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Why excited-state calculations?

Interaction light and matter
Spectroscopy (UV/vis, UV, X-ray)

Photoreactivity

Application in materials and chemistry:
Colour

Energy production, storage and transport

UV durability / Photosynthesis

Molecular motors / sensors
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Comparison of methods for n = 21

CISDT CC2 ADC(2)

Ground state CISDT CC2 MP2
Ground state order 3 3 2

Size consistency No (Yes) Yes
Hermiticity Yes No Yes
Max. excitation 2 2 2
Order properties 2 2 2

Naive scaling n6 n5 n5

1M. Wormit, D. R. Rehn, P. H. Harbach, J. Wenzel, C. M. Krauter, E. Epifanovsky and

A. Dreuw. Mol. Phys., 112, 774 (2014)
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Comparison of methods for n = 31

CISDT CC3 ADC(3)

Ground state CISDT CC3 MP3
Ground state order 4 4 3

Size consistency No (Yes) Yes
Hermiticity Yes No Yes
Max. excitation 3 3 2
Order properties 3 3 3

Naive scaling n8 n7 n6

1M. Wormit, D. R. Rehn, P. H. Harbach, J. Wenzel, C. M. Krauter, E. Epifanovsky and

A. Dreuw. Mol. Phys., 112, 774 (2014)
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Current status of ADC methods

ADC(2): Established, excitation errors around 0.5eV

ADC(3): Error comparable to benchmark methods

Specialised variants exist (ionisation, core, spin-flip)

Method limits:
Strong multi-reference cases

MP ground state fails

Mathematical and numerical aspects:
Barely investigated

E.g. solvers unreliable for poor guesses / challenging cases
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Via many-body Green’s function theory

Green’s functions and the polarisation propagator
One-particle Green’s function or propagator:

Gp,p′
(
tp − tp′

)
= −ı

〈
ΨN

0

∣∣∣T̂ ĉp(tp)ĉ†p′(tp′)
∣∣∣ΨN

0
〉

Time-evolution of wave function

Two-particle Green’s function or two-particle propagator:

Gpq,p′q′(tp, tq, tp′ , tq′) = −ı
〈

ΨN
0

∣∣∣T̂ ĉp(tp)ĉq(tq)ĉ†p′(tp′)ĉ
†
q′(tq′)

∣∣∣ΨN
0
〉

Time-evolution of Gp,p′

Polarisation propagator or particle-hole propagator:

Πjk,j′k′(t− t′) = −ı
〈

ΨN
0

∣∣∣T̂ ĉj(t)ĉk′(t′)ĉ†k(t)ĉ
†
j′(t
′)
∣∣∣ΨN

0
〉

Special case of Gpq,p′q′(tp, tq, tp′ , tq′), evolution after excitation
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Via many-body Green’s function theory

Polarisation propagator (1)1

Spectral or Lehmann representation:

Πjk,j′k′(ω) =
∑
m6=0

〈
Ψ0
∣∣∣ĉ†kĉj∣∣∣Ψm

〉〈
Ψm

∣∣∣ĉ†j′ ĉk′ ∣∣∣Ψ0
〉

ω − (Em − E0) + ıη

−
∑
m6=0

〈
Ψ0
∣∣∣ĉ†j′ ĉk′ ∣∣∣Ψm

〉〈
Ψm

∣∣∣ĉ†kĉj∣∣∣Ψ0
〉

ω + (Em − E0)− ıη ,

where η → 0
Both terms contain same physical information:

Poles: Excitation energies Em − E0

Transition amplitudes

xm,jk ≡ xm,j←k =
〈

Ψm

∣∣∣ĉ†j ĉk

∣∣∣Ψ0

〉
1J. Schirmer. Phys. Rev. A, 26, 2395 (1982) 9 / 36
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Via many-body Green’s function theory

Polarisation propagator (2)1

Only consider

Π+
jk,j′k′(ω) =

∑
m 6=0

〈
Ψ0
∣∣∣ĉ†kĉj∣∣∣Ψm

〉〈
Ψm

∣∣∣ĉ†j′ ĉk′ ∣∣∣Ψ0
〉

ω − (Em − E0)

