Challenges and open problems related to the algebraic diagrammatic construction scheme

Michael F. Herbst
Franco-German Workshop Aachen 2018

11th September 2018

Contents

(1) A brief overview of ADC
(2) Sketching the derivation

- Via many-body Green's function theory
- Via intermediate states
- Broader prospect
(3) Numerically solving ADC
- Solving by diagonalisation
- Solving linear-response-like

4 Open questions and problems

Contents

(1) A brief overview of ADC
(2) Sketching the derivation

- Via many-body Green's function theory
- Via intermediate states
- Broader prospect
(3) Numerically solving ADC
- Solving by diagonalisation
- Solving linear-response-like

4. Open questions and problems
$2 / 36$

Why excited-state calculations?

- Interaction light and matter
- Spectroscopy (UV/vis, UV, X-ray)
- Photoreactivity
- Application in materials and chemistry:
- Colour
- Energy production, storage and transport
- UV durability / Photosynthesis
- Molecular motors / sensors

Comparison of methods for $n=2^{1}$

	CISD	CC2	ADC(2)
Ground state	CISD	CC2	MP2
Ground state order	3	3	$\mathbf{2}$
Size consistency	No	$($ Yes $)$	Yes
Hermiticity	Yes	No	Yes
Max. excitation	2	2	$\mathbf{2}$
Order properties	2	2	$\mathbf{2}$
Naive scaling	n^{6}	n^{5}	n^{5}

[^0]
Comparison of methods for $n=3^{1}$

	CISDT	CC3	ADC(3)
Ground state	CISDT	CC3	MP3
Ground state order	4	4	$\mathbf{3}$
Size consistency	No	$($ Yes $)$	Yes
Hermiticity	Yes	No	Yes
Max. excitation	3	3	$\mathbf{2}$
Order properties	3	3	$\mathbf{3}$
Naive scaling	n^{8}	n^{7}	n^{6}

${ }^{1}$ M. Wormit, D. R. Rehn, P. H. Harbach, J. Wenzel, C. M. Krauter, E. Epifanovsky and A. Dreuw. Mol. Phys., 112, 774 (2014)

Current status of ADC methods

- $\mathrm{ADC}(2)$: Established, excitation errors around 0.5 eV
- ADC(3): Error comparable to benchmark methods
- Specialised variants exist (ionisation, core, spin-flip)
- Method limits:
- Strong multi-reference cases
- MP ground state fails
- Mathematical and numerical aspects:
- Barely investigated
- E.g. solvers unreliable for poor guesses / challenging cases

Contents

(1) A brief overview of ADC
(2) Sketching the derivation

- Via many-body Green's function theory
- Via intermediate states
- Broader prospect
(3) Numerically solving ADC
- Solving by diagonalisation
- Solving linear-response-like
(4) Open questions and problems
${ }_{\text {SEIT }} 1386$

Green's functions and the polarisation propagator

- One-particle Green's function or propagator:

$$
G_{p, p^{\prime}}\left(t_{p}-t_{p^{\prime}}\right)=-\imath\left\langle\Psi_{0}^{N}\right| \hat{\mathcal{T}} \hat{\mathrm{c}}_{p}\left(t_{p}\right) \hat{\mathrm{c}}_{p^{\prime}}^{\dagger}\left(t_{p^{\prime}}\right)\left|\Psi_{0}^{N}\right\rangle
$$

Time-evolution of wave function

- Two-particle Green's function or two-particle propagator:

$$
G_{p q, p^{\prime} q^{\prime}}\left(t_{p}, t_{q}, t_{p^{\prime}}, t_{q^{\prime}}\right)=-\imath\left\langle\Psi_{0}^{N}\right| \hat{\mathcal{T}} \hat{\mathrm{c}}_{p}\left(t_{p}\right) \hat{\mathrm{c}}_{q}\left(t_{q}\right) \hat{\mathrm{c}}_{p^{\prime}}^{\dagger}\left(t_{p^{\prime}}\right) \hat{\mathrm{c}}_{q^{\prime}}^{\dagger}\left(t_{q^{\prime}}\right)\left|\Psi_{0}^{N}\right\rangle
$$

Time-evolution of $G_{p, p^{\prime}}$

- Polarisation propagator or particle-hole propagator:

$$
\Pi_{j k, j^{\prime} k^{\prime}}\left(t-t^{\prime}\right)=-\imath\left\langle\Psi_{0}^{N}\right| \hat{\mathcal{T}}_{\hat{\mathrm{c}}_{j}}(t) \hat{\mathrm{c}}_{k^{\prime}}\left(t^{\prime}\right) \hat{\mathrm{c}}_{k}^{\dagger}(t) \hat{\mathrm{c}}_{j^{\prime}}^{\dagger}\left(t^{\prime}\right)\left|\Psi_{0}^{N}\right\rangle
$$

