
Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Lazy matrices in quantum chemistry

Michael F. Herbst
michael.herbst@iwr.uni-heidelberg.de

http://michael-herbst.com

Interdisziplinäres Zentrum für wissenschaftliches Rechnen
Ruprecht-Karls-Universität Heidelberg

15th June 2017

1 / 29

http://michael-herbst.com


Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Contents
1 Coulomb-Sturmian based Hartree-Fock

Discretisation of the HF equations

Coulomb-Sturmians

Further types of basis functions

2 Lazy matrices

Apply-based algorithms

The linalgwrap lazy matrix library

molsturm: Lazy matrices in quantum chemistry

3 Future work

Outlook

1 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Contents
1 Coulomb-Sturmian based Hartree-Fock

Discretisation of the HF equations

Coulomb-Sturmians

Further types of basis functions

2 Lazy matrices

Apply-based algorithms

The linalgwrap lazy matrix library

molsturm: Lazy matrices in quantum chemistry

3 Future work

Outlook

2 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Discretisation of the HF equations

Hartree-Fock equations
Hartree-Fock equations(
−1

2∆ + V̂Nuc + V̂H
[
{ψf}f∈I

]
+ V̂x

[
{ψf}f∈I

])
ψf = εfψf

with

−1
2∆ Kinetic energy of electrons

V̂Nuc Electron-nuclear interaction
V̂H
[
{ψf}f∈I

]
Hartree potential

V̂x
[
{ψf}f∈I

]
Exchange potential

Non-linear system of partial differential equations

Eigenproblem for eigenpairs {(εf , ψf )}f∈I
3 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Discretisation of the HF equations

Discretisation of Hartree-Fock

Discretise using finite basis {ϕb}b∈B, i.e.

ψf =
∑
b

c
(f)
b ϕb

⇒ Non-linear discretised Eigenproblem(
T + VNuc + J

[
{c(f)
b }

]
+ K

[
{c(f)
b }

])
c(f) = εfc(f)

Variational, but which choices of ϕb are best?

4 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Discretisation of the HF equations

An ideal basis

Represents physical system well (Geometry!)
Results reliable

Error margin known

Systematic improvement possible

Prior knowledge
Little required

Can still be incorporated

Integrals and eigenproblem are feasible

⇒ In reality need a good compromise

5 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Discretisation of the HF equations

Gaussian basis sets

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5
Abstand r

1 GTO
2 GTOs
3 GTOs

STO

6 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Discretisation of the HF equations

Gaussian basis sets

0
0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035
0.004

5 6 7 8 9 10
Abstand r

STO-3g
STO

6 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Discretisation of the HF equations

Gaussian basis sets

Gaussian-product theorem:
ERI tensor 〈ϕaϕb|ϕcϕd〉 feasible

J and K feasible

Need contracted GTOs (cGTOs)

Nuclear cusp and tail still problematic

⇒ Some tasks require special basis sets (e.g. diffuse functions)

cGTOs can become strongly linearly dependant

Small to moderate basis sizes

Basis set families with known convergence properties

7 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Coulomb-Sturmians

Functional form

Iso-energetic solutions ϕnlm to hydrogen-like equation(
−1

2∆ϕ(r)− βn
Z

r

)
ϕnlm(r) = Eϕnlm(r)

Relationship between scaling factor and energy:

βn = kn

Z
⇒ E = −k

2

2

ϕnlm look like Hydrogenic orbitals with Z
n replaced by k

Correctly represent nuclear cusp

Proper exponential decay for large r

8 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Coulomb-Sturmians

Properties

Only atoms: Different Sturmians for molecules required

Complete basis set

No contractions (yet)

Basis has free tuning parameter k

k-free Full-CI exists

One-electron integrals sparse

ERI tensor from pre-computed sparse tensor:

〈φaφb|φcφd〉 =
∑
µν

CµabIµνC
ν
cd

9 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Coulomb-Sturmians

Preliminary results

Helium HF energies:
22 Sturmians −2.861 679 995 612 EH
CBS value1 −2.861 679 995 615 EH

Coulomb Sturmians with nmax = 22, lmax = mmax = 0 , k = 2

Beryllium comparison:
EHF EMP2

21 Sturmians −14.5634 EH −14.6248 EH
21 cGTOs −14.5730 EH −14.6217 EH

Coulomb Sturmians with nmax = 6, lmax = mmax = 1, k = 2.1,
cGTOs: cc-pV5Z, but only l = 0 and l = 1

1N. H. Morgon et. al., Comp. Theor. Chem., 1997, 394, 95-100
10 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Coulomb-Sturmians

Preliminary results

Helium HF energies:
22 Sturmians −2.861 679 995 612 EH
CBS value1 −2.861 679 995 615 EH

