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Introduction to the FEM

Finite elements (FEs) as basis functions

space Ω = (a, b)

a b

Discretise open set Ω into grid of Nh cells.

Support on just a few neighbouring cells

At nodal points: ϕi(nj) = δij

NFE-dim. basis for discretised Hilbert space H1
0 .
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Introduction to the FEM

Finite elements (FEs) as basis functions

quadratic finite elements (NFE = 2Nh + 1)
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Introduction to the FEM

Reference cell and shape functions

Cells c can have arbitrary shape

Related to reference cell c0 = [0, 1]3 by a map µc

c0

µc

c

All FEs ϕk constructed from shape functions {eα} and {µc}
⇒ Computation on the FE grid:

Compute on reference cell once

Transform result onto all grid cells
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Introduction to the FEM

Examples of shape functions
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Introduction to the FEM

Notes and observations

Locality built into the basis

Need large number of basis functions (millions)

⇒ Need linear scaling in NFE

Arbitrary boundary conditions

Arbitrary mesh shapes

Error estimation and adaptive refinement

⇒ No bias towards expected solution

6 / 37



Finite element based quantum chemistry molsturm Outlook

Introduction to the FEM

Notes and observations

Locality built into the basis

Need large number of basis functions (millions)

⇒ Need linear scaling in NFE

Arbitrary boundary conditions

Arbitrary mesh shapes

Error estimation and adaptive refinement

⇒ No bias towards expected solution

6 / 37



Finite element based quantum chemistry molsturm Outlook

Finite-element based Hartree-Fock

Formulation of the problem

The well-known canonical Hartree-Fock equations . . .(
− 1

2∆ + V̂(r)
)
ψi(r) = εiψi(r) r ∈ Ω

ψi(r) = 0 r ∈ ∂Ω

where
V̂ = V̂0 + V̂H + V̂x

with
the electron-nuclear interaction V̂0

the Hartree potential V̂H

the exchange potential V̂x
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Finite-element based Hartree-Fock

Formulation of the problem

. . . can be discretised on a FE grid to give an eigenproblem:

Fc(i) = εiSc(i)

with

Sjk =
∫

Ω
ϕj(r)ϕk(r) dr

Fjk =
∫

Ω

1
2∇ϕj(r) · ∇ϕk(r) + ϕj(r) V̂(r)ϕk(r) dr

and
Orbital coefficient c(i)

Orbital energy εi
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Finite-element based Hartree-Fock

Evaluating integrals of local operators (1)

Consider overlap as sum of cell-wise contributions:

Sij =
∑
c

Scij =
∑
c

∫
c
ϕi(r)ϕj(r) dr

Transform Scij onto reference cell

Use exact Gaussian quadrature to evaluate

Scij = 0 iff ϕi and ϕj do not share support on c

⇒ Sparsity pattern in Sij known before computation

⇒ O(NFE) in space and time
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Finite-element based Hartree-Fock

Evaluating integrals of local operators (2)

Effect of local operators like V̂0 or ∆ inside cell

⇒ Integrals

Tij =
∫

Ω

1
2∇ϕi(r) · ∇ϕj(r) dr

and

(V0)ij =
∫

Ω
ϕi(r)V̂0ϕj(r) dr

are automatically O(NFE).
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Finite-element based Hartree-Fock

Evaluating the coulomb integral

Jjk =
∫

Ω
ϕj(r) V̂H(r)ϕk(r) dr

V̂H(r1) =
∑
i∈occ

∫
Ω

|ψi(r2)|2

r12
dr2

V̂H(r) is a local potential

Obtained by solving Poisson eq.n:

−∆V̂H(r) = 4πρ(r) r ∈ Ω

Can be done in O(NFE)

Might need higher-order discretisation for Poisson problem.
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Finite-element based Hartree-Fock

Non-local exchange operator

Kjk =
∫

Ω
ϕj(r1) V̂x(r1)ϕk(r1) dr1

=
∫

Ω
ϕj(r1)

∫
Ω

∑
i∈occ ψi(r1)ψi(r2)

r12
ϕk(r2) dr2 dr1

V̂x(r) is non-local

O(N2
FE) in both storage and time

⇒ We cannot store K (or F)
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Finite-element based Hartree-Fock

Local vs. non-local operators

T + V0 + J K
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Finite-element based Hartree-Fock

Application of K is feasible

(Kc̃)j =
∑

k

∫
Ω
ϕj(r1)

∫
Ω

∑
i∈occ ψi(r1)ψi(r2)

r12
ϕk(r2) dr2 dr1 c̃k

Application of K requires solving Nocc Poisson equations

⇒ O(NoccNFE) in memory and computational cost

Which inner discretisation?

Seek methods to reduce effort per Poisson equation
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Finite-element based Hartree-Fock

Notes and observations (1)

Need to treat various terms of F differently:
T and V0 can be stored

J and K require solution of linear systems

K can only be applied

⇒ Only iterative diagonalisation possible

⇒ Can only compute some eigenpairs of F
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Finite-element based Hartree-Fock

Notes and observations (2)

Obtaining exact K not yet successful
Many details still unknown:

What eigensolver / Poisson solver algorithms work best?