Special case of $G_{p q, p^{\prime} q^{\prime}}\left(t_{p}, t_{q}, t_{p^{\prime}}, t_{q^{\prime}}\right)$, evolution after excitation

Polarisation propagator $(1)^{1}$

- Spectral or Lehmann representation:

$$
\begin{aligned}
\Pi_{j k, j^{\prime} k^{\prime}}(\omega)= & \sum_{m \neq 0} \frac{\left\langle\Psi_{0}\right| \hat{\mathrm{c}}_{k}^{\dagger} \hat{\mathrm{c}}_{j}\left|\Psi_{m}\right\rangle\left\langle\Psi_{m}\right| \hat{\mathrm{c}}_{j^{\prime}}^{\dagger} \hat{\mathrm{c}}_{k^{\prime}}\left|\Psi_{0}\right\rangle}{\omega-\left(E_{m}-E_{0}\right)+\imath \eta} \\
& -\sum_{m \neq 0} \frac{\left\langle\Psi_{0}\right| \hat{\mathrm{c}}_{j^{\prime}}^{\dagger} \hat{\mathrm{c}}_{k^{\prime}}\left|\Psi_{m}\right\rangle\left\langle\Psi_{m}\right| \hat{\mathrm{c}}_{k}^{\dagger} \hat{\mathrm{c}}_{j}\left|\Psi_{0}\right\rangle}{\omega+\left(E_{m}-E_{0}\right)-\imath \eta}
\end{aligned}
$$

where $\eta \rightarrow 0$

- Both terms contain same physical information:
- Poles: Excitation energies $E_{m}-E_{0}$
- Transition amplitudes

$$
x_{m, j k} \equiv x_{m, j \leftarrow k}=\left\langle\Psi_{m}\right| \hat{c}_{j}^{\dagger} \hat{c}_{k}\left|\Psi_{0}\right\rangle
$$

[^1]
Polarisation propagator (2) ${ }^{1}$

- Only consider

$$
\begin{aligned}
\Pi_{j k, j^{\prime} k^{\prime}}^{+}(\omega) & =\sum_{m \neq 0} \frac{\left\langle\Psi_{0}\right| \hat{\mathrm{c}}_{\mathrm{c}}^{\dagger} \hat{\mathrm{c}}_{j}\left|\Psi_{m}\right\rangle\left\langle\Psi_{m}\right| \hat{\mathrm{c}}_{j^{\prime}}^{\dagger} \hat{\mathrm{c}}_{k^{\prime}}\left|\Psi_{0}\right\rangle}{\omega-\left(E_{m}-E_{0}\right)} \\
& =\underline{\boldsymbol{x}}_{j k}^{\dagger}(\omega \mathbf{I}-\boldsymbol{\Omega})^{-1} \underline{\boldsymbol{x}}_{j^{\prime} k^{\prime}}
\end{aligned}
$$

where

$$
\begin{aligned}
\omega_{i} & \equiv E_{i}-E_{0} \\
\boldsymbol{\Omega} & \equiv \operatorname{diag}\left(\omega_{1}, \omega_{2}, \ldots, \omega_{m}\right) \\
x_{m, j k} & =\left\langle\Psi_{m}\right| \hat{c}_{j}^{\dagger} \hat{c}_{k}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

${ }^{1}$ J. Schirmer. Phys. Rev. A, 26, 2395 (1982)

Algebraic-diagrammatic construction (ADC) (1)

- Last slide: Diagonal representation

$$
\Pi_{j k, j^{\prime} k^{\prime}}^{+}(\omega)=\underline{\boldsymbol{x}}_{j k}^{\dagger}(\omega \mathbf{I}-\boldsymbol{\Omega})^{-1} \underline{\boldsymbol{x}}_{j^{\prime} k^{\prime}}
$$

- Insert unitary transformation \mathbf{Y} to generalise:

$$
\Pi_{j k, j^{\prime} k^{\prime}}^{+}(\omega)=\underline{\boldsymbol{x}}_{j k}^{\dagger} \mathbf{Y}^{\dagger} \mathbf{Y}(\omega \mathbf{I}-\boldsymbol{\Omega})^{-1} \mathbf{Y}^{\dagger} \mathbf{Y} \underline{\boldsymbol{x}}_{j^{\prime} k^{\prime}}
$$

\Rightarrow ADC representation

$$
\Pi_{j k, j^{\prime} k^{\prime}}^{+}(\omega)=\underline{\boldsymbol{f}}_{j k}^{\dagger}(\omega \mathbf{I}-\mathbf{M})^{-1} \underline{\boldsymbol{f}}_{j^{\prime} k^{\prime}}
$$

with

- Modified transition amplitudes $\underline{f}_{j k}=\mathbf{Y} \underline{\boldsymbol{x}}_{j k}$
- ADC matrix $\mathbf{M}=\mathbf{Y} \Omega \mathbf{Y}^{\dagger}$