= x†jk (ωI−Ω)−1 xj′k′

where ωi ≡ Ei − E0

Ω ≡ diag(ω1, ω2, . . . , ωm)

xm,jk =
〈

Ψm

∣∣∣ĉ†j ĉk∣∣∣Ψ0
〉

1J. Schirmer. Phys. Rev. A, 26, 2395 (1982)
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Via many-body Green’s function theory

Algebraic-diagrammatic construction (ADC) (1)
Last slide: Diagonal representation

Π+
jk,j′k′(ω) = x†jk (ωI−Ω)−1 xj′k′

Insert unitary transformation Y to generalise:

Π+
jk,j′k′(ω) = x†jkY

†Y (ωI−Ω)−1 Y†Yxj′k′

⇒ ADC representation

Π+
jk,j′k′(ω) = f †

jk
(ωI−M)−1 f

j′k′

with
Modified transition amplitudes f

jk
= Yxjk

ADC matrix M = YΩY†
11 / 36
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Via many-body Green’s function theory

Algebraic-diagrammatic construction (2)1

Well-known expansion via Feynman-Dyson perturbation theory:

Π+ = Π(0) + Π(1) + Π(2) + · · ·

From these diagrams ADC scheme constructs

M = M(0) + M(1) + M(2) + · · ·

f
jk

= f
(0)
jk + f

(1)
jk + f

(2)
jk + · · ·

based on Møller-Plesset partitioning and HF reference

⇒ n-th order in M & f
jk

equivalent to n-th order in Π+

1J. Schirmer. Phys. Rev. A, 26, 2395 (1982)
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Via many-body Green’s function theory

Algebraic-diagrammatic construction (3)

Some ambiguity in construction of terms1 (M(n) versus f (n))
⇒ ADC: Make M least diagonal

Avoids “dangerous denominators”2

Leads to “compactness advantage”2 in M

Other choices2:
Rayleigh-Schrödinger perturbation theory (RSPT) (Y = I)

Configuration-interaction (CI)

1J. Schirmer. Phys. Rev. A, 26, 2395 (1982)
2J. Schirmer. Phys. Rev. A, 43, 4647 (1991)
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Via many-body Green’s function theory

Algebraic-diagrammatic construction (4)
Diagonal representation

Π+
jk,j′k′(ω) = x†jk (ωI−Ω)−1 xj′k′

⇒ Directly yields ωm and xm,jk

ADC representation

Π+
jk,j′k′(ω) = f †

jk
(ωI−M)−1 f

j′k′

1 Obtain Nstates lowest eigenpairs (ωm,ym)
My

m
= ωmy

m

where y
m

is m-th column of Y, the m-th transition vector.

2 Transition amplitude is
xm,jk =

(
y
m

)†
f
jk 14 / 36



A brief overview of ADC Sketching the derivation Numerically solving ADC Open questions and problems

Via many-body Green’s function theory

Algebraic-diagrammatic construction (5)
ADC generalises to higher excitations: doubles, triples, . . .

Transition amplitudes xm,j←k,j′←k′

Modif. transition amplitudes fiajb,j←k,j′←k′

Transition vectors Yiajb,m

Collect block-wise: E.g. transition vector

Y =



...
... . .

.

Yia,1 Yia,2 · · ·
...

...
Yiajb,1 Yiajb,2 · · ·
...

...
. . .

 y =



...
yia
...

yiajb
...


Elements written as YI,m and yI where I runs over all index
tuples (i, a) and (i, a, j, b)
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Via intermediate states

Intermediate states representation (1)
Basis of Ω: Exact Schrödinger states

Alternative basis for this space:{
Ψ0, ĉ†aĉiΨ0, ĉ†bĉj ĉ

†
aĉiΨ0, . . .

