The storage problem	Lazy matrices	Future work	A & Q
0000000	000000		00

Lazy matrices for apply-based algorithms

Michael F. Herbst^{*} James Avery

*https://michael-herbst.com michael.herbst@iwr.uni-heidelberg.de Interdisziplinäres Zentrum für wissenschaftliches Rechnen Ruprecht-Karls-Universität Heidelberg

19th May2017

Contents

- 1 The storage problem
 - Problems with conventional approaches
 - Apply-based algorithms

- 2 Lazy matrices
 - The linalgwrap lazy matrix library

• Outlook

Contents

- 1 The storage problem
 - Problems with conventional approaches
 - Apply-based algorithms
 - 2 Lazy matrices
 - The linalgwrap lazy matrix library
- 3 Future work
 - Outlook

The storage problem	Lazy matrices	Future work	A & Q
●○○○○○○	000000		00
Problems with conventional approaches			

Processor vs. memory performance improvement

Data from https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast 3/20

Hartree-Fock equations

- Electronic structure theory
- Hartree-Fock equations

$$\left(-\frac{1}{2}\Delta + \hat{\mathcal{V}}_{\mathrm{Nuc}} + \hat{\mathcal{V}}_{2\mathrm{e}}\left[\left\{\psi_i\right\}_{i \in I}\right]\right)\psi_i = \varepsilon_i\psi_i$$

with

 $\begin{array}{ll} -\frac{1}{2}\Delta & \text{Kinetic energy of electrons} \\ \hat{\mathcal{V}}_{\text{Nuc}} & \text{Electron-nuclear interaction} \\ \hat{\mathcal{V}}_{2e}[\{\psi_i\}_{i\in I}] & \text{Electron-electron interaction} \end{array}$

• Non-linear system of partial differential equations

Finite-element discretisation

- Finite elements: Piecewise polynomials with support only on a few neighbouring *cells*
- \Rightarrow Need many finite elements (> 10⁶)
 - Typically sparse matrix structures:

Finite-element discretisation

• But $\dots \hat{\mathcal{V}}_{2e}$ is so-called *non-local*:

• Building \mathbf{V}_{2e} takes $\Omega(N^2)$ time and $\mathcal{O}(N^2)$ storage

• Typically $10^6 \cdot 10^6$ elements $\approx 8 \text{ TB}$ storage

The storage problem	Lazy matrices 000000	Future work 00	A & Q 00
Apply-based algorithms			

Finite-element discretisation Apply-based scheme

- Iterative solvers only need matrix-vector products
- Matrix-vector product of \mathbf{V}_{2e} : Theoretically $\mathcal{O}(N)$
- \Rightarrow Apply-based or matrix-free algorithm:
 - Never build \mathbf{V}_{2e} in storage
 - Use expression for V_{2e} to directly apply matrix to vectors

The storage problem ○○○○○●○	Lazy matrices	Future work	A & Q 00
Apply-based algorithms			

Characteristics of apply-based algorithms

Advantages

- Theoretical scaling (storage and time) reduced to $\mathcal{O}(N)$
- Parallelisation easier
 - \Rightarrow Less data management
- Hardware trends are in favour

Disadvantages

- Matrices more intuitive than apply-functions
- More computations
 - \Rightarrow Need efficient contraction schemes for the apply
 - Algorithms more complicated

The storage problem ○○○○○●○	Lazy matrices	Future work	A & Q 00
Apply-based algorithms			

Characteristics of apply-based algorithms

Advantages

- Theoretical scaling (storage and time) reduced to $\mathcal{O}(N)$
- Parallelisation easier
 - \Rightarrow Less data management
- Hardware trends are in favour

Disadvantages

- Matrices more intuitive than apply-functions
- More computations
 - \Rightarrow Need efficient contraction schemes for the apply
 - Algorithms more complicated

The storage problem ○○○○○●○	Lazy matrices	Future work	A & Q 00
Apply-based algorithms			

Characteristics of apply-based algorithms

Advantages

- Theoretical scaling (storage and time) reduced to $\mathcal{O}(N)$
- Parallelisation easier
 - \Rightarrow Less data management
- Hardware trends are in favour

Disadvantages

- Matrices more intuitive than apply-functions
- More computations
 - \Rightarrow Need efficient contraction schemes for the apply
 - Algorithms more complicated

Contents

- Problems with conventional approaches
- Apply-based algorithms

2 Lazy matrices

• The linalgwrap lazy matrix library

Outlook

The storage problem	Lazy matrices ●00000	Future work	A & Q 00
The linalgwrap lazy matrix library			

Lazy matrices

- Stored matrix: All elements reside in memory
- Lazy matrix:
 - Generalisation of matrices
 - State
 - Non-linear
 - Elements may be expressions
 - \Rightarrow Obtaining elements expensive
 - Evaluation of internal expression: Delayed until apply
 - For convenience: Offer matrix-like interface

The storage problem	Lazy matrices 00000	Future work	A & Q 00
The linalgwrap lazy matrix library			