Algebraic-diagrammatic construction (2) ${ }^{1}$

- Well-known expansion via Feynman-Dyson perturbation theory:

$$
\Pi^{+}=\Pi^{(0)}+\Pi^{(1)}+\Pi^{(2)}+\cdots
$$

- From these diagrams ADC scheme constructs

$$
\begin{aligned}
\mathbf{M} & =\mathbf{M}^{(0)}+\mathbf{M}^{(1)}+\mathbf{M}^{(2)}+\cdots \\
\underline{\boldsymbol{f}}_{j k} & =\underline{\boldsymbol{f}}_{j k}^{(0)}+\underline{\boldsymbol{f}}_{j k}^{(1)}+\underline{\boldsymbol{f}}_{j k}^{(2)}+\cdots
\end{aligned}
$$

based on Møller-Plesset partitioning and HF reference
$\Rightarrow n$-th order in $\mathbf{M} \& \underline{f}_{j k}$ equivalent to n-th order in Π^{+}

[^2]
Algebraic-diagrammatic construction (3)

- Some ambiguity in construction of terms ${ }^{1}\left(\mathbf{M}^{(n)}\right.$ versus $\left.\underline{f}^{(n)}\right)$
\Rightarrow ADC: Make M least diagonal
- Avoids "dangerous denominators" ${ }^{2}$
- Leads to "compactness advantage" ${ }^{2}$ in M
- Other choices ${ }^{2}$:
- Rayleigh-Schrödinger perturbation theory (RSPT) (Y = I)
- Configuration-interaction (CI)
${ }^{1}$ J. Schirmer. Phys. Rev. A, 26, 2395 (1982)
${ }^{2}$ J. Schirmer. Phys. Rev. A, 43, 4647 (1991)

Algebraic-diagrammatic construction (4)

Diagonal representation

$$
\Pi_{j k, j^{\prime} k^{\prime}}^{+}(\omega)=\underline{\boldsymbol{x}}_{j k}^{\dagger}(\omega \mathbf{I}-\boldsymbol{\Omega})^{-1} \underline{\boldsymbol{x}}_{j^{\prime} k^{\prime}}
$$

\Rightarrow Directly yields ω_{m} and $x_{m, j k}$
ADC representation

$$
\Pi_{j k, j^{\prime} k^{\prime}}^{+}(\omega)=\underline{\boldsymbol{f}}_{j k}^{\dagger}(\omega \mathbf{I}-\mathbf{M})^{-1} \underline{\boldsymbol{f}}_{j^{\prime} k^{\prime}}
$$

(1) Obtain $N_{\text {states }}$ lowest eigenpairs $\left(\omega_{m}, \underline{\boldsymbol{y}}_{m}\right)$

$$
\mathbf{M} \underline{\boldsymbol{y}}_{m}=\omega_{m} \underline{\boldsymbol{y}}_{m}
$$

where $\underline{\boldsymbol{y}}_{m}$ is m-th column of \mathbf{Y}, the m-th transition vector.
(2) Transition amplitude is

$$
x_{m, j k}=\left(\underline{\boldsymbol{y}}_{m}\right)^{\dagger} \underline{\boldsymbol{f}}_{j k}
$$

Algebraic-diagrammatic construction (5)

- ADC generalises to higher excitations: doubles, triples, ...
- Transition amplitudes $x_{m, j \leftarrow k, j^{\prime} \leftarrow k^{\prime}}$
- Modif. transition amplitudes $f_{i a j b, j \leftarrow k, j^{\prime} \leftarrow k^{\prime}}$
- Transition vectors $Y_{i a j b, m}$
- Collect block-wise: E.g. transition vector

$$
\mathbf{Y}=\left(\begin{array}{ccc}
\vdots & \vdots & . \\
Y_{i a, 1} & Y_{i a, 2} & \cdots \\
\vdots & \vdots & \\
Y_{i a j b, 1} & Y_{i a j b, 2} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) \quad \underline{\boldsymbol{y}}=\left(\begin{array}{c}
\vdots \\
y_{i a} \\
\vdots \\
y_{i a j b} \\
\vdots
\end{array}\right)
$$

- Elements written as $Y_{I, m}$ and y_{I} where I runs over all index tuples (i, a) and (i, a, j, b)

Intermediate states representation (1)

