Solving the Hartree-Fock equations using the finite element method

Michael F. Herbst michael.herbst@iwr.uni-heidelberg.de http://blog.mfhs.eu

Interdisziplinäres Zentrum für wissenschaftliches Rechnen Ruprecht-Karls-Universität Heidelberg

13 March 2015

Contents

- A new basis to solve an old problem
 - Why consider finite elements at all?
- 2 The finite element method (FEM)
 - Finite elements and shape functions
 - The weak formulation
 - Outline of a FE calculation
- Building the matrices
 - \bullet Building the mass matrix ${\bf M}$
 - \bullet Building the stiffness matrix ${\bf A}$

Contents

A new basis to solve an old problem
Why consider finite elements at all?

2 The finite element method (FEM)
• Finite elements and shape functions
• The weak formulation
• Outline of a FE calculation

- 3 Building the matrices
 - \bullet Building the mass matrix ${\bf M}$
 - \bullet Building the stiffness matrix ${\bf A}$

A new basis ●○	The finite element method	Building the matrices	Summary
Why consider finite elements a	it all?		

Connecting dots

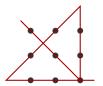
A new basis ●○	The finite element method	Building the matrices	Summary	
Why consider finite elements at all?				

Connecting dots

?

A new basis ●○	The finite element method	Building the matrices	Summary	
Why consider finite elements at all?				

Connecting dots



 A new basis
 The finite element method
 Building the matrices

 o●
 000000000
 000000

 Why consider finite elements at all?
 Use of the second s

Problems with atom-centered bases

- Confined molecules
- Excited states:
 - Rydberg states
 - Resonance phenomena
- Not a free choice of boundary conditions
- Untested bias regarding electron position

Contents

- A new basis to solve an old problem
 Why consider finite elements at all?
- 2 The finite element method (FEM)
 - Finite elements and shape functions
 - The weak formulation
 - Outline of a FE calculation
- Building the matrices
 - \bullet Building the mass matrix ${\bf M}$
 - \bullet Building the stiffness matrix ${\bf A}$

A new basis	The finite element method	Building the matrices	Summary	
00	00 000000	000000		
Finite elements and shape functions				
Einite alor	nents (FEs) as basis f	Junctions		
Finite eler	1121115 1 5 5 1 25 1 25 1 25 1	UNCLIONS		

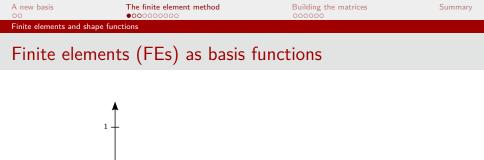
space
$$\Omega = [a, b]$$

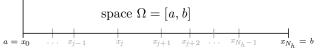
- Discretise open set Ω into grid of N_h cells.
- Non-differentiable only at cell boundaries x_j
- Support on just a few neighbouring cells
- At nodal points: $\varphi_i(n_j) = \delta_{ij}$

a

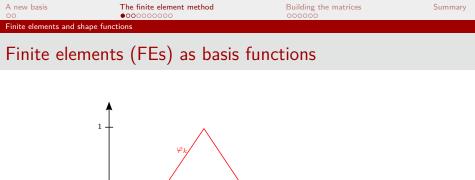
• $N_{\rm FE}$ -dim. basis for discretised Hilbert space H_0^1 .

h



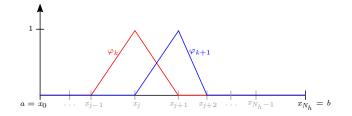


- Discretise open set Ω into grid of N_h cells.
- Non-differentiable only at cell boundaries x_j
- Support on just a few neighbouring cells
- At nodal points: $\varphi_i(n_j) = \delta_{ij}$
- $N_{\rm FE}$ -dim. basis for discretised Hilbert space H_0^1 .



- Discretise open set Ω into grid of N_h cells.
- Non-differentiable only at cell boundaries x_j
- Support on just a few neighbouring cells
- At nodal points: $\varphi_i(n_j) = \delta_{ij}$
- $N_{\rm FE}$ -dim. basis for discretised Hilbert space H_0^1 .

