}$$

Plug into first equation:

$$\Rightarrow \underline{\boldsymbol{r}}^{(1)} = \left(\mathbf{M}^{(11)} - \theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(1)} + \mathbf{M}^{(21)\dagger} \underline{\boldsymbol{y}}^{(2)}$$

A brief overview of ADC 00000

Sketching the derivation

Numerically solving ADC

Open questions and problems

Solving linear-response-like

### PP-ADC: Doubles folding (1)

Enforce zero doubles residual:

$$\underline{\boldsymbol{0}} \stackrel{!}{=} \underline{\boldsymbol{r}}^{(2)} = \mathbf{M}^{(21)} \underline{\boldsymbol{y}}^{(1)} + \left(\mathbf{M}^{(22)} - \theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(2)}$$

$$\Rightarrow \underline{\boldsymbol{y}}^{(2)} = -\left(\mathbf{M}^{(22)} - \theta \mathbf{I}\right)^{-1} \mathbf{M}^{(21)} \underline{\boldsymbol{y}}^{(1)}$$

Plug into first equation:

$$\Rightarrow \underline{\boldsymbol{r}}^{(1)} = \left(\mathbf{M}^{(11)} - \theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(1)} - \underbrace{\mathbf{M}^{(21)\dagger} \left(\mathbf{M}^{(22)} - \theta \mathbf{I}\right)^{-1} \mathbf{M}^{(21)}}_{\equiv \mathbf{A}_{\theta}} \underline{\boldsymbol{y}}^{(1)}$$
$$= \left(\mathbf{M}^{(11)} - \mathbf{A}_{\theta} - \theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(1)}$$

27 / 36

A brief overview of ADC 00000 Solving linear-response-like Sketching the derivation

Numerically solving ADC

Open questions and problems

## PP-ADC: Doubles folding (2)

• Result of doubles folding:

$$\underline{\boldsymbol{r}}^{(1)} = \left(\mathbf{M}^{(11)} - \mathbf{A}_{\theta} - \theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(1)}, \qquad \underline{\boldsymbol{r}}^{(2)} = \underline{\mathbf{0}}$$
$$\mathbf{A}_{\theta} = \mathbf{M}^{(21)\dagger} \left(\mathbf{M}^{(22)} - \theta \mathbf{I}\right)^{-1} \mathbf{M}^{(21)}$$

- Iterates are only  $\underline{r}^{(1)}$  and  $\underline{y}^{(1)}$
- $\Rightarrow$  More memory-efficient

A brief overview of ADC 00000

Sketching the derivation

Numerically solving ADC

Open questions and problems

Solving linear-response-like

### PP-ADC: Doubles folding (2)



28 / 36

A brief overview of ADC 00000 Solving linear-response-like Sketching the derivation

Numerically solving ADC

Open questions and problems

## PP-ADC: Doubles folding (2)

• Result of doubles folding:

$$\underline{\boldsymbol{r}}^{(1)} = \left(\mathbf{M}^{(11)} - \mathbf{A}_{\theta} - \theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(1)}, \qquad \underline{\boldsymbol{r}}^{(2)} = \underline{\mathbf{0}}$$
$$\mathbf{A}_{\theta} = \mathbf{M}^{(21)\dagger} \left(\mathbf{M}^{(22)} - \theta \mathbf{I}\right)^{-1} \mathbf{M}^{(21)}$$

- Iterates are only  $\underline{\boldsymbol{r}}^{(1)}$  and  $\underline{\boldsymbol{y}}^{(1)}$
- $\Rightarrow$  More memory-efficient
  - For ADC(2)  $\mathbf{M}^{(22)}$  is diagonal

 $\Rightarrow$  Computing  $\mathbf{A}_{\theta}$  trivial given expression for  $\mathbf{M}^{(21)}$  and  $\mathbf{M}^{(21)\dagger}$ 

## Complex polarisation propagator (1)

• Complex polarisation propagator ansatz lead to

$$\left(\mathbf{M} - (\omega_m - \imath \gamma_m) \mathbf{I}\right) \underline{\boldsymbol{y}}_m = \underline{\boldsymbol{f}}$$