- Basis of $\boldsymbol{\Omega}$: Exact Schrödinger states
- Alternative basis for this space:

$$
\left\{\Psi_{0}, \hat{\mathrm{c}}_{a}^{\dagger} \hat{c}_{i} \Psi_{0}, \hat{\mathrm{c}}_{b}^{\dagger} \hat{\mathrm{c}}_{j} \hat{\mathrm{c}}_{a}^{\dagger} \hat{\mathrm{c}}_{i} \Psi_{0}, \ldots\right\} \equiv\left\{\hat{\mathrm{C}}_{I} \Psi_{0}\right\}_{I}
$$

where Ψ_{0} is the exact ground state

- \mathbf{Y} unitary transforms $\boldsymbol{\Omega}$ to \mathbf{M}
\Rightarrow Direct construction of intermediate state basis $\left\{\tilde{\Psi}_{I}\right\}_{I}$:
- Intermediate states representation ${ }^{1}$:

$$
\begin{aligned}
M_{I J} & =\left\langle\tilde{\Psi}_{I}\right| \hat{\mathcal{H}}-E_{0}\left|\tilde{\Psi}_{J}\right\rangle \\
f_{I, j k} & =\left\langle\tilde{\Psi}_{I}\right| \hat{\mathrm{c}}_{j}^{\dagger} \hat{c}_{k}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

[^3]
Intermediate states (2)

- Based on MP partitioning of $\hat{\mathcal{H}}_{\text {elec }}$
- Use MP ground state and build $\left\{\hat{\mathrm{C}}_{I} \Psi_{0}\right\}_{I}$
- Block-wise QR orthogonalsation singles, doubles, triples, ...
\Rightarrow Intermediate states
- Allows systematic construction:
- M (shifted Hamiltonian)
- \mathbf{f} (state projection)
- arbitrary operators

Other propagators for ADC

- Polarisation propagator: Evolution after excitation
- Complex polarisation propagator: Models relaxation as well
- Particle propagator: Evolution after particle attachment
- Hole propagator: Evolution after particle removal
\Rightarrow Can apply ADC scheme to all of them!
\Rightarrow Very similar structure of equations

Connection to RPA ${ }^{1}$

- ADC: Eigenproblem, p-h, 2p-2h, ...

$$
\mathbf{M} \underline{\boldsymbol{y}}=\omega \underline{\boldsymbol{y}}
$$

- RPA: Pseudo-Eigenproblem, p-h, h-p

$$
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{B}^{\dagger} & \mathbf{A}
\end{array}\right)\binom{\underline{\boldsymbol{y}}}{\underline{\boldsymbol{z}}}=\omega\left(\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{0} & -\mathbf{I}
\end{array}\right)\binom{\underline{\boldsymbol{y}}}{\underline{\boldsymbol{z}}}
$$

- RPA and TDA excitation energies: Both exact up to first order
- Generally too large
- Note: RPA no increase in perturbation order ${ }^{1}$
- $\operatorname{ADC}(1)$ exci. energies \equiv CIS / TDA-RPA on HF reference
${ }^{1}$ J. Schirmer. Phys. Rev. A, 26, 2395 (1982)

Contents

(1) A brief overview of ADC
(2) Sketching the derivation

- Via many-body Green's function theory
- Via intermediate states
- Broader prospect
(3) Numerically solving ADC
- Solving by diagonalisation
- Solving linear-response-like
(4) Open questions and problems

Structure of the ADC matrix (1)

ADC(0)

ADC(2)-x

ADC(3)

Structure of the ADC matrix (2)

- Problem: CN• (STO-3G)

Diagonalisation procedure $\mathrm{M} \underline{y}=\omega \underline{y}$

- M quickly becomes large
- Iterative diagonalisation procedures required
- Usually only smallest few eigenpairs $(\omega, \underline{\boldsymbol{y}})$ needed
- \mathbf{M} is well diagonally dominant
\Rightarrow Contraction-based Jacobi-Davidson algorithm
- Guess: Smallest diagonal elements
- Davidson-type "preconditioning": Diagonal of M
- Expressions to perform block-wise matrix-vector product
- Typical cases: Convergence within 30 steps

Jacobi-Davidson algorithm

- Subspace algorithm:
- Current Ritz pair $\left(\theta^{(j)}, \underline{\boldsymbol{y}}^{(j)}\right)$
- Current residual $\underline{\boldsymbol{r}}^{(j)}=\mathbf{M} \underline{\boldsymbol{y}}^{(j)}-\omega \underline{\boldsymbol{y}}^{(j)}$
- Jacobi orthogonal component correction: Add $\underline{\boldsymbol{t}}^{(j)} \perp \underline{\boldsymbol{v}}^{(j)}$ to subspace, s.t.

$$
\mathbf{M}\left(\underline{\boldsymbol{y}}^{(j)}+\underline{\boldsymbol{t}}^{(j)}\right)=\omega\left(\underline{\boldsymbol{y}}^{(j)}+\underline{\boldsymbol{t}}^{(j)}\right)
$$