}
≡
{
ĈIΨ0

}
I

where Ψ0 is the exact ground state

Y unitary transforms Ω to M

⇒ Direct construction of intermediate state basis {Ψ̃I}I :

Intermediate states representation1:

MIJ =
〈

Ψ̃I

∣∣∣Ĥ − E0
∣∣∣Ψ̃J

〉
fI,jk =

〈
Ψ̃I

∣∣∣ĉ†j ĉk∣∣∣Ψ0
〉

1J. Schirmer. Phys. Rev. A, 43, 4647 (1991) 16 / 36
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Via intermediate states

Intermediate states (2)

Based on MP partitioning of Ĥelec

Use MP ground state and build
{
ĈIΨ0

}
I

Block-wise QR orthogonalsation singles, doubles, triples, . . .

⇒ Intermediate states

Allows systematic construction:
M (shifted Hamiltonian)

f (state projection)

arbitrary operators

17 / 36
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Broader prospect

Other propagators for ADC

Polarisation propagator: Evolution after excitation

Complex polarisation propagator: Models relaxation as well

Particle propagator: Evolution after particle attachment

Hole propagator: Evolution after particle removal

⇒ Can apply ADC scheme to all of them!

⇒ Very similar structure of equations

18 / 36
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Broader prospect

Connection to RPA1

ADC: Eigenproblem, p-h, 2p-2h, . . .
My = ωy

RPA: Pseudo-Eigenproblem, p-h, h-p(
A B
B† A

)(
y
z

)
= ω

(
I 0
0 −I

)(
y
z

)

RPA and TDA excitation energies: Both exact up to first order
Generally too large

Note: RPA no increase in perturbation order1

ADC(1) exci. energies ≡ CIS / TDA-RPA on HF reference
1J. Schirmer. Phys. Rev. A, 26, 2395 (1982)
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Solving by diagonalisation

Structure of the ADC matrix (1)

M(11) M(21)†

M(21) M(22)

Ψ̃a
i

Ψ̃ab
ij

Ψ̃a
i

Ψ̃ab
ij

0

Ψ̃a
i

Ψ̃ab
ij

Ψ̃a
i

Ψ̃ab
ij

1

Ψ̃a
i

Ψ̃ab
ij

Ψ̃a
i

Ψ̃ab
ij

ADC(0) ADC(1)

2 1

1 0

Ψ̃a
i

Ψ̃ab
ij

Ψ̃a
i

Ψ̃ab
ij

2 1

1 1

Ψ̃a
i

Ψ̃ab
ij

Ψ̃a
i

Ψ̃ab
ij

3 2

2 1

Ψ̃a
i

Ψ̃ab
ij

Ψ̃a
i

Ψ̃ab
ij

ADC(2) ADC(2)-x ADC(3)
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Solving by diagonalisation

Structure of the ADC matrix (2)

Problem: CN· (STO-3G)
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10−5
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(singles)
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Solving by diagonalisation

Diagonalisation procedure My = ωy

M quickly becomes large

Iterative diagonalisation procedures required

Usually only smallest few eigenpairs (ω,y) needed

M is well diagonally dominant

⇒ Contraction-based Jacobi-Davidson algorithm
Guess: Smallest diagonal elements

Davidson-type “preconditioning”: Diagonal of M

Expressions to perform block-wise matrix-vector product

Typical cases: Convergence within 30 steps

23 / 36
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Solving by diagonalisation

Jacobi-Davidson algorithm
Subspace algorithm:

Current Ritz pair
(
θ(j),y(j))

Current residual r(j) = My(j) − ωy(j)

Jacobi orthogonal component correction: Add t(j) ⊥ v(j) to subspace, s.t.
M
(
y(j) + t(j)) = ω

(
y(j) + t(j))

ω unknown, so instead solve
Mθt

(j) ≡
(
I− v(j)v(j) ∗) (M− θ(j)I

) (
I− v(j)v(j) ∗) t(j) = −r(j)

Davidson suggested to solve:(
I− v(j)v(j) ∗) (D− θ(j)I

)
t(j) = −r(j),

where D is an approximation to M.