A new basis	The finite element method	Building the matrices	Summary	
00	• 00 000000	000000		
Finite elements and shape functions				
Einita alan	nonte (EEe) de hacie f	functions		
Finite elen	nents (FEs) as basis f	unctions		



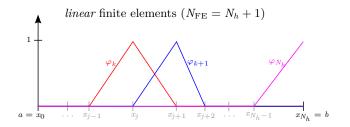
- Discretise open set Ω into grid of N_h cells.
- Non-differentiable only at cell boundaries x_j
- Support on just a few neighbouring cells
- At nodal points: $\varphi_i(n_j) = \delta_{ij}$
- $N_{\rm FE}$ -dim. basis for discretised Hilbert space H_0^1 .

 A new basis
 The finite element method
 Building the matrices
 Summary

 00
 000000000
 0000000
 0000000

 Finite elements and shape functions

Finite elements (FEs) as basis functions



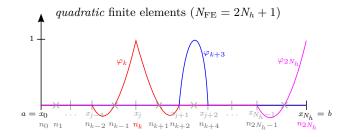
- Discretise open set Ω into grid of N_h cells.
- Non-differentiable only at cell boundaries x_j
- Support on just a few neighbouring cells
- At nodal points: $\varphi_i(n_j) = \delta_{ij}$
- $N_{\rm FE}$ -dim. basis for discretised Hilbert space H_0^1 .

 A new basis
 The finite element method
 Building the matrices
 Summary

 00
 000000000
 0000000
 0000000

 Finite elements and shape functions

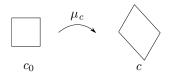
Finite elements (FEs) as basis functions



- Discretise open set Ω into grid of N_h cells.
- Non-differentiable only at cell boundaries x_j
- Support on just a few neighbouring cells
- At nodal points: $\varphi_i(n_j) = \delta_{ij}$
- $N_{\rm FE}$ -dim. basis for discretised Hilbert space H_0^1 .

A new basis	The finite element method	Building the matrices	Summary	
00	00000000	000000		
Finite elements and shape functions				

Reference cell and shape functions



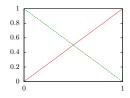
- Reference cell $c_0 = [0, 1]^3$
- Affine map μ_c for each cell to construct c from c_0
- Can construct FEs φ_k from shape functions $\{e_{\alpha}\}_{0 \leq \alpha < n_{sh}}$:

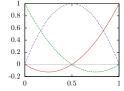
$$\varphi_k|_c(\underline{\boldsymbol{r}}) = e_\alpha \Big(\mu_c^{-1}(\underline{\boldsymbol{r}}) \Big) \qquad \text{for some } \alpha$$

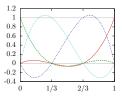
- \Rightarrow Computation on the grid:
 - Compute on reference cell once
 - Transform result onto all grid cells

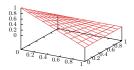
A new basis	The finite element method	Building the matrices	Summary	
00	00000000	000000		
Finite elements and shape functions				

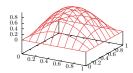
Examples of shape functions

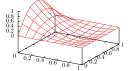


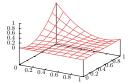












A new basis	The finite element method	Building the matrices	Summary
00	00000000	000000	
The weak formulation			

The Hartree-Fock equations in strong form

• The well-known canonical Hartree-Fock equations may be written as

$$\left(-\frac{1}{2}\Delta + \hat{\mathcal{V}}(\underline{r}) \right) \psi_i(\underline{r}) = \varepsilon_i \psi_i(\underline{r}) \qquad \underline{r} \in \Omega$$
$$\psi_i(\underline{r}) = 0 \qquad \underline{r} \in \partial\Omega$$

where

$$\hat{\mathcal{V}} = \hat{\mathcal{V}}_0 + \hat{\mathcal{V}}_H + \hat{\mathcal{V}}_x$$

with

- the electron-nuclear interaction $\hat{\mathcal{V}}_0$
- the Hartree potential $\hat{\mathcal{V}}_{H}$
- the exchange potential $\hat{\mathcal{V}}_x$

