Lazy matrices for apply-based algorithms

Michael F. Herbst* James Avery

*https://michael-herbst.com
michael.herbst@iwr.uni-heidelberg.de
Interdisziplinäres Zentrum für wissenschaftliches Rechnen Ruprecht-Karls-Universität Heidelberg

Contents

(1) The storage problem

- Problems with conventional approaches
- Apply-based algorithms
(2) Lazy matrices
- The linalgwrap lazy matrix library
(3) Future work
- Outlook

Contents

(1) The storage problem

- Problems with conventional approaches
- Apply-based algorithms
(2) Lazy matrices
- The linalgwrap lazy matrix library
(3) Future work
- Outlook

UNIVERSITÂT
HEIDELBERG
HEIDELBERG
ZUKUNHF
SEIT 1386
$2 / 20$

Processor vs. memory performance improvement

Hartree-Fock equations

- Electronic structure theory
- Hartree-Fock equations

$$
\left(-\frac{1}{2} \Delta+\hat{\mathcal{V}}_{\mathrm{Nuc}}+\hat{\mathcal{V}}_{2 \mathrm{e}}\left[\left\{\psi_{i}\right\}_{i \in I}\right]\right) \psi_{i}=\varepsilon_{i} \psi_{i}
$$

with

$$
\begin{array}{ll}
-\frac{1}{2} \Delta & \text { Kinetic energy of electrons } \\
\hat{\mathcal{V}}_{\text {Nuc }} & \text { Electron-nuclear interaction } \\
\hat{\mathcal{V}}_{2 \mathrm{e}}\left[\left\{\psi_{i}\right\}_{i \in I}\right] & \text { Electron-electron interaction }
\end{array}
$$

- Non-linear system of partial differential equations

Finite-element discretisation

- Finite elements: Piecewise polynomials with support only on a few neighbouring cells
\Rightarrow Need many finite elements $\left(>10^{6}\right)$
- Typically sparse matrix structures:

Typical discretisation of $-\frac{1}{2} \Delta+\hat{\mathcal{V}}_{\text {Nuc }}$

Finite-element discretisation

Caveat

- But $\ldots \hat{\mathcal{V}}_{2 \mathrm{e}}$ is so-called non-local:

- Building $\mathbf{V}_{2 \mathrm{e}}$ takes $\Omega\left(N^{2}\right)$ time and $\mathcal{O}\left(N^{2}\right)$ storage
- Typically $10^{6} \cdot 10^{6}$ elements ≈ 8 TB storage

Apply-based algorithms

Finite-element discretisation

Apply-based scheme

- Iterative solvers only need matrix-vector products
- Matrix-vector product of $\mathbf{V}_{2 \mathrm{e}}$: Theoretically $\mathcal{O}(N)$
\Rightarrow Apply-based or matrix-free algorithm:
- Never build $\mathbf{V}_{2 \mathrm{e}}$ in storage
- Use expression for $\mathbf{V}_{2 \mathrm{e}}$ to directly apply matrix to vectors

Apply-based algorithms

Characteristics of apply-based algorithms

Advantages

- Theoretical scaling (storage and time) reduced to $\mathcal{O}(N)$
- Parallelisation easier
\Rightarrow Less data management
- Hardware trends are in favour

Disadvantages

- Matrices more intuitive than apply-functions
- More computations
\Rightarrow Need efficient contraction schemes for the apply
- Algorithms more complicated

Characteristics of apply-based algorithms

Advantages

- Theoretical scaling (storage and time) reduced to $\mathcal{O}(N)$
- Parallelisation easier
\Rightarrow Less data management
- Hardware trends are in favour

Disadvantages

- Matrices more intuitive than apply-functions
- More computations
\Rightarrow Need efficient contraction schemes for the apply
- Algorithms more complicated

Characteristics of apply-based algorithms

Advantages

- Theoretical scaling (storage and time) reduced to $\mathcal{O}(N)$
- Parallelisation easier
\Rightarrow Less data management
- Hardware trends are in favour

Disadvantages

- Matrices more intuitive than apply-functions
- More computations
\Rightarrow Need efficient contraction schemes for the apply
- Algorithms more complicated

Contents

(1) The storage problem

- Problems with conventional approaches
- Apply-based algorithms
(2) Lazy matrices
- The linalgwrap lazy matrix library
(3) Future work
- Outlook
$9 / 20$

Lazy matrices

- Stored matrix: All elements reside in memory
- Lazy matrix:
- Generalisation of matrices
- State
- Non-linear
- Elements may be expressions
\Rightarrow Obtaining elements expensive
- Evaluation of internal expression: Delayed until apply
- For convenience: Offer matrix-like interface

