The storage problem Lazy matrices Future work A& Q
0000000 000000 [e]e] Q0

Lazy matrices for apply-based algorithms

Michael F. Herbst* James Avery

*https://michael-herbst.com
michael.herbst@iwr.uni-heidelberg.de

Interdisziplindres Zentrum fiir wissenschaftliches Rechnen
Ruprecht-Karls-Universitiat Heidelberg

19th May 2017

https://michael-herbst.com

The storage problem Lazy matrices Future work A&Q

0000000 000000 [e]e) 00
e
Contents

@ The storage problem
@ Problems with conventional approaches

o Apply-based algorithms

© Lazy matrices

o The linalgwrap lazy matrix library

© Future work
e Outlook

1/20

The storage problem Lazy matrices Future work A&Q

0000000 000000 [e]e) 00
e
Contents

@ The storage problem
@ Problems with conventional approaches

o Apply-based algorithms

unegsrar | u R
HepEaERe
i

cesesm

2/20

The storage problem Lazy matrices Future work A&Q
@®000000 000000 [e]e] Q0

Problems with conventional approaches

Processor vs. memory performance improvement

100000 F T T T =

t CPU clock speed X
L Memory bus speed * s
10000 o X x X E
L . 1

X
r « X 4
1000 F X !
L X 4
X Processor vs.

r x = Memory

100 ¢ e performance gap | 3
r X
X
10 < 1
n X ES
[X ® K K KK
x X %%**%******

[x X x X K * x X X * 1
1 k% x %X i | | | | -

1980 1985 1990 1995 2000 2005 2010

Data from https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast 3/20

https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast

The storage problem Lazy matrices Future work A&Q
0000000 000000 [e]e] Q0

Problems with conventional approaches

Hartree-Fock equations

o Electronic structure theory

o Hartree-Fock equations

<_;A +]}NUC + 1}26[{¢i}i61]> wz = Eiwi

with
1 N
_iA Kinetic energy of electrons
]A/Nuc Electron-nuclear interaction
Voo [{®i}icr] Electron-electron interaction

o Non-linear system of partial differential equations

4/20

The storage problem Lazy matrices

Future work A& Q
Q0@0000 000000

00 00

Problems with conventional approaches

Finite-element discretisation

o Finite elements: Piecewise polynomials with support only
on a few neighbouring cells

= Need many finite elements (> 109)

o Typically sparse matrix structures:

1000 " - . ~105

P = —-12.0
0 1000 2W 3000 ﬁ)() 5000 6000 7000

Typical discretisation of —2A + VNue 5/20

The storage problem Lazy matrices Future work A&Q
000e000 000000 [e]e] Q0

Problems with conventional approaches

Finite-element discretisation
Caveat

e But ...]726 is so-called non-local:

0 1000 2000 3000 4000 5000 6000 7000

Vae: Discretisation of Vae
o Building V. takes Q(N?) time and O(N?) storage
o Typically 10° - 10° elements ~ 8 TB storage

6/20

The storage problem Lazy matrices Future work A&Q
0000e00 000000 [e]e] Q0

Apply-based algorithms

Finite-element discretisation
Apply-based scheme

o Iterative solvers only need matrix-vector products

e Matrix-vector product of Vg.: Theoretically O(N)

= Apply-based or matrix-free algorithm:
o Never build Vo in storage

o Use expression for Vi, to directly apply matrix to vectors

7/20

The storage problem Lazy matrices Future work A&Q
0000080 000000 [e]e] Q0

Characteristics of apply-based algorithms

Advantages

@ Theoretical scaling (storage and time) reduced to O(N)
o Parallelisation easier
= Less data management

Disadvantages

@ Matrices more intuitive than apply-functions
@ More computations

8/20

The storage problem Lazy matrices Future work A&Q
0000080 000000 [e]e] Q0

Characteristics of apply-based algorithms

Advantages

@ Theoretical scaling (storage and time) reduced to O(N)
o Parallelisation easier
= Less data management

Disadvantages

@ Matrices more intuitive than apply-functions
@ More computations
= Need efficient contraction schemes for the apply
e Algorithms more complicated

8/20

The storage problem Lazy matrices Future work A&Q
0000080 000000 [e]e] Q0

Characteristics of apply-based algorithms

Advantages

@ Theoretical scaling (storage and time) reduced to O(N)
o Parallelisation easier
= Less data management

@ Hardware trends are in favour

Disadvantages

@ Matrices more intuitive than apply-functions
@ More computations
= Need efficient contraction schemes for the apply
e Algorithms more complicated