• This is the *strong form* of the problem

• Expand orbital $\psi_i(\underline{r})$ in FE basis:

$$\psi_i(\underline{\boldsymbol{r}}) = \sum_k z_k^{(i)} \varphi_k(\underline{\boldsymbol{r}})$$

• Multiply strong form by arbitrary basis function $\varphi_j(\underline{r})$

$$\left(-\frac{1}{2}\Delta + \hat{\mathcal{V}}(\underline{r})\right)\psi_i(\underline{r}) = \varepsilon_i\psi_i(\underline{r})$$

$$\int_{\Omega} \varphi_j(\underline{r}) \left(-\frac{1}{2} \Delta + \hat{\mathcal{V}}(\underline{r}) \right) \psi_i(\underline{r}) \, \mathrm{d}\underline{r} = \int_{\Omega} \varphi_j(\underline{r}) \varepsilon_i \psi_i(\underline{r}) \, \mathrm{d}\underline{r}$$

• Expand orbital $\psi_i(\underline{r})$ in FE basis:

$$\psi_i(\underline{\boldsymbol{r}}) = \sum_k z_k^{(i)} \varphi_k(\underline{\boldsymbol{r}})$$

• Multiply strong form by arbitrary basis function $\varphi_j(\underline{r})$

$$\varphi_j(\underline{\boldsymbol{r}})\Big(-\frac{1}{2}\Delta+\hat{\mathcal{V}}(\underline{\boldsymbol{r}})\Big)\psi_i(\underline{\boldsymbol{r}})=\varphi_j(\underline{\boldsymbol{r}})\varepsilon_i\psi_i(\underline{\boldsymbol{r}})$$

$$\int_{\Omega} \varphi_j(\underline{r}) \left(-\frac{1}{2} \Delta + \hat{\mathcal{V}}(\underline{r}) \right) \psi_i(\underline{r}) \, \mathrm{d}\underline{r} = \int_{\Omega} \varphi_j(\underline{r}) \varepsilon_i \psi_i(\underline{r}) \, \mathrm{d}\underline{r}$$

• Expand orbital $\psi_i(\underline{r})$ in FE basis:

$$\psi_i(\underline{\boldsymbol{r}}) = \sum_k z_k^{(i)} \varphi_k(\underline{\boldsymbol{r}})$$

• Multiply strong form by arbitrary basis function $\varphi_j(\underline{r})$

$$\varphi_j(\underline{\boldsymbol{r}})\Big(-\frac{1}{2}\Delta+\hat{\mathcal{V}}(\underline{\boldsymbol{r}})\Big)\psi_i(\underline{\boldsymbol{r}})=\varphi_j(\underline{\boldsymbol{r}})\varepsilon_i\psi_i(\underline{\boldsymbol{r}})$$

$$\int_{\Omega} \varphi_j(\underline{\boldsymbol{r}}) \Big(-\frac{1}{2} \Delta + \hat{\mathcal{V}}(\underline{\boldsymbol{r}}) \Big) \psi_i(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}} = \int_{\Omega} \varphi_j(\underline{\boldsymbol{r}}) \varepsilon_i \psi_i(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

• Expand orbital $\psi_i(\underline{r})$ in FE basis:

$$\psi_i(\underline{\boldsymbol{r}}) = \sum_k z_k^{(i)} \varphi_k(\underline{\boldsymbol{r}})$$