How accurate does the FE grid need to be?

How about the grid for solving the Poisson equations?

What algorithms should be chosen for the numerical
integration in Kc̃?

Non-linear eigensolver possible?

⇒ We need a framework to try things out.
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The objective

Current state of quantum chemistry software

Large program packages
Highly optimised towards Gaussians:

Optimisations in integral screening / computation

Very well-engineered evaluation order

Many decisions hard-coded:
Dense matrix structure

Eigensolver

Linear algebra backend

Tens of years of work: Very fast programs
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The objective

Our goal (1)

Give novel basis function types a try:
Sturmians

Finite Differences

Finite Elements

⇒ For fair comparison: Everything optimised to the same level

Be able to experiment
Large library of eigensolvers

Interfaces to many linear algebra (LA) backends

Interfaces to high-level languages (Python, . . . )

⇒ Easy to use abstractions
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The objective

Our goal (2)

Modular program structure, e.g.
SCF code should be independent of basis type

I/O should be independent of SCF algorithm

Allow to try new architectures or computing models

⇒ Need abstract way to express algorithms:
Algorithms describe what computation should be done

Backend decides how computation is done
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molsturm structure

molsturm overview

molsturm
Problem, setup and IO

gscf
SCF algorithms

gint
Integral interface

linalgwrap
Linear algebra interface

krims
Common utilities

Finite elements

Sturmians

Finite differences

Gaussians

. . .

Integral backends
ADC

MP2

Full CI

Post HF methods

Italic: planned
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linalgwrap

molsturm overview

molsturm
Problem, setup and IO

gscf
SCF algorithms

gint
Integral interface

linalgwrap
Linear algebra interface

krims
Common utilities

Finite elements

Sturmians

Finite differences
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Integral backends
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Full CI
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Italic:
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linalgwrap

Lazy matrices

Stored matrix: All elements reside in memory
Lazy matrix:

Offers matrix-like interface

Obtaining elements expensive

Operators: Mainly used via matrix-vector application (gemv)

Evaluation is lazy, i.e.

D = A + B

On application:
Dx = (Ax) + (Bx)
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linalgwrap

A more complicated example

C ·
(

A + B
)

+ +
A B

=
+

·
C +
A B

+
A B

Expression tree may be optimised planned

Graph theory problem

Methods of program analysis and optimisation
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linalgwrap

Notes and observations

Lazy matrices allow layered responsibility for computation,
e.g. (A + B)x

Ax and Bx decided by implementation of A and B

(Ax) + (Bx) done in LA backend

LA backend and tree optimisations abstracted

⇒ Language for writing gemv-based algorithms
⇒ Proper modularisation between

Algorithms (i.e. gscf)

Matrix implementations (i.e. gint)

LA backends
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linalgwrap

linalgwrap
Linear algebra wrapper library — https://linalgwrap.org

common
interface

user-provided
lazy matrices

LA backends solvers
built-in lazy
matrices

ARPACK

Anasazi

Iterative
inverse

Matrix
expression

Armadillo

Bohrium

Eigen

Algorithms
in e.g. gscf

e.g. Integrals
in gint

li
na

lg
wr

ap
U
pp

er
la
ye
rs

LA
ba

ck
en
d

Italic: planned
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gint and gscf

molsturm overview

molsturm
Problem, setup and IO

gscf
SCF algorithms

gint
Integral interface

linalgwrap
Linear algebra interface

krims
Common utilities

Finite elements

Sturmians

Finite differences

Gaussians

. . .

Integral backends
ADC

MP2

Full CI

Post HF methods

Italic:
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gint and gscf

gint
Integral interface

Integrals: Lazy matrices
Integral backend:

Chooses storage scheme for matrices and vectors

gemv implementation

gint contains
Integral selection

Screening planned

Cutoffs planned

Basis set projection planned
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gint and gscf

gscf
SCF algorithms

Matrix-free: partial

Based on gemv

Density matrix never built up explicitly

Iterative eigensolvers

⇒ Does not yield all virtual orbitals

Algorithms:
Plain

DIIS

Optimal damping algorithm planned

Open shell is planned

Sensible SCF guess planned
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gint and gscf

Demo

DEMO
of a Sturmian SCF
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Post HF

molsturm overview

molsturm
Problem, setup and IO

gscf
SCF algorithms

gint
Integral interface
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Finite elements
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Finite differences
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Post HF methods
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Post HF

Post HF with molsturm

molsturm may export
Fock matrix (MO basis)

Two electron integrals (MO basis)

Orbital coefficients

Orbital energies

Possible Post-HF methods: planned

ADC

(Matrix-free) FCI

Python interface
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Summary

Finite Elements:
Flexible numerical basis

Unusual requirements

Need gemv based SCF

molsturm

Modular Hartree-Fock framework

Designed for experimentation

Based on gemv operations

Free software ( partial : https://linalgwrap.org)
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Outlook
The near future

Matrix-free Sturmian SCF

Gaussian basis functions

ADC interface

Finite difference based quantum chemistry

Interface to more Eigensolvers (Anasazi)
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