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Problems with conventional approaches

Processor vs. memory performance improvement

1

10

100

1000

10000

100000

1980 1985 1990 1995 2000 2005 2010

Processor vs.
Memory

performance gap

CPU clock speed
Memory bus speed

Data from https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast 3 / 20

https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast


The storage problem Lazy matrices Future work A & Q

Problems with conventional approaches

Hartree-Fock equations

Electronic structure theory

Hartree-Fock equations(
−1

2∆ + V̂Nuc + V̂2e
[
{ψi}i∈I

])
ψi = εiψi

with

−1
2∆ Kinetic energy of electrons

V̂Nuc Electron-nuclear interaction
V̂2e
[
{ψi}i∈I

]
Electron-electron interaction

Non-linear system of partial differential equations
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Problems with conventional approaches

Finite-element discretisation
Finite elements: Piecewise polynomials with support only
on a few neighbouring cells

⇒ Need many finite elements (> 106)

Typically sparse matrix structures:
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Problems with conventional approaches

Finite-element discretisation
Caveat

But . . . V̂2e is so-called non-local:
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V2e: Discretisation of V̂2e

Building V2e takes Ω(N2) time and O(N2) storage

Typically 106 · 106 elements ≈ 8 TB storage
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Apply-based algorithms

Finite-element discretisation
Apply-based scheme

Iterative solvers only need matrix-vector products

Matrix-vector product of V2e: Theoretically O(N)

⇒ Apply-based or matrix-free algorithm:

Never build V2e in storage

Use expression for V2e to directly apply matrix to vectors
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Apply-based algorithms

Characteristics of apply-based algorithms

Advantages
Theoretical scaling (storage and time) reduced to O(N)
Parallelisation easier
⇒ Less data management

Hardware trends are in favour

Disadvantages
Matrices more intuitive than apply-functions
More computations
⇒ Need efficient contraction schemes for the apply

Algorithms more complicated
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The linalgwrap lazy matrix library

Lazy matrices

Stored matrix: All elements reside in memory
Lazy matrix:

Generalisation of matrices
State

Non-linear

Elements may be expressions

⇒ Obtaining elements expensive

Evaluation of internal expression: Delayed until apply

For convenience: Offer matrix-like interface
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The linalgwrap lazy matrix library

Using lazy matrices

Program as usual
D = A + B

Build expression tree internally

D = A + B

On application:

Dx = (Ax) + (Bx)
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The linalgwrap lazy matrix library

Interface and example code

linalgwrap1: Prototype C++ implementation
1 typedef SmallVector <double > vector_type ;
2 typedef SmallMatrix <double > matrix_type ;
3 auto v = random < vector_type >(100) ;
4 DiagonalMatrix < matrix_type > diag(v);
5 auto mat = random < matrix_type >(100 ,100);
6

7 // No computation : Just build expression tree
8 auto sum = diag + mat;
9 auto prod = trans(sum) * diag * sum;

10 auto tree = mat + prod;
11

12 // Evaluate tree on application :
13 SmallVector <double > res = tree * v;

1https://linalgwrap.org
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The linalgwrap lazy matrix library

Notes and observations

linalgwrap: Bookkeeping for apply-functions

Programmer still sees matrices

⇒ Language for writing apply-based algorithms

Lazy matrices allow layered responsibility for computation,
e.g. (A + B)x

Ax and Bx decided by implementation of A and B

(Ax) + (Bx) done in linear algebra backend

⇒ Proper modularisation between
Higher-level algorithms

Lazy matrix implementations

LA backends
13 / 20
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The linalgwrap lazy matrix library

linalgwrap
Lazy linear algebra wrapper library

common
interface

user-provided
lazy matrices

LA backends solvers
built-in lazy
matrices

ARPACK

LAPACK

Anasazi

Iterative
inverse

Armadillo

Bohrium

Eigen

Algorithms
problem-specific
storage scheme

li
na

lg
wr

ap
U
pp

er
la
ye
rs

LA
ba

ck
en
d

Italic: planned
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The linalgwrap lazy matrix library

molsturm structure

molsturm
Problem description, setup, IO

gscf
SCF algorithms

gint
Integral interface

linalgwrap
Linear algebra interface

krims
Common utilities

ADC

MP2

Full CI

Post HF methods

Ionis. sturmians

Sturmians

Gaussians

Finite elements

Finite differences

Wavelets

. . .

Integral backends

Italic: planned
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Outlook

Lazy matrix expression optimisation

C ·
(

A + B
)

+ +
A B

=
+

·
C +
A B

+
A B

Matrix expression tree ≡ abstract syntax tree

⇒ May be optimised by standard methods
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Outlook

Extension to lazy tensors

apply is a special tensor contraction
⇒ Lazy tensors:

Delay all tensor contractions as long as possible

e.g. k̃bf =
∑

acdoµν

Cao cµabIµνc
ν
cd CcoCdf

Compare possible contraction schemes by complexity

Execute cheapest evaluation scheme

⇒ Determine optimal contraction sequence automatically
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Questions?

EMail: michael.herbst@iwr.uni-heidelberg.de

Website/blog: https://michael-herbst.com

Projects: https://linalgwrap.org and https://molsturm.org

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International Licence.
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