Coulomb Sturmians with nmax = 22, lmax = mmax = 0 , k = 2

Beryllium comparison:
EHF EMP2

21 Sturmians −14.5634 EH −14.6248 EH
21 cGTOs −14.5730 EH −14.6217 EH

Coulomb Sturmians with nmax = 6, lmax = mmax = 1, k = 2.1,
cGTOs: cc-pV5Z, but only l = 0 and l = 1

1N. H. Morgon et. al., Comp. Theor. Chem., 1997, 394, 95-100
10 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Coulomb-Sturmians

Apply-based scheme

Iterative solvers only need matrix-vector products

Matrix-vector product of J and K:
Theoretically O(N) by means of contraction scheme

e.g.
(
Kc̃(f)

)
b

=
∑

acdoµν

c(o)
a CµabIµνC

ν
cd c(o)

c c̃
(f)
d

⇒ Apply-based or matrix-free algorithm:
Never build K in storage

Use expression for K to directly apply matrix to vectors

SCF based on orbital coefficients c(f)

11 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Further types of basis functions

Finite elements

Very local

Large number of basis functions (> 106)

Building K: Ω(N2) time and O(N2) storage

But: Theoretical O(N) scaling in apply-based scheme

Typical for “numerical” basis functions

Compare all basis functions in the same program?

12 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Further types of basis functions

Finite elements

0 1000 2000 3000 4000 5000 6000 70000

1000

2000

3000

4000

5000

6000

7000

−12.0

−10.5

−9.0

−7.5

−6.0

−4.5

−3.0

−1.5

0.0

0 1000 2000 3000 4000 5000 6000 70000

1000

2000

3000

4000

5000

6000

7000

−12.0

−10.5

−9.0

−7.5

−6.0

−4.5

−3.0

−1.5

0.0

T + VNuc + J K

12 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Further types of basis functions

Finite elements

Very local

Large number of basis functions (> 106)

Building K: Ω(N2) time and O(N2) storage

But: Theoretical O(N) scaling in apply-based scheme

Typical for “numerical” basis functions

Compare all basis functions in the same program?

12 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Contents
1 Coulomb-Sturmian based Hartree-Fock

Discretisation of the HF equations

Coulomb-Sturmians

Further types of basis functions

2 Lazy matrices

Apply-based algorithms

The linalgwrap lazy matrix library

molsturm: Lazy matrices in quantum chemistry

3 Future work

Outlook

13 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Apply-based algorithms

Characteristics of apply-based algorithms

Advantages
Scaling (storage and time) reduced — in examples to O(N)
Parallelisation easier
⇒ Less data management

Hardware trends are in favour

Disadvantages
Matrices more intuitive than apply-functions
More computations
⇒ Need efficient contraction schemes for the apply

Algorithms more complicated

14 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Apply-based algorithms

Characteristics of apply-based algorithms

Advantages
Scaling (storage and time) reduced — in examples to O(N)
Parallelisation easier
⇒ Less data management

Hardware trends are in favour

Disadvantages
Matrices more intuitive than apply-functions
More computations
⇒ Need efficient contraction schemes for the apply

Algorithms more complicated

14 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Apply-based algorithms

Characteristics of apply-based algorithms

Advantages
Scaling (storage and time) reduced — in examples to O(N)
Parallelisation easier
⇒ Less data management

Hardware trends are in favour

Disadvantages
Matrices more intuitive than apply-functions
More computations
⇒ Need efficient contraction schemes for the apply

Algorithms more complicated

14 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Apply-based algorithms

Characteristics of apply-based algorithms

Advantages
Scaling (storage and time) reduced — in examples to O(N)
Parallelisation easier
⇒ Less data management

Hardware trends are in favour

Disadvantages
Matrices more intuitive than apply-functions
More computations
⇒ Need efficient contraction schemes for the apply

Algorithms more complicated

14 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Apply-based algorithms

Processor vs. memory performance improvement

1

10

100

1000

10000

100000

1980 1985 1990 1995 2000 2005 2010

Processor vs.
Memory

performance gap

CPU clock speed
Memory bus speed

Data from https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast 15 / 29

https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast


Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

The linalgwrap lazy matrix library

Lazy matrices

Stored matrix: All elements reside in memory
Lazy matrix:

Generalisation of matrices
State

Non-linear

Elements may be expressions

⇒ Obtaining elements expensive

Evaluation of internal expression: Delayed until apply

For convenience: Offer matrix-like interface

16 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

The linalgwrap lazy matrix library

Using lazy matrices

Program as usual
D = A + B

Build expression tree internally

D = A + B

On application:

Dx = (Ax) + (Bx)

17 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

The linalgwrap lazy matrix library

Using lazy matrices

Program as usual
D = A + B

Build expression tree internally

D = A + B = +
A B

On application:

Dx = (Ax) + (Bx)

17 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

The linalgwrap lazy matrix library

Using lazy matrices

Program as usual
D = A + B

Build expression tree internally

D = A + B = +
A B

On application:

Dx = (Ax) + (Bx)