8/20

The storage problem Lazy matrices Future work A&Q
0000000 000000 [e]e] Q0

Contents

© Lazy matrices

o The linalgwrap lazy matrix library

unegsrar | u R
HepEaERe
i

cesesm

9/20

The storage problem Lazy matrices Future work A&Q
0000000 000000 [e]e] Q0

The linalgwrap lazy matrix library

Lazy matrices

o Stored matrix: All elements reside in memory
o Lazy matrix:
o Generalisation of matrices
o State
o Non-linear
e Elements may be expressions
= Obtaining elements expensive
e Evaluation of internal expression: Delayed until apply

e For convenience: Offer matrix-like interface

10/20

The storage problem Lazy matrices Future work A&Q
0000000 0@0000 [e]e] Q0

The linalgwrap lazy matrix library

Using lazy matrices

@ Program as usual
D=A+B

@ Build expression tree internally

D|=/A|+ B

11/20

The storage problem Lazy matrices Future work A&Q
0000000 0@0000 [e]e] Q0

The linalgwrap lazy matrix library

Using lazy matrices

@ Program as usual
D=A+B

@ Build expression tree internally

D = A|+|B|=|/

11/20

The storage problem Lazy matrices Future work A&Q
0000000 0@0000 [e]e] Q0

The linalgwrap lazy matrix library

Using lazy matrices

@ Program as usual
D=A+B

@ Build expression tree internally

D = A|+|B|=|/

@ On application:

11/20

Lazy matrices Future work
000000 00

The linalgwrap lazy matrix library

Interface and example code

e linalgwrap!: Prototype C++ implementation

1 typedef SmallVector <double> vector_type;
> typedef SmallMatrix<double> matrix_type;
3 auto v = random<vector_type >(100) ;

4+ DiagonalMatrix<matrix_type> diag(v);

5 auto mat = random<matrix_type>(100,100) ;

6

7 // No computation: Just build expression tree
s auto sum = diag + mat;

9 auto prod = trans(sum) * diag * sum;

10 auto tree = mat + prod;

12 // Evaluate tree on application:
13 SmallVector <double> res = tree * v;

'https://linalgwrap.org
12/20

https://linalgwrap.org

The storage problem Lazy matrices Future work A&Q
0000000 000000 [e]e] Q0

The linalgwrap lazy matrix library

Notes and observations

o linalgwrap: Bookkeeping for apply-functions
@ Programmer still sees matrices

= Language for writing apply-based algorithms

o Lazy matrices allow layered responsibility for computation,
eg. (A+B)x

e Az and Bz decided by implementation of A and B
o (Az) + (Bx) done in linear algebra backend
= Proper modularisation between
e Higher-level algorithms
e Lazy matrix implementations

o LA backends

13/20

The storage problem Lazy matrices Future work A&Q
0000000 000000 [e]e]

The linalgwrap lazy matrix library

linalgwrap
Lazy linear algebra wrapper library
wn
g
] problem-specific
ﬁg Algorithms storage scheme
[
S | A
Y |
o, common user-provided
g interface lazy matrices
ey
: |
E built-in lazy
LA backends solvers matrices
I I I
v Y v
g Armadillo ARPACK Iterative
% inverse
E Bohrium LAPACK
<
— Eigen Anasazi Ttalic:

14 /20

The storage problem Lazy matrices

0000000 00000e

Future work
[e]e]

A&Q
00

The linalgwrap lazy matrix library

molsturm structure

Integral backends

-

Problem description, setup, 10
gint gscf
Ionis. sturmians >
Integral interface SCF algorithms
Finite elements — R
linalgwrap

Finite differences ——

Linear algebra interface

Wawvelets —

krims

Common utilities

o ltalic:

L

Post HF methods

MP2

ADC

Full CI

15/20

The storage problem Lazy matrices Future work A&Q
0000000 000000 [e]e] Q0

Contents

© Future work
e Outlook

unegsrar | u R

HHibelth

i

L "
cesesm

16 /20

The storage problem Lazy matrices Future work A& Q
0000000 000000 @0

Outlook

Lazy matrix expression optimisation

e (al+[r])

o Matrix expression tree = abstract syntax tree

= May be optimised by standard methods

17/20

The storage problem
0000000 000000

Lazy matrices

Future work
@0

A&Q

Outlook

Lazy matrix expression optimisation

ol (a]+

B)+ N

l’ .
VRN RN
T o +
| = | A
A

o Matrix expression tree = abstract syntax tree

= May be optimised by standard methods

17/20

The storage problem Lazy matrices Future work A&Q
0000000 000000 oe Q0

Extension to lazy tensors

@ apply is a special tensor contraction
= Lazy tensors:
e Delay all tensor contractions as long as possible
e.g. kbf = Z Cao CZbI/H/CZd C(:ocdf
acdoyv
e Compare possible contraction schemes by complexity

e Execute cheapest evaluation scheme

= Determine optimal contraction sequence automatically

18/20

The storage problem Lazy matrices Future work A&Q
0000000 000000 [e]e] @0

Acknowledgements

e Dr. James Avery

@ Prof. Andreas Dreuw and the Dreuw group

@ Prof. Guido Kanschat

o HGS Mathcomp (&7 Hes

19/20

The storage problem Lazy matrices Future work A&Q
0000000 000000 [e]e] oe

Questions?

@ EMail: michael.herbst@iwr.uni-heidelberg.de
@ Website/blog: https://michael-herbst.com
@ Projects: https://linalgwrap.org and https://molsturm.org

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International Licence.

20/20

michael.herbst@iwr.uni-heidelberg.de
https://michael-herbst.com
https://linalgwrap.org
https://molsturm.org

	The storage problem
	Problems with conventional approaches
	Apply-based algorithms

	Lazy matrices
	The linalgwrap lazy matrix library

	Future work
	Outlook