- ω unknown, so instead solve

$$
\mathbf{M}_{\theta} \underline{\boldsymbol{t}}^{(j)} \equiv\left(\mathbf{I}-\underline{\boldsymbol{v}}^{(j)} \underline{\boldsymbol{v}}^{(j) *}\right)\left(\mathbf{M}-\theta^{(j)} \mathbf{I}\right)\left(\mathbf{I}-\underline{\boldsymbol{v}}^{(j)} \underline{\boldsymbol{v}}^{(j) *}\right) \underline{\boldsymbol{t}}^{(j)}=-\underline{\boldsymbol{r}}^{(j)}
$$

- Davidson suggested to solve:

$$
\left(\mathbf{I}-\underline{\boldsymbol{v}}^{(j)} \underline{\boldsymbol{v}}^{(j) *}\right)\left(\mathbf{D}-\theta^{(j)} \mathbf{I}\right) \underline{\boldsymbol{t}}^{(j)}=-\underline{\boldsymbol{r}}^{(j)}
$$

where \mathbf{D} is an approximation to \mathbf{M}.

- Sleijpen-van-der-Vorst preconditioning:

Jacobi-Davidson algorithm

- Subspace algorithm:
- Current Ritz pair $\left(\theta^{(j)}, \underline{\boldsymbol{y}}^{(j)}\right)$
- Current residual $\underline{\boldsymbol{r}}^{(j)}=\mathbf{M} \underline{\boldsymbol{y}}^{(j)}-\omega \underline{\boldsymbol{y}}^{(j)}$
- Jacobi orthogonal component correction: Add $\underline{\boldsymbol{t}}^{(j)} \perp \underline{\boldsymbol{v}}^{(j)}$ to subspace, s.t.

$$
\mathbf{M}\left(\underline{\boldsymbol{y}}^{(j)}+\underline{\boldsymbol{t}}^{(j)}\right)=\omega\left(\underline{\boldsymbol{y}}^{(j)}+\underline{\boldsymbol{t}}^{(j)}\right)
$$

- ω unknown, so instead solve

$$
\mathbf{M}_{\theta} \underline{\boldsymbol{t}}^{(j)} \equiv\left(\mathbf{I}-\underline{\boldsymbol{v}}^{(j)} \underline{\boldsymbol{v}}^{(j) *}\right)\left(\mathbf{M}-\theta^{(j)} \mathbf{I}\right)\left(\mathbf{I}-\underline{\boldsymbol{v}}^{(j)} \underline{\boldsymbol{v}}^{(j) *}\right) \underline{\boldsymbol{t}}^{(j)}=-\underline{\boldsymbol{r}}^{(j)}
$$

- Davidson suggested to solve:

$$
\left(\mathbf{I}-\underline{\boldsymbol{v}}^{(j)} \underline{\boldsymbol{v}}^{(j) *}\right)\left(\mathbf{D}-\theta^{(j)} \mathbf{I}\right) \underline{\boldsymbol{t}}^{(j)}=-\underline{\boldsymbol{r}}^{(j)}
$$

where \mathbf{D} is an approximation to \mathbf{M}.

- Sleijpen-van-der-Vorst preconditioning:

$$
\mathbf{K}_{\theta}^{+} \mathbf{M}_{\theta} \underline{\underline{t}}^{(j)}=-\mathbf{K}_{\theta}^{+} \underline{\boldsymbol{r}}^{(j)}
$$

where \mathbf{K}_{θ}^{+}is an approximate iterative inverse of \mathbf{M}_{θ}.

Linear-response-like ansatz (1)

- HF provides good guesses for $(\omega, \underline{\boldsymbol{y}})$: Almost there \Rightarrow Why not directly solve

$$
\mathbf{M} \underline{y}-\omega \underline{y}=\underline{\mathbf{0}}
$$

- Jacobi iterations:

$$
\begin{aligned}
\underline{\boldsymbol{r}}^{(j)} & =\mathbf{M} \underline{\boldsymbol{y}}^{(j)}-\theta^{(j)} \underline{\boldsymbol{y}}^{(j)} \\
\underline{\boldsymbol{y}}^{(j+1)} & =\underline{\boldsymbol{y}}^{(j)}-\left(\mathbf{D}-\theta^{(j)} \mathbf{I}\right)^{-1} \underline{\boldsymbol{r}}^{(j)}
\end{aligned}
$$

where $\theta^{(j)}$ is the current Rayleigh quotient

- Anderson / DIIS acceleration
- Need to solve one linear equation per eigenpair $(\omega, \underline{\boldsymbol{y}})$

Linear-response-like ansatz (2)

$+\mathrm{ADC}(2)$ becomes very fast (next slide)

- Multiple guess pairs ($\omega, \underline{\boldsymbol{y}}$) may collapse to one result
- Missing states, unnatural resulting multiplicities
\Rightarrow Nowadays only done for ADC(2)