Sleijpen-van-der-Vorst preconditioning:
K+
θ Mθt

(j) = −K+
θ r(j)

where K+
θ is an approximate iterative inverse of Mθ. 24 / 36
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Solving linear-response-like

Linear-response-like ansatz (1)
HF provides good guesses for (ω,y): Almost there

⇒ Why not directly solve

My − ωy = 0

Jacobi iterations:

r(j) = My(j) − θ(j)y(j)

y(j+1) = y(j) −
(
D− θ(j)I

)−1
r(j)

where θ(j) is the current Rayleigh quotient

Anderson / DIIS acceleration

Need to solve one linear equation per eigenpair (ω,y)
25 / 36
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Solving linear-response-like

Linear-response-like ansatz (2)

+ ADC(2) becomes very fast (next slide)

− Multiple guess pairs (ω,y) may collapse to one result

− Missing states, unnatural resulting multiplicities

⇒ Nowadays only done for ADC(2)

26 / 36
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Solving linear-response-like

PP-ADC: Doubles folding (1)

r = My − θy(
r(1)

r(2)

)
=
(

M(11) − θI M(21)†

M(21) M(22) − θI

)(
y(1)

y(2)

)
Enforce zero doubles residual:

0 != r(2) = M(21)y(1) +
(
M(22) − θI

)
y(2)

⇒ y(2) = −
(
M(22) − θI

)−1
M(21)y(1)

Plug into first equation:

⇒ r(1) =
(
M(11) − θI

)
y(1) + M(21)†y(2)
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Solving linear-response-like

PP-ADC: Doubles folding (1)

r = My − θy(
r(1)

r(2)

)
=
(

M(11) − θI M(21)†

M(21) M(22) − θI

)(
y(1)

y(2)

)
Enforce zero doubles residual:

0 != r(2) = M(21)y(1) +
(
M(22) − θI

)
y(2)

⇒ y(2) = −
(
M(22) − θI

)−1
M(21)y(1)

Plug into first equation:

⇒ r(1) =
(
M(11) − θI

)
y(1) −M(21)†

(
M(22) − θI

)−1
M(21)︸ ︷︷ ︸

≡Aθ

y(1)

=
(
M(11) −Aθ − θI

)
y(1)

27 / 36
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Solving linear-response-like

PP-ADC: Doubles folding (2)

Result of doubles folding:

r(1) =
(
M(11) −Aθ − θI

)
y(1), r(2) = 0

Aθ = M(21)†
(
M(22) − θI

)−1
M(21)

Iterates are only r(1) and y(1)

⇒ More memory-efficient

For ADC(2) M(22) is diagonal

⇒ Computing Aθ trivial given expression for M(21) and M(21)†

28 / 36



A brief overview of ADC Sketching the derivation Numerically solving ADC Open questions and problems

Solving linear-response-like

PP-ADC: Doubles folding (2)

M(11) M(21)†

M(21) M(22)

Ψ̃a
i

Ψ̃ab
ij

Ψ̃a
i

Ψ̃ab
ij

=

2 1

1 0

Ψ̃a
i

Ψ̃ab
ij

Ψ̃a
i

Ψ̃ab
ij

ADC(2)
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)
y(1), r(2) = 0
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M(22) − θI

)−1
M(21)

Iterates are only r(1) and y(1)

⇒ More memory-efficient

For ADC(2) M(22) is diagonal

⇒ Computing Aθ trivial given expression for M(21) and M(21)†
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Solving linear-response-like

Complex polarisation propagator (1)

Complex polarisation propagator ansatz lead to(
M− (ωm − ıγm)I

)
y
m

= f

γm: Half-width, stimulated emission

f : modified transition moments (real)

⇒ y
m

becomes complex

Assume same half-width: γm = γ (empirically determined)

Seek: (ωm,ym)

29 / 36
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Solving linear-response-like

Complex polarisation propagator (2)
Separate y

m
= yR

m
+ ıyI

m
:(

M− ωI γI
−γI M− ωI

)(
yR
m

yI
m

)
=
(

f
0

)