17 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

The linalgwrap lazy matrix library

Interface and example code

linalgwrap1: Prototype C++ implementation
1 typedef SmallVector <double > vector_type ;
2 typedef SmallMatrix <double > matrix_type ;
3 auto v = random < vector_type >(100) ;
4 DiagonalMatrix < matrix_type > diag(v);
5 auto mat = random < matrix_type >(100 ,100);
6

7 // No computation : Just build expression tree
8 auto sum = diag + mat;
9 auto prod = trans(sum) * diag * sum;

10 auto tree = mat + prod;
11

12 // Evaluate tree on application :
13 SmallVector <double > res = tree * v;

1https://linalgwrap.org
18 / 29

https://linalgwrap.org


Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

The linalgwrap lazy matrix library

Notes and observations

linalgwrap: Bookkeeping for apply-functions

Programmer still sees matrices

⇒ Language for writing apply-based algorithms

Lazy matrices allow layered responsibility for computation,
e.g. (A + B)x

Ax and Bx decided by implementation of A and B

(Ax) + (Bx) done in linear algebra backend

⇒ Proper modularisation between
Higher-level algorithms

Lazy matrix implementations

LA backends
19 / 29





Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

The linalgwrap lazy matrix library

linalgwrap
Lazy linear algebra wrapper library

common
interface

user-provided
lazy matrices

LA backends solvers
built-in lazy

matrices

ARPACK

LAPACK

Anasazi

Iterative
inverse

Armadillo

Bohrium

Eigen

Algorithms
e.g. SCF

e.g. Integrals

li
na

lg
wr

ap
U

pp
er

la
ye

rs
LA

ba
ck

en
d

Italic: planned

20 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

molsturm: Lazy matrices in quantum chemistry

molsturm structure

molsturm
Problem description, Python driver

gscf
SCF algorithms

gint
Integral interface

linalgwrap
Linear algebra interface

krims
Common utilities

ADC

MP2

Full CI

Post HF methods

Ionis. sturmians

Sturmians

Gaussians

Finite elements

Finite differences

Wavelets

. . .

Integral backends

Italic: planned
21 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

molsturm: Lazy matrices in quantum chemistry

molsturm design

Enables apply-based SCF routines

Flexiblity first, speed second
Behaviour controlled via python

Keywords to change basis type or solver

All computed data available for analysis

No input file, just a python script

python utilities
Import / export results

Post-HF calculations

22 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

molsturm: Lazy matrices in quantum chemistry

Demo

DEMO
of using molsturm

23 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Contents
1 Coulomb-Sturmian based Hartree-Fock

Discretisation of the HF equations

Coulomb-Sturmians

Further types of basis functions

2 Lazy matrices

Apply-based algorithms

The linalgwrap lazy matrix library

molsturm: Lazy matrices in quantum chemistry

3 Future work

Outlook

24 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Outlook

Lazy matrix expression optimisation

C ·
(

A + B
)

+ +
A B

=
+

·
C +
A B

+
A B

Matrix expression tree ≡ abstract syntax tree

⇒ May be optimised by standard methods

25 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Outlook

Lazy matrix expression optimisation

C ·
(

A + B
)

+ +
A B

=
+

·
C +
A B

+
A B

=
·

+
C I

+
A B

Matrix expression tree ≡ abstract syntax tree

⇒ May be optimised by standard methods

25 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Outlook

Selection of LA backend

Right now: LA backend is compiled in
e.g. Bohrium backend

Uses just-in-time (JIT) compilation

Very specific for hardware

Compilation takes time

Better: Dynamic selection
Load on the expression tree

Availablility of backends

Hardware specs

26 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Outlook

Extension to lazy tensors

apply is a special tensor contraction
⇒ Lazy tensors:

Delay all tensor contractions as long as possible

e.g. k̃bf =
∑

acdoµν

Cao cµabIµνc
ν
cd CcoCdf

Compare possible contraction schemes by complexity

Execute cheapest evaluation scheme

⇒ Determine optimal contraction sequence automatically

27 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Acknowledgements

Dr. James Avery

Prof. Andreas Dreuw and the Dreuw group

Prof. Guido Kanschat

HGS Mathcomp

28 / 29



Coulomb-Sturmian based Hartree-Fock Lazy matrices Future work A & Q

Questions?

EMail: michael.herbst@iwr.uni-heidelberg.de

Website/blog: https://michael-herbst.com

Projects: https://linalgwrap.org and https://molsturm.org

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International Licence.

29 / 29

michael.herbst@iwr.uni-heidelberg.de
https://michael-herbst.com
https://linalgwrap.org
https://molsturm.org

	Coulomb-Sturmian based Hartree-Fock
	Discretisation of the HF equations
	Coulomb-Sturmians
	Further types of basis functions

	Lazy matrices
	Apply-based algorithms
	The linalgwrap lazy matrix library
	molsturm: Lazy matrices in quantum chemistry

	Future work
	Outlook