• Multiply strong form by arbitrary basis function $\varphi_j(\underline{r})$

$$\varphi_j(\underline{\boldsymbol{r}})\Big(-\frac{1}{2}\Delta+\hat{\mathcal{V}}(\underline{\boldsymbol{r}})\Big)\psi_i(\underline{\boldsymbol{r}})=\varphi_j(\underline{\boldsymbol{r}})\varepsilon_i\psi_i(\underline{\boldsymbol{r}})$$

$$\sum_{k} z_{k}^{(i)} \int_{\Omega} \varphi_{j}(\underline{r}) \left(-\frac{1}{2} \Delta + \hat{\mathcal{V}}(\underline{r}) \right) \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r} = \sum_{k} z_{k}^{(i)} \int_{\Omega} \varphi_{j}(\underline{r}) \varepsilon_{i} \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$

A new basis	The finite element method	Building the matrices	Summary
00	00000000	000000	
The weak formulation			

• Apply partial integration

$$-\int_{\Omega} \varphi_{j}(\underline{\boldsymbol{r}}) \frac{1}{2} \Delta \varphi_{k}(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}} = -\int_{\partial \Omega} \frac{1}{2} \varphi_{j}(\underline{\boldsymbol{r}}) \, \nabla \varphi_{k}(\underline{\boldsymbol{r}}) \cdot \hat{\underline{\boldsymbol{n}}}_{s} \, \mathrm{d}s \\ + \int_{\Omega} \frac{1}{2} \nabla \varphi_{j}(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_{k}(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

 Weak formulation of the Hartree-Fock problem: For all basis functions φ_j it holds:

$$\sum_{k} z_{k}^{(i)} \int_{\Omega} \frac{1}{2} \nabla \varphi_{j}(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_{k}(\underline{\boldsymbol{r}}) + \varphi_{j}(\underline{\boldsymbol{r}}) \hat{\mathcal{V}}(\underline{\boldsymbol{r}}) \varphi_{k}(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$
$$= \varepsilon_{i} \sum_{k} z_{k}^{(i)} \int_{\Omega} \varphi_{j}(\underline{\boldsymbol{r}}) \varphi_{k}(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

A new basis	The finite element method	Building the matrices	Summary
00	00000000	000000	
The weak formulation			

• Apply partial integration

$$-\int_{\Omega}\varphi_{j}(\underline{\boldsymbol{r}})\frac{1}{2}\Delta\varphi_{k}(\underline{\boldsymbol{r}})\,\mathrm{d}\underline{\boldsymbol{r}}=\int_{\Omega}\frac{1}{2}\nabla\varphi_{j}(\underline{\boldsymbol{r}})\cdot\nabla\varphi_{k}(\underline{\boldsymbol{r}})\,\mathrm{d}\underline{\boldsymbol{r}}$$

 Weak formulation of the Hartree-Fock problem: For all basis functions φ_i it holds:

$$\sum_{k} z_{k}^{(i)} \int_{\Omega} \frac{1}{2} \nabla \varphi_{j}(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_{k}(\underline{\boldsymbol{r}}) + \varphi_{j}(\underline{\boldsymbol{r}}) \hat{\mathcal{V}}(\underline{\boldsymbol{r}}) \varphi_{k}(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$
$$= \varepsilon_{i} \sum_{k} z_{k}^{(i)} \int_{\Omega} \varphi_{j}(\underline{\boldsymbol{r}}) \varphi_{k}(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

A new basis	The finite element method	Building the matrices	Summary
00	000000000	000000	
The weak formulation			

Introducing matrices

• Mass matrix

$$M_{jk} = \int_{\Omega} \varphi_j(\underline{\boldsymbol{r}}) \varphi_k(\underline{\boldsymbol{r}}) \,\mathrm{d}\underline{\boldsymbol{r}}$$

• Stiffness matrix

$$A_{jk} = \int_{\Omega} \frac{1}{2} \nabla \varphi_j(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_k(\underline{\boldsymbol{r}}) + \varphi_j(\underline{\boldsymbol{r}}) \, \hat{\mathcal{V}}(\underline{\boldsymbol{r}}) \, \varphi_k(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