- $\gamma_m$ : Half-width, stimulated emission
- **f**: modified transition moments (real)
- $\Rightarrow$   $\underline{\boldsymbol{y}}_m$  becomes complex
  - Assume same half-width:  $\gamma_m = \gamma$  (empirically determined)
  - Seek:  $(\omega_m, \underline{y}_m)$

Sketching the derivation

Numerically solving ADC

Open questions and problems

Solving linear-response-like

## Complex polarisation propagator (2)

• Separate 
$$\underline{\boldsymbol{y}}_m = \underline{\boldsymbol{y}}_m^R + \imath \underline{\boldsymbol{y}}_m^I$$
:  
 $\begin{pmatrix} \mathbf{M} - \omega \mathbf{I} & \gamma \mathbf{I} \\ -\gamma \mathbf{I} & \mathbf{M} - \omega \mathbf{I} \end{pmatrix} \begin{pmatrix} \underline{\boldsymbol{y}}_m^R \\ \underline{\boldsymbol{y}}_m^I \end{pmatrix} = \begin{pmatrix} \underline{\boldsymbol{f}} \\ 0 \end{pmatrix}$ 

Therefore

$$\begin{split} \underline{\boldsymbol{y}}_{m}^{R} &= -\frac{1}{\gamma} \left( \mathbf{M} - \omega \mathbf{I} \right) \underline{\boldsymbol{y}}_{m}^{I} \\ \gamma \underline{\boldsymbol{f}} &= \left( \left( \mathbf{M} - \omega \mathbf{I} \right)^{2} - \gamma^{2} \mathbf{I} \right) \underline{\boldsymbol{y}}_{m}^{I} \\ &= \left( \left( \mathbf{M} - 2\omega \mathbf{I} \right) \mathbf{M} + \left( \omega^{2} + \gamma^{2} \right) \mathbf{I} \right) \underline{\boldsymbol{y}}_{m}^{I} \end{split}$$

- Expensive linear system
- Doubles folding not so simple

### Contents



- 2 Sketching the derivation
  - Via many-body Green's function theory
  - Via intermediate states
  - Broader prospect
- 3 Numerically solving ADC
  - Solving by diagonalisation
  - Solving linear-response-like





Some questions and problems

## General complications

- Index restrictions in expressions
- Conserving spin symmetry
- Doubles part  $oldsymbol{y}^{(2)}$  is large vector
- $\Rightarrow$  Storing the subspace can be memory bottleneck
  - ADC(n) matrix expressions get a lot more involved with n
  - Storage of ADC matrix is impossible
- $\Rightarrow$  Doubles folding is very appealing
  - Complex propagator:
    - Two ADC matrices needed
    - Need to solve for multiple  $\omega$  /  $\gamma$

## Open questions

Some questions and problems

- Convergence properties of ADC(n) series for  $\Pi^+$
- Convergence properties of ADC(n) eigenvalue problem
- Initial guess for ADC(n) from ADC(n-1)
- Going beyond the Jacobi algorithm
- Better preconditioning techniques for
  - Solving by diagonalisation
  - Solving linear-response-like
- Doubles folding for PP-ADC(2)-x or PP-ADC(3)
- Doubles folding for CPP-ADC(2) and beyond
- $\bullet\,$  Can one re-use some of the work for one  $\omega$  for the next

Some questions and problems

## Preconditioning PP-ADC

• Davidson, Sleijpen-van-der-Vorst preconditioning:

$$\mathbf{K}_{\theta}^{+}\mathbf{M}_{\theta}\underline{\boldsymbol{t}}^{(j)} = -\mathbf{K}_{\theta}^{+}\underline{\boldsymbol{r}}^{(j)}$$

where

$$\mathbf{K}_{\theta} = \left(\mathbf{I} - \underline{\boldsymbol{v}}^{(j)} \underline{\boldsymbol{v}}^{(j)*}\right) \mathbf{K} \left(\mathbf{I} - \underline{\boldsymbol{v}}^{(j)} \underline{\boldsymbol{v}}^{(j)*}\right)$$

and a cheaply invertible

$$\mathbf{K} \approx \left( \mathbf{M} - \theta^{(j)} \mathbf{I} \right)$$

• Linear-response-like formalism

$$\underline{\boldsymbol{r}}^{(j)} = \mathbf{M}\underline{\boldsymbol{y}}^{(j)} - \theta^{(j)}\underline{\boldsymbol{y}}^{(j)}$$

- Preconditioner re-use for different  $\omega$ ?
- Going beyond Jacobi?

