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Interdisziplinäres Zentrum für wissenschaftliches Rechnen
Ruprecht-Karls-Universität Heidelberg

13 March 2015

1 / 25

http://blog.mfhs.eu


A new basis The finite element method Building the matrices Summary

Contents

1 A new basis to solve an old problem
Why consider finite elements at all?

2 The finite element method (FEM)
Finite elements and shape functions
The weak formulation
Outline of a FE calculation

3 Building the matrices
Building the mass matrix M
Building the stiffness matrix A

4 Summary

1 / 25



A new basis The finite element method Building the matrices Summary

Contents

1 A new basis to solve an old problem
Why consider finite elements at all?

2 The finite element method (FEM)
Finite elements and shape functions
The weak formulation
Outline of a FE calculation

3 Building the matrices
Building the mass matrix M
Building the stiffness matrix A

4 Summary

2 / 25



A new basis The finite element method Building the matrices Summary

Why consider finite elements at all?

Connecting dots

?

3 / 25



A new basis The finite element method Building the matrices Summary

Why consider finite elements at all?

Connecting dots

?

3 / 25



A new basis The finite element method Building the matrices Summary

Why consider finite elements at all?

Connecting dots

?

3 / 25



A new basis The finite element method Building the matrices Summary

Why consider finite elements at all?

Problems with atom-centered bases

Confined molecules
Excited states:

Rydberg states
Resonance phenomena

Not a free choice of boundary conditions
Untested bias regarding electron position

4 / 25



A new basis The finite element method Building the matrices Summary

Contents

1 A new basis to solve an old problem
Why consider finite elements at all?

2 The finite element method (FEM)
Finite elements and shape functions
The weak formulation
Outline of a FE calculation

3 Building the matrices
Building the mass matrix M
Building the stiffness matrix A

4 Summary

5 / 25



A new basis The finite element method Building the matrices Summary

Finite elements and shape functions

Finite elements (FEs) as basis functions

space Ω = [a, b]

a b

Discretise open set Ω into grid of Nh cells.
Non-differentiable only at cell boundaries xj

Support on just a few neighbouring cells
At nodal points: ϕi(nj) = δij

NFE-dim. basis for discretised Hilbert space H 1
0 .
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Finite elements and shape functions

Finite elements (FEs) as basis functions

quadratic finite elements (NFE = 2Nh + 1)

1
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At nodal points: ϕi(nj) = δij

NFE-dim. basis for discretised Hilbert space H 1
0 .

6 / 25



A new basis The finite element method Building the matrices Summary

Finite elements and shape functions

Reference cell and shape functions

c0

µc

c

Reference cell c0 = [0, 1]3

Affine map µc for each cell to construct c from c0

Can construct FEs ϕk from shape functions {eα}0≤α<nsh :

ϕk |c (r) = eα
(
µ−1

c (r)
)

for some α

⇒ Computation on the grid:
Compute on reference cell once
Transform result onto all grid cells
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Finite elements and shape functions

Examples of shape functions
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The weak formulation

The Hartree-Fock equations in strong form

The well-known canonical Hartree-Fock equations may be
written as(

− 1
2∆ + V̂(r)

)
ψi(r) = εiψi(r) r ∈ Ω

ψi(r) = 0 r ∈ ∂Ω

where
V̂ = V̂0 + V̂H + V̂x

with
the electron-nuclear interaction V̂0
the Hartree potential V̂H
the exchange potential V̂x

This is the strong form of the problem
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The weak formulation

Getting the weak form (1)

Expand orbital ψi(r) in FE basis:

ψi(r) =
∑

k
z(i)

k ϕk(r)

Multiply strong form by arbitrary basis function ϕj(r)(
− 1

2∆ + V̂(r)
)
ψi(r) = εiψi(r)

Insert basis expansion and integrate∫
Ω
ϕj(r)

(
− 1

2∆ + V̂(r)
)
ψi(r) dr =

∫
Ω
ϕj(r)εiψi(r) dr
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The weak formulation

Getting the weak form (2)

Apply partial integration

−
∫

Ω
ϕj(r)1

2∆ϕk(r) dr = −
∫
∂Ω

1
2 ϕj(r)∇ϕk(r) · n̂s ds

+
∫

Ω

1
2∇ϕj(r) · ∇ϕk(r) dr

Weak formulation of the Hartree-Fock problem:
For all basis functions ϕj it holds:

∑
k

z(i)
k

∫
Ω

1
2∇ϕj(r) · ∇ϕk(r) + ϕj(r)V̂(r)ϕk(r) dr

= εi
∑

k
z(i)

k

∫
Ω
ϕj(r)ϕk(r) dr
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The weak formulation

Introducing matrices

Mass matrix
Mjk =

∫
Ω
ϕj(r)ϕk(r) dr

Stiffness matrix

Ajk =
∫

Ω

1
2∇ϕj(r) · ∇ϕk(r) + ϕj(r) V̂(r)ϕk(r) dr

Generalised eigenvalue problem:

∑
k

z(i)
k

∫
Ω

1
2∇ϕj(r) · ∇ϕk(r) + ϕj(r) V̂(r)ϕk(r) dr

= εi
∑

k
z(i)

k

∫
Ω
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The weak formulation

Introducing matrices

Mass matrix
Mjk =

∫
Ω
ϕj(r)ϕk(r) dr

Stiffness matrix

Ajk =
∫

Ω

1
2∇ϕj(r) · ∇ϕk(r) + ϕj(r) V̂(r)ϕk(r) dr

Generalised eigenvalue problem:

Az(i) = εiMz(i)
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Outline of a FE calculation