PP-ADC: Doubles folding (1)

$$
\left.\begin{array}{rl}
\underline{\boldsymbol{r}} & =\mathbf{M} \underline{\boldsymbol{y}}-\theta \underline{\boldsymbol{y}} \\
\left(\underline{\boldsymbol{r}}^{(1)}\right. \\
\underline{\boldsymbol{r}}^{(2)}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{M}^{(11)}-\theta \mathbf{I} & \mathbf{M}^{(21) \dagger} \\
\mathbf{M}^{(21)} & \mathbf{M}^{(22)}-\theta \mathbf{I}
\end{array}\right)\binom{\underline{\boldsymbol{y}}^{(1)}}{\underline{\boldsymbol{y}}^{(2)}} .
$$

Enforce zero doubles residual:

$$
\begin{aligned}
\underline{\mathbf{0}} & \stackrel{!}{=} \underline{\boldsymbol{r}}^{(2)}=\mathbf{M}^{(21)} \underline{\boldsymbol{y}}^{(1)}+\left(\mathbf{M}^{(22)}-\theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(2)} \\
& \Rightarrow \underline{\boldsymbol{y}}^{(2)}=-\left(\mathbf{M}^{(22)}-\theta \mathbf{I}\right)^{-1} \mathbf{M}^{(21)} \underline{\boldsymbol{y}}^{(1)}
\end{aligned}
$$

Plug into first equation:

$$
\Rightarrow \underline{\boldsymbol{r}}^{(1)}=\left(\mathbf{M}^{(11)}-\theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(1)}+\mathbf{M}^{(21) \dagger} \underline{\boldsymbol{y}}^{(2)}
$$

PP-ADC: Doubles folding (1)

$$
\left.\begin{array}{rl}
\underline{\boldsymbol{r}} & =\mathbf{M} \underline{\boldsymbol{y}}-\theta \underline{\boldsymbol{y}} \\
\left(\underline{\boldsymbol{r}}^{(1)}\right. \\
\underline{\boldsymbol{r}}^{(2)}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{M}^{(11)}-\theta \mathbf{I} & \mathbf{M}^{(21) \dagger} \\
\mathbf{M}^{(21)} & \mathbf{M}^{(22)}-\theta \mathbf{I}
\end{array}\right)\binom{\underline{\boldsymbol{y}}^{(1)}}{\underline{\boldsymbol{y}}^{(2)}} .
$$

Enforce zero doubles residual:

$$
\begin{aligned}
\underline{\mathbf{0}} & \stackrel{!}{=} \underline{\boldsymbol{r}}^{(2)}=\mathbf{M}^{(21)} \underline{\boldsymbol{y}}^{(1)}+\left(\mathbf{M}^{(22)}-\theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(2)} \\
& \Rightarrow \underline{\boldsymbol{y}}^{(2)}=-\left(\mathbf{M}^{(22)}-\theta \mathbf{I}\right)^{-1} \mathbf{M}^{(21)} \underline{\boldsymbol{y}}^{(1)}
\end{aligned}
$$

Plug into first equation:

$$
\begin{aligned}
\Rightarrow \underline{\boldsymbol{r}}^{(1)} & =\left(\mathbf{M}^{(11)}-\theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(1)}-\underbrace{\mathbf{M}^{(21) \dagger}\left(\mathbf{M}^{(22)}-\theta \mathbf{I}\right)^{-1} \mathbf{M}^{(21)}}_{\equiv \mathbf{A}_{\theta}} \underline{\boldsymbol{y}}^{(1)} \\
& =\left(\mathbf{M}^{(11)}-\mathbf{A}_{\theta}-\theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(1)}
\end{aligned}
$$

PP-ADC: Doubles folding (2)

- Result of doubles folding:

$$
\begin{array}{rlr}
\underline{\boldsymbol{r}}^{(1)} & =\left(\mathbf{M}^{(11)}-\mathbf{A}_{\theta}-\theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(1)}, & \underline{\boldsymbol{r}}^{(2)}=\underline{\mathbf{0}} \\
\mathbf{A}_{\theta} & =\mathbf{M}^{(21) \dagger}\left(\mathbf{M}^{(22)}-\theta \mathbf{I}\right)^{-1} \mathbf{M}^{(21)} &
\end{array}
$$

- Iterates are only $\underline{\boldsymbol{r}}^{(1)}$ and $\underline{\boldsymbol{y}}^{(1)}$
\Rightarrow More memory-efficient

PP-ADC: Doubles folding (2)

PP-ADC: Doubles folding (2)

- Result of doubles folding:

$$
\begin{array}{rlr}
\underline{\boldsymbol{r}}^{(1)} & =\left(\mathbf{M}^{(11)}-\mathbf{A}_{\theta}-\theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(1)}, & \underline{\boldsymbol{r}}^{(2)}=\underline{\mathbf{0}} \\
\mathbf{A}_{\theta} & =\mathbf{M}^{(21) \dagger}\left(\mathbf{M}^{(22)}-\theta \mathbf{I}\right)^{-1} \mathbf{M}^{(21)} &
\end{array}
$$