• Generalised eigenvalue problem:

$$\sum_{k} z_{k}^{(i)} \int_{\Omega} \frac{1}{2} \nabla \varphi_{j}(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_{k}(\underline{\boldsymbol{r}}) + \varphi_{j}(\underline{\boldsymbol{r}}) \, \hat{\mathcal{V}}(\underline{\boldsymbol{r}}) \, \varphi_{k}(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$
$$= \varepsilon_{i} \sum_{k} z_{k}^{(i)} \int_{\Omega} \varphi_{j}(\underline{\boldsymbol{r}}) \varphi_{k}(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

A new basis	The finite element method	Building the matrices	Summary
00	000000000	000000	
The weak formulation			

Introducing matrices

• Mass matrix

$$M_{jk} = \int_{\Omega} \varphi_j(\underline{r}) \varphi_k(\underline{r}) \,\mathrm{d}\underline{r}$$

• Stiffness matrix

$$A_{jk} = \int_{\Omega} \frac{1}{2} \nabla \varphi_j(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_k(\underline{\boldsymbol{r}}) + \varphi_j(\underline{\boldsymbol{r}}) \, \hat{\mathcal{V}}(\underline{\boldsymbol{r}}) \, \varphi_k(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

• Generalised eigenvalue problem:

$$\sum_{k} z_k^{(i)} A_{jk} = \varepsilon_i \sum_{k} z_k^{(i)} M_{jk}$$

A new basis	The finite element method	Building the matrices	Summary
00	000000000	000000	
The weak formulation			

Introducing matrices

• Mass matrix

$$M_{jk} = \int_{\Omega} \varphi_j(\underline{r}) \varphi_k(\underline{r}) \,\mathrm{d}\underline{r}$$

• Stiffness matrix

$$A_{jk} = \int_{\Omega} \frac{1}{2} \nabla \varphi_j(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_k(\underline{\boldsymbol{r}}) + \varphi_j(\underline{\boldsymbol{r}}) \, \hat{\mathcal{V}}(\underline{\boldsymbol{r}}) \, \varphi_k(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

• Generalised eigenvalue problem:

$$\mathbf{A}\underline{\boldsymbol{z}}^{(i)} = \varepsilon_i \mathbf{M}\underline{\boldsymbol{z}}^{(i)}$$

A new basis 00	The finite element method	Building the matrices	Summary
Outline of a FE calculation			

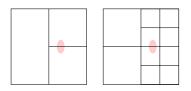
- For good results need about 10^4 to 10^7 basis functions
- Grid can be refined adaptively
- \Rightarrow Usually hierarchy of meshes used
 - A posteriori error estimation
 - Can scale error by importance (multi-scale methods)

A new basis	The finite element method	Building the matrices	Summary
00	00000000000	000000	
Outline of a FE calculation			

- For good results need about 10^4 to 10^7 basis functions
- Grid can be refined adaptively
- \Rightarrow Usually hierarchy of meshes used
 - A posteriori error estimation
 - Can scale error by importance (multi-scale methods)

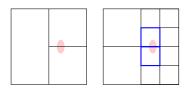
A new basis	The finite element method	Building the matrices	Summary
00	00000000000	000000	
Outline of a FE calculation			

- For good results need about 10^4 to 10^7 basis functions
- Grid can be refined adaptively
- \Rightarrow Usually hierarchy of meshes used
 - A posteriori error estimation
 - Can scale error by importance (multi-scale methods)



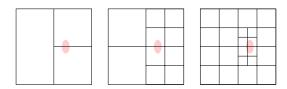
A new basis	The finite element method	Building the matrices	Summary
00	00000000000	000000	
Outline of a FE calculation			

- For good results need about 10^4 to 10^7 basis functions
- Grid can be refined adaptively
- \Rightarrow Usually hierarchy of meshes used
 - A posteriori error estimation
 - Can scale error by importance (multi-scale methods)



A new basis	The finite element method	Building the matrices	Summary
00	00000000000	000000	
Outline of a FE calculation			

- For good results need about 10^4 to 10^7 basis functions
- Grid can be refined adaptively
- \Rightarrow Usually hierarchy of meshes used
 - A posteriori error estimation
 - Can scale error by importance (multi-scale methods)