Using lazy matrices

- Program as usual

$$
\mathbf{D}=\mathbf{A}+\mathbf{B}
$$

- Build expression tree internally

- On application:

$$
\mathbf{D} \underline{\boldsymbol{x}}=(\mathbf{A} \underline{\boldsymbol{x}})+(\mathbf{B} \underline{\boldsymbol{x}})
$$

Using lazy matrices

- Program as usual

$$
\mathbf{D}=\mathbf{A}+\mathbf{B}
$$

- Build expression tree internally

$$
\mathbf{D}=\boxed{\mathbf{A}}+\boxed{\mathbf{B}}=\boxed{\mathbf{A}^{+} \mathbf{B}^{+}}
$$

- On application:

$$
\mathbf{D} \underline{\boldsymbol{x}}=(\mathbf{A} \underline{\boldsymbol{x}})+(\mathbf{B} \underline{\boldsymbol{x}})
$$

Using lazy matrices

- Program as usual

$$
\mathbf{D}=\mathbf{A}+\mathbf{B}
$$

- Build expression tree internally

$$
\mathbf{D}=\boxed{\mathbf{A}}+\boxed{\mathbf{B}}=\boxed{\mathbf{A}^{+} \mathbf{B}^{+}}
$$

- On application:

$$
\mathbf{D} \underline{\boldsymbol{x}}=(\mathbf{A} \underline{\boldsymbol{x}})+(\mathbf{B} \underline{\boldsymbol{x}})
$$

Interface and example code

- linalgwrap ${ }^{1}$: Prototype C++ implementation

```
typedef SmallVector<double> vector_type;
typedef SmallMatrix<double> matrix_type;
auto v = random<vector_type>(100);
DiagonalMatrix<matrix_type> diag(v);
auto mat = random<matrix_type> (100,100);
// No computation: Just build expression tree
auto sum = diag + mat;
auto prod = trans(sum) * diag * sum;
auto tree = mat + prod;
// Evaluate tree on application:
13 SmallVector<double> res = tree * v;
```

[^0]
Notes and observations

- linalgwrap: Bookkeeping for apply-functions
- Programmer still sees matrices
\Rightarrow Language for writing apply-based algorithms
- Lazy matrices allow layered responsibility for computation, e.g. $(\mathbf{A}+\mathbf{B}) \underline{x}$
- $\mathbf{A} \underline{\boldsymbol{x}}$ and $\mathbf{B} \underline{\boldsymbol{x}}$ decided by implementation of \mathbf{A} and \mathbf{B}
- $(\mathbf{A} \underline{\boldsymbol{x}})+(\mathbf{B} \underline{\boldsymbol{x}})$ done in linear algebra backend
\Rightarrow Proper modularisation between
- Higher-level algorithms
- Lazy matrix implementations
- LA backends

linalgwrap

Lazy linear algebra wrapper library

molsturm structure

Integral backends
Post HF methods

- Italic: planned

Contents

(1) The storage problem

- Problems with conventional approaches
- Apply-based algorithms
(2) Lazy matrices
- The linalgwrap lazy matrix library
(3) Future work
- Outlook

Lazy matrix expression optimisation

- Matrix expression tree \equiv abstract syntax tree
\Rightarrow May be optimised by standard methods

Lazy matrix expression optimisation

- Matrix expression tree \equiv abstract syntax tree
\Rightarrow May be optimised by standard methods

Extension to lazy tensors

- apply is a special tensor contraction
\Rightarrow Lazy tensors:
- Delay all tensor contractions as long as possible

$$
\text { e.g. } \quad \tilde{k}_{b f}=\sum_{a c d o \mu \nu} \mathcal{C}_{a o} c_{a b}^{\mu} I_{\mu \nu} c_{c d}^{\nu} \mathcal{C}_{c o} \mathcal{C}_{d f}
$$

- Compare possible contraction schemes by complexity
- Execute cheapest evaluation scheme
\Rightarrow Determine optimal contraction sequence automatically

Acknowledgements

- Dr. James Avery
- Prof. Andreas Dreuw and the Dreuw group

- Prof. Guido Kanschat
- HGS Mathcomp

Questions?

- EMail: michael.herbst@iwr.uni-heidelberg.de
- Website/blog: https://michael-herbst.com
- Projects: https://linalgwrap.org and https://molsturm.org

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.

[^0]: ${ }^{1}$ https://linalgwrap.org