- Iterates are only $\underline{\boldsymbol{r}}^{(1)}$ and $\underline{\boldsymbol{y}}^{(1)}$
\Rightarrow More memory-efficient
- For $\operatorname{ADC}(2) \mathbf{M}^{(22)}$ is diagonal
\Rightarrow Computing \mathbf{A}_{θ} trivial given expression for $\mathbf{M}^{(21)}$ and $\mathbf{M}^{(21) \dagger}$

Complex polarisation propagator (1)

- Complex polarisation propagator ansatz lead to

$$
\left(\mathbf{M}-\left(\omega_{m}-\imath \gamma_{m}\right) \mathbf{I}\right) \underline{\boldsymbol{y}}_{m}=\underline{\boldsymbol{f}}
$$

- γ_{m} : Half-width, stimulated emission
- \underline{f} : modified transition moments (real)
$\Rightarrow \underline{\boldsymbol{y}}_{m}$ becomes complex
- Assume same half-width: $\gamma_{m}=\gamma$
(empirically determined)
- Seek: $\left(\omega_{m}, \underline{\boldsymbol{y}}_{m}\right)$

Complex polarisation propagator (2)

- Separate $\underline{\boldsymbol{y}}_{m}=\underline{\boldsymbol{y}}_{m}^{R}+{ }_{\mathrm{y}}^{m} \underline{\boldsymbol{y}}_{m}$:

$$
\left(\begin{array}{cc}
\mathbf{M}-\omega \mathbf{I} & \gamma \mathbf{I} \\
-\gamma \mathbf{I} & \mathbf{M}-\omega \mathbf{I}
\end{array}\right)\binom{\underline{\boldsymbol{y}}_{m}^{R}}{\underline{\boldsymbol{g}}_{m}^{I}}=\left(\frac{\boldsymbol{f}}{0}\right)
$$

- Therefore

$$
\begin{aligned}
\underline{\boldsymbol{y}}_{m}^{R} & =-\frac{1}{\gamma}(\mathbf{M}-\omega \mathbf{I}) \underline{\boldsymbol{y}}_{m}^{I} \\
\gamma \underline{\boldsymbol{f}} & =\left((\mathbf{M}-\omega \mathbf{I})^{2}-\gamma^{2} \mathbf{I}\right) \underline{\boldsymbol{y}}_{m}^{I} \\
& =\left((\mathbf{M}-2 \omega \mathbf{I}) \mathbf{M}+\left(\omega^{2}+\gamma^{2}\right) \mathbf{I}\right) \underline{\boldsymbol{y}}_{m}^{I}
\end{aligned}
$$

- Expensive linear system
- Doubles folding not so simple

Contents

(1) A brief overview of ADC
(2) Sketching the derivation

- Via many-body Green's function theory
- Via intermediate states
- Broader prospect
(3) Numerically solving ADC
- Solving by diagonalisation
- Solving linear-response-like
(4) Open questions and problems

General complications

- Index restrictions in expressions
- Conserving spin symmetry
- Doubles part $\underline{\boldsymbol{y}}^{(2)}$ is large vector
\Rightarrow Storing the subspace can be memory bottleneck
- $\operatorname{ADC}(n)$ matrix expressions get a lot more involved with n
- Storage of ADC matrix is impossible
\Rightarrow Doubles folding is very appealing
- Complex propagator:
- Two ADC matrices needed
- Need to solve for multiple ω / γ

Open questions

- Convergence properties of $\operatorname{ADC}(n)$ series for Π^{+}
- Convergence properties of $\operatorname{ADC}(n)$ eigenvalue problem
- Initial guess for $\operatorname{ADC}(n)$ from $\operatorname{ADC}(n-1)$
- Going beyond the Jacobi algorithm
- Better preconditioning techniques for
- Solving by diagonalisation
- Solving linear-response-like
- Doubles folding for PP-ADC(2)-x or PP-ADC(3)
- Doubles folding for CPP-ADC(2) and beyond
- Can one re-use some of the work for one ω for the next

Preconditioning PP-ADC

- Davidson, Sleijpen-van-der-Vorst preconditioning:

$$
\mathbf{K}_{\theta}^{+} \mathbf{M}_{\theta} \underline{\boldsymbol{t}}^{(j)}=-\mathbf{K}_{\theta}^{+} \underline{\boldsymbol{r}}^{(j)}
$$

where

$$
\mathbf{K}_{\theta}=\left(\mathbf{I}-\underline{\boldsymbol{v}}^{(j)} \underline{\boldsymbol{v}}^{(j) *}\right) \mathbf{K}\left(\mathbf{I}-\underline{\boldsymbol{v}}^{(j)} \underline{\boldsymbol{v}}^{(j) *}\right)
$$

and a cheaply invertible

$$
\mathbf{K} \approx\left(\mathbf{M}-\theta^{(j)} \mathbf{I}\right)
$$

- Linear-response-like formalism

$$
\underline{\boldsymbol{r}}^{(j)}=\mathbf{M} \underline{\boldsymbol{y}}^{(j)}-\theta^{(j)} \underline{\boldsymbol{y}}^{(j)}
$$

- Preconditioner re-use for different ω ?
- Going beyond Jacobi?