Therefore

yR
m

= −1
γ

(M− ωI) yI
m

γf =
(

(M− ωI)2 − γ2I
)
yI
m

=
(

(M− 2ωI) M + (ω2 + γ2)I
)
yI
m

Expensive linear system

Doubles folding not so simple
30 / 36



A brief overview of ADC Sketching the derivation Numerically solving ADC Open questions and problems

Contents

1 A brief overview of ADC

2 Sketching the derivation

Via many-body Green’s function theory

Via intermediate states

Broader prospect

3 Numerically solving ADC

Solving by diagonalisation

Solving linear-response-like

4 Open questions and problems

31 / 36



A brief overview of ADC Sketching the derivation Numerically solving ADC Open questions and problems

Some questions and problems

General complications
Index restrictions in expressions

Conserving spin symmetry

Doubles part y(2) is large vector

⇒ Storing the subspace can be memory bottleneck

ADC(n) matrix expressions get a lot more involved with n

Storage of ADC matrix is impossible

⇒ Doubles folding is very appealing

Complex propagator:
Two ADC matrices needed

Need to solve for multiple ω / γ
32 / 36
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Some questions and problems

Open questions

Convergence properties of ADC(n) series for Π+

Convergence properties of ADC(n) eigenvalue problem

Initial guess for ADC(n) from ADC(n− 1)
Going beyond the Jacobi algorithm
Better preconditioning techniques for

Solving by diagonalisation

Solving linear-response-like

Doubles folding for PP-ADC(2)-x or PP-ADC(3)

Doubles folding for CPP-ADC(2) and beyond

Can one re-use some of the work for one ω for the next
33 / 36
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Some questions and problems

Preconditioning PP-ADC
Davidson, Sleijpen-van-der-Vorst preconditioning:

K+
θ Mθt

(j) = −K+
θ r(j)

where
Kθ =

(
I− v(j)v(j) ∗

)
K
(
I− v(j)v(j) ∗

)
and a cheaply invertible

K ≈
(
M− θ(j)I

)
Linear-response-like formalism

r(j) = My(j) − θ(j)y(j)

Preconditioner re-use for different ω?

Going beyond Jacobi?
34 / 36
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Some questions and problems

PP-ADC(2)x, PP-ADC(3): Doubles folding

2 1

1 1

Ψ̃a
i

Ψ̃ab
ij

Ψ̃a
i

Ψ̃ab
ij

3 2

2 1

Ψ̃a
i

Ψ̃ab
ij

Ψ̃a
i

Ψ̃ab
ij

r(1) =
(
M(11) −Aθ − θI

)
y(1)

Aθ = M(21)†
(
M(22) − θI

)−1
M(21)
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Some questions and problems

CPP-ADC: Doubles folding

Let M̃ωγ ≡ (M− 2ωI) M + (ω2 + γ2)I

⇒
(

r(1)

r(2)

)
=
(

M̃(11)
ωγ M̃(21)†

ωγ

M̃(21)
ωγ M̃(22)

ωγ

)(
y(1)

y(2)

)
−
(
γf (1)

γf (2)

)

Enforce zero doubles residual:

0 != r(2) = M̃(21)
ωγ y(1) + M̃(22)

ωγ y(2) − γf (2)

⇒ y(2) =
(
M̃(22)

ωγ

)−1 (
γf (2) − M̃(21)

ωγ y(1)
)

Plug into first equation:

⇒ r(1) = M̃(11)
ωγ y(1) − M̃(21)†

ωγ

(
M̃(22)

ωγ

)−1
M̃(21)

ωγ y(1)

+ γM̃(21)†
ωγ

(
M̃(22)

ωγ

)−1
f (2)

36 / 36


	A brief overview of ADC
	

	Sketching the derivation
	Via many-body Green's function theory
	Via intermediate states
	Broader prospect

	Numerically solving ADC
	Solving by diagonalisation
	Solving linear-response-like

	Open questions and problems
	Some questions and problems