Adaptive mesh refinement

For good results need about 104 to 107 basis functions
Grid can be refined adaptively

⇒ Usually hierarchy of meshes used
A posteriori error estimation
Can scale error by importance (multi-scale methods)
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Outline of a FE calculation

Overview of a calculation

Need an SCF procedure: V̂H and V̂x depend on {ψi}i
Build a sufficiently good grid

Start from coarse grid
Adaptive refinement

Run SCF calculation:
Calculate M and A for current {ψi}i
Solve generalised eigenvalue problem to get new {ψi}i

Refine grid an rerun SCF

Remarks
M and A are large, but sparse
Expensive step is building A, especially term containing V̂x

For initial grid refinement use simplified potential V̂(r)
14 / 25
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Building the mass matrix M

Splitting into cell contributions

Calculate as sum of cell-wise contributions: Mij =
∑

c M c
ij

M c
ij =

∫
c
ϕi(r)ϕj(r) dr

M c
ij only non-zero if ϕi and ϕj have common support on c

Let α, β such that

ϕi |c (r) = eα
(
µ−1

c (r)
)

and ϕj |c (r) = eβ
(
µ−1

c (r)
)

Let Jc(ξ) be the Jacobian of the mapping r = µc(ξ), i.e.

(
Jc(ξ)

)
ij

=
(
∇ξµc(ξ)

)
ij

=
∂
(
µc(ξ)

)
i

∂ξj
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Building the mass matrix M

Transformation to unit cell and quadrature

M c
ij =

∫
c
ϕi(r)ϕj(r) dr

=
∫

c
eα
(
µ−1

c (r)
)

eβ
(
µ−1

c (r)
)

dr

=
∫

c0
eα(ξ)eβ(ξ) det

(
Jc(ξ)

)
dξ

=
Nq∑

q=1
eα(ξq)eβ(ξq) det

(
Jc(ξq)

)
wq
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Building the mass matrix M
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Building the mass matrix M

Transformation to unit cell and quadrature

M c
ij =

∫
c
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)
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)

dr
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∫
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(
Jc(ξ)

)
dξ

=
Nq∑

q=1
eα(ξq)eβ(ξq) det

(
Jc(ξq)

)
wq

Gaussian quadrature of order Nq with quad. weights wq

Only need to know det Jc, eα at quadrature points of c0

Only det Jc changes from cell to cell
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Building the stiffness matrix A

Contributions to A

Ajk =
∫

Ω

1
2∇ϕj(r) · ∇ϕk(r)

+ ϕj(r)
(
V̂0(r) + V̂H (r) + V̂x(r)

)
ϕk(r) dr

where

T c
jk =

∫
c

1
2∇ϕj(r) · ∇ϕk(r) dr(

V0
)c

jk =
∫

c
ϕj(r) V̂0(r)ϕk(r) dr(

VH
)c

jk =
∫

c
ϕj(r) V̂H (r)ϕk(r) dr(

Vx
)c

jk =
∫

c
ϕj(r) V̂x(r)ϕk(r) dr
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Building the stiffness matrix A

Contributions to A

Ajk =
∑

c
T c

jk +
(
V0
)c

jk +
(
VH

)c
jk +

(
Vx
)c

jk

where
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Building the stiffness matrix A

Coulomb term
(
VH

)c
jk

(
VH )c

jk =
∫

c
ϕj(r) V̂H (r)ϕk(r) dr

V̂H (r1) =
∑

i

∫
Ω

|ψi(r2)|2

r12
dr2

V̂H (r) is local potential

19 / 25
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Building the stiffness matrix A

Coulomb term
(
VH

)c
jk

(
VH )c

jk =
∫

c
ϕj(r) V̂H (r)ϕk(r) dr

V̂H (r) is local potential
Obtained by solving Poisson eq.n:

−∆V̂H (r) = 4πρ(r) r ∈ Ω
α(r) V̂H (r) = ∂nV̂H (r) r ∈ ∂Ω

The function α(r) is determined by

α(r)Nelec − 1
r = ∂n

Nelec − 1
r

Need a large enough grid (ca. 200 Å)
19 / 25
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Building the stiffness matrix A

Exchange term
(
Vx

)c
jk

(
Vx
)c

jk =
∫

c
ϕj(r1) V̂x(r1)ϕk(r1) dr1

=
∫

c
ϕj(r1)

∫
Ω

∑
i ψi(r1)ψi(r2)

r12
ϕk(r2) dr2 dr1

=
∫

c
ϕj(r1)

∫
Ω

ρ(r1, r2)
r12

ϕk(r2) dr2 dr1

=
∑
c′

∫
c

∫
c′
ϕj(r1)ρ(r1, r2)

r12
ϕk(r2) dr2 dr1

V̂x(r) is non-local
Quadratic scaling in NFE
Integration again by quadrature in unit cell
Problem: r−1

12 singularity
20 / 25



A new basis The finite element method Building the matrices Summary

Building the stiffness matrix A
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Building the stiffness matrix A

Ideas for approximate exchange

(
Vx
)c

jk =
∑
c′

∫
c

∫
c′
ϕj(r1)ρ(r1, r2)

r12
ϕk(r2) dr2 dr1

Use local approx.n like X-α 1

Cell pair distance cutoff
Only consider interior grid region

1R. Alizadegan, K. J. Hsia, and T. J. Martinez, J. Chem. Phys., 132
(2010), 034101.
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Summary

FEs are non-orthogonal polynomials

Adaptive gird refinement possible

Local potentials give automatic linear scaling

Non-local potentials problematic

Matrices are large, but sparse

Flexible choice of HF boundary conditions
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