PP-ADC(2)x, PP-ADC(3): Doubles folding

$$
\begin{aligned}
\underline{\boldsymbol{r}}^{(1)} & =\left(\mathbf{M}^{(11)}-\mathbf{A}_{\theta}-\theta \mathbf{I}\right) \underline{\boldsymbol{y}}^{(1)} \\
\mathbf{A}_{\theta} & =\mathbf{M}^{(21) \dagger}\left(\mathbf{M}^{(22)}-\theta \mathbf{I}\right)^{-1} \mathbf{M}^{(21)}
\end{aligned}
$$

CPP-ADC: Doubles folding

Let

$$
\begin{aligned}
\widetilde{\mathbf{M}}_{\omega \gamma} & \equiv(\mathbf{M}-2 \omega \mathbf{I}) \mathbf{M}+\left(\omega^{2}+\gamma^{2}\right) \mathbf{I} \\
\Rightarrow\binom{\underline{\boldsymbol{r}}^{(1)}}{\underline{\boldsymbol{r}}^{(2)}} & =\left(\begin{array}{cc}
\widetilde{\mathbf{M}}_{\omega \gamma}^{(11)} & \widetilde{\mathbf{M}}_{\omega \gamma}^{(21) \dagger} \\
\widetilde{\mathbf{M}}_{\omega \gamma}^{(21)} & \widetilde{\mathbf{M}}_{\omega \gamma}^{(22)}
\end{array}\right)\binom{\underline{\boldsymbol{y}}^{(1)}}{\underline{\boldsymbol{y}}^{(2)}}-\binom{\gamma \underline{\boldsymbol{f}}^{(1)}}{\gamma \underline{\boldsymbol{f}}^{(2)}}
\end{aligned}
$$

Enforce zero doubles residual:

$$
\begin{aligned}
& \underline{\mathbf{0}} \stackrel{!}{=} \underline{\boldsymbol{r}}^{(2)} \\
&=\widetilde{\mathbf{M}}_{\omega \gamma}^{(21)} \underline{\boldsymbol{y}}^{(1)}+\widetilde{\mathbf{M}}_{\omega \gamma}^{(22)} \underline{\boldsymbol{y}}^{(2)}-\gamma \underline{\boldsymbol{f}}^{(2)} \\
& \Rightarrow \underline{\boldsymbol{y}}^{(2)}=\left(\widetilde{\mathbf{M}}_{\omega \gamma}^{(22)}\right)^{-1}\left(\gamma \underline{\boldsymbol{f}}^{(2)}-\widetilde{\mathbf{M}}_{\omega \gamma}^{(21)} \underline{\boldsymbol{y}}^{(1)}\right)
\end{aligned}
$$

Plug into first equation:

$$
\begin{aligned}
& \Rightarrow \underline{\boldsymbol{r}}^{(1)}=\widetilde{\mathbf{M}}_{\omega \gamma}^{(11)} \underline{\boldsymbol{y}}^{(1)}-\widetilde{\mathbf{M}}_{\omega \gamma}^{(21) \dagger}\left(\widetilde{\mathbf{M}}_{\omega \gamma}^{(22)}\right)^{-1} \widetilde{\mathbf{M}}_{\omega \gamma}^{(21)} \underline{\boldsymbol{y}}^{(1)} \\
&+\gamma \widetilde{\mathbf{M}}_{\omega \gamma}^{(21) \dagger}\left(\widetilde{\mathbf{M}}_{\omega \gamma}^{(22)}\right)^{-1} \underline{\boldsymbol{f}}^{(2)}
\end{aligned}
$$

[^0]: ${ }^{1}$ M. Wormit, D. R. Rehn, P. H. Harbach, J. Wenzel, C. M. Krauter, E. Epifanovsky and A. Dreuw. Mol. Phys., 112, 774 (2014)

[^1]: ${ }^{1}$ J. Schirmer. Phys. Rev. A, 26, 2395 (1982)

[^2]: ${ }^{1}$ J. Schirmer. Phys. Rev. A, 26, 2395 (1982)

[^3]: ${ }^{1}$ J. Schirmer. Phys. Rev. A, 43, 4647 (1991)