Using lazy matrices

• Program as usual

$$\mathbf{D}=\mathbf{A}+\mathbf{B}$$

• Build expression tree internally

$$\boxed{\mathbf{D}} = \boxed{\mathbf{A}} + \boxed{\mathbf{B}}$$

• On application:

$$\mathbf{D}\underline{x} = (\mathbf{A}\underline{x}) + (\mathbf{B}\underline{x})$$

The storage problem	Lazy matrices 00000	Future work	A & Q 00
The linalgwrap lazy matrix library			

Using lazy matrices

• Program as usual

$$\mathbf{D} = \mathbf{A} + \mathbf{B}$$

• Build expression tree internally

$$\mathbf{D} = \mathbf{A} + \mathbf{B} = \mathbf{A} + \mathbf{B}$$

• On application:

$$\mathbf{D}\underline{x} = (\mathbf{A}\underline{x}) + (\mathbf{B}\underline{x})$$

The storage problem	Lazy matrices ○●○○○○	Future work	A & Q 00
The linalgwrap lazy matrix library			

Using lazy matrices

• Program as usual

$$\mathbf{D} = \mathbf{A} + \mathbf{B}$$

• Build expression tree internally

$$\mathbf{D} = \mathbf{A} + \mathbf{B} = \mathbf{A} + \mathbf{A} + \mathbf{B} = \mathbf{A} + \mathbf{B} + \mathbf{A} +$$

• On application:

$$\mathbf{D}\underline{\boldsymbol{x}} = (\mathbf{A}\underline{\boldsymbol{x}}) + (\mathbf{B}\underline{\boldsymbol{x}})$$

The storage problem	Lazy matrices	Future work	A & Q 00
The linalgwrap lazy matrix library			

Interface and example code

• linalgwrap¹: Prototype C++ implementation

```
1 typedef SmallVector <double > vector type;
2 typedef SmallMatrix<double> matrix type;
3 auto v = random<vector type>(100);
4 DiagonalMatrix <matrix type> diag(v);
5 auto mat = random<matrix type>(100,100);
6
7 // No computation: Just build expression tree
8 auto sum = diag + mat;
9 auto prod = trans(sum) * diag * sum;
10 auto tree = mat + prod;
11
12 // Evaluate tree on application:
13 SmallVector<double> res = tree * v;
```

¹https://linalgwrap.org

The storage problem	Lazy matrices	Future work	A & Q 00
The linalgwrap lazy matrix library			

Notes and observations

- linalgwrap: Bookkeeping for apply-functions
- Programmer still sees matrices
- \Rightarrow Language for writing apply-based algorithms
 - Lazy matrices allow layered responsibility for computation, e.g. $({\bf A}+{\bf B})\underline{\pmb{x}}$
 - $\mathbf{A}\underline{x}$ and $\mathbf{B}\underline{x}$ decided by implementation of \mathbf{A} and \mathbf{B}
 - $(\mathbf{A}\underline{x}) + (\mathbf{B}\underline{x})$ done in linear algebra backend
- \Rightarrow Proper modularisation between
 - Higher-level algorithms
 - Lazy matrix implementations
 - LA backends

The storage problem	Lazy matrices	Future work	A & Q 00
The linalgwrap lazy matrix library			

linalgwrap

The storage problem	Lazy matrices 00000●	Future work	A & Q 00
The linalgwrap lazy matrix library			

molsturm structure

Integral backends

Post HF methods

Contents

The storage problem

- Problems with conventional approaches
- Apply-based algorithms
- 2 Lazy matrices
 - The linalgwrap lazy matrix library

• Outlook

The storage problem	Lazy matrices	Future work	A & Q
000000	000000	•0	00
Outlook			

Lazy matrix expression optimisation

- Matrix expression tree \equiv abstract syntax tree
- \Rightarrow May be optimised by standard methods

The storage problem	Lazy matrices	Future work	A & Q
000000	000000	•0	00
Outlook			

Lazy matrix expression optimisation

- Matrix expression tree \equiv abstract syntax tree
- \Rightarrow May be optimised by standard methods

Extension to lazy tensors

• apply is a special tensor contraction

 \Rightarrow Lazy tensors:

• Delay all tensor contractions as long as possible

e.g.
$$\tilde{k}_{bf} = \sum_{acdo\mu\nu} C_{ao} \ c^{\mu}_{ab} I_{\mu\nu} c^{\nu}_{cd} \ C_{co} C_{df}$$

- Compare possible contraction schemes by complexity
- Execute cheapest evaluation scheme
- \Rightarrow Determine optimal contraction sequence automatically

Acknowledgements

- Dr. James Avery
- Prof. Andreas Dreuw and the Dreuw group

- Prof. Guido Kanschat
- HGS Mathcomp

Questions?

- EMail: michael.herbst@iwr.uni-heidelberg.de
- Website/blog: https://michael-herbst.com
- Projects: https://linalgwrap.org and https://molsturm.org

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.