A brief overview of ADC 00000

Sketching the derivation

Numerically solving ADC

Open questions and problems

Some questions and problems

## PP-ADC(2)x, PP-ADC(3): Doubles folding



$$\underline{\boldsymbol{r}}^{(1)} = \left(\mathbf{M}^{(11)} - \mathbf{A}_{\theta} - \theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(1)}$$
$$\mathbf{A}_{\theta} = \mathbf{M}^{(21)\dagger} \left(\mathbf{M}^{(22)} - \theta \mathbf{I}\right)^{-1} \mathbf{M}^{(21)}$$

Let

Sketching the derivation

Numerically solving ADC

Open questions and problems

# CPP-ADC: Doubles folding

$$\begin{split} \widetilde{\mathbf{M}}_{\omega\gamma} &\equiv (\mathbf{M} - 2\omega\mathbf{I})\,\mathbf{M} + (\omega^2 + \gamma^2)\mathbf{I} \\ \Rightarrow \begin{pmatrix} \underline{\boldsymbol{r}}^{(1)} \\ \underline{\boldsymbol{r}}^{(2)} \end{pmatrix} = \begin{pmatrix} \widetilde{\mathbf{M}}_{\omega\gamma}^{(11)} & \widetilde{\mathbf{M}}_{\omega\gamma}^{(21)\dagger} \\ \widetilde{\mathbf{M}}_{\omega\gamma}^{(21)} & \widetilde{\mathbf{M}}_{\omega\gamma}^{(22)} \end{pmatrix} \begin{pmatrix} \underline{\boldsymbol{y}}^{(1)} \\ \underline{\boldsymbol{y}}^{(2)} \end{pmatrix} - \begin{pmatrix} \gamma \underline{\boldsymbol{f}}^{(1)} \\ \gamma \underline{\boldsymbol{f}}^{(2)} \end{pmatrix} \end{split}$$

Enforce zero doubles residual:

$$\begin{split} \underline{\mathbf{0}} &\stackrel{!}{=} \underline{\mathbf{r}}^{(2)} = \widetilde{\mathbf{M}}_{\omega\gamma}^{(21)} \underline{\mathbf{y}}^{(1)} + \widetilde{\mathbf{M}}_{\omega\gamma}^{(22)} \underline{\mathbf{y}}^{(2)} - \gamma \underline{\mathbf{f}}^{(2)} \\ &\Rightarrow \underline{\mathbf{y}}^{(2)} = \left(\widetilde{\mathbf{M}}_{\omega\gamma}^{(22)}\right)^{-1} \left(\gamma \underline{\mathbf{f}}^{(2)} - \widetilde{\mathbf{M}}_{\omega\gamma}^{(21)} \underline{\mathbf{y}}^{(1)}\right) \end{aligned}$$

Plug into first equation:

$$\Rightarrow \underline{\boldsymbol{r}}^{(1)} = \widetilde{\mathbf{M}}_{\omega\gamma}^{(11)} \underline{\boldsymbol{y}}^{(1)} - \widetilde{\mathbf{M}}_{\omega\gamma}^{(21)\dagger} \left(\widetilde{\mathbf{M}}_{\omega\gamma}^{(22)}\right)^{-1} \widetilde{\mathbf{M}}_{\omega\gamma}^{(21)} \underline{\boldsymbol{y}}^{(1)} + \gamma \widetilde{\mathbf{M}}_{\omega\gamma}^{(21)\dagger} \left(\widetilde{\mathbf{M}}_{\omega\gamma}^{(22)}\right)^{-1} \underline{\boldsymbol{f}}^{(2)}$$