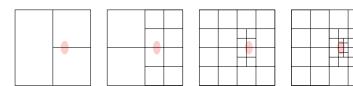
A new basis	The finite element method	Building the matrices	Summary
00	00000000000	000000	
Outline of a FE calculation			

- For good results need about 10^4 to 10^7 basis functions
- Grid can be refined adaptively
- \Rightarrow Usually hierarchy of meshes used
 - A posteriori error estimation
 - Can scale error by importance (multi-scale methods)



A new basis	The finite element method	Building the matrices	Summary
00	00000000000	000000	
Outline of a FE calculation			

- For good results need about 10^4 to 10^7 basis functions
- Grid can be refined adaptively
- \Rightarrow Usually hierarchy of meshes used
 - A posteriori error estimation
 - Can scale error by importance (multi-scale methods)



A new basis	The finite element method	Building the matrices	Summary
Outline of a FE calculation			

Overview of a calculation

- Need an SCF procedure: $\hat{\mathcal{V}}_H$ and $\hat{\mathcal{V}}_x$ depend on $\{\psi_i\}_i$
- Build a sufficiently good grid
 - Start from coarse grid
 - Adaptive refinement
- Run SCF calculation:
 - Calculate **M** and **A** for current $\{\psi_i\}_i$
 - Solve generalised eigenvalue problem to get new $\{\psi_i\}_i$
- Refine grid an rerun SCF

Remarks

- $\bullet~{\bf M}$ and ${\bf A}$ are large, but sparse
- Expensive step is building **A**, especially term containing $\hat{\mathcal{V}}_x$
- For initial grid refinement use simplified potential $\hat{\mathcal{V}}(\underline{r})$

Contents

A new basis to solve an old problem
Why consider finite elements at all?

2 The finite element method (FEM)
• Finite elements and shape functions
• The weak formulation
• Outline of a FE calculation

Building the matrices

- \bullet Building the mass matrix ${\bf M}$
- \bullet Building the stiffness matrix ${\bf A}$

A new basis	The finite element method	Building the matrices	Summary
00	000000000	● O OOOO	
Building the mass matrix ${f M}$			

Splitting into cell contributions

• Calculate as sum of cell-wise contributions: $M_{ij} = \sum_{c} M_{ij}^{c}$

$$M_{ij}^c = \int_c \varphi_i(\underline{r}) \varphi_j(\underline{r}) \, \mathrm{d}\underline{r}$$

• M_{ij}^c only non-zero if φ_i and φ_j have common support on c• Let α, β such that

$$\varphi_i|_c(\underline{r}) = e_{\alpha}\left(\mu_c^{-1}(\underline{r})\right) \text{ and } \varphi_j|_c(\underline{r}) = e_{\beta}\left(\mu_c^{-1}(\underline{r})\right)$$

• Let $J_c(\underline{\xi})$ be the Jacobian of the mapping $\underline{r} = \mu_c(\underline{\xi})$, i.e.

$$\left(J_c(\underline{\boldsymbol{\xi}})\right)_{ij} = \left(\nabla_{\underline{\boldsymbol{\xi}}}\mu_c(\underline{\boldsymbol{\xi}})\right)_{ij} = \frac{\partial\left(\mu_c(\underline{\boldsymbol{\xi}})\right)_i}{\partial\xi_j}$$

A new basis	The finite element method	Building the matrices	Summary
00	000000000	00000	
Building the mass matrix ${\bf M}$			

$$M_{ij}^c = \int_c \varphi_i(\underline{\boldsymbol{r}}) \varphi_j(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

A new basis	The finite element method	Building the matrices	Summary
00	000000000	00000	
Building the mass matrix ${f M}$			

$$M_{ij}^c = \int_c \varphi_i(\underline{r}) \varphi_j(\underline{r}) \,\mathrm{d}\underline{r}$$

$$\varphi_i|_c(\underline{\boldsymbol{r}}) = e_\alpha \left(\mu_c^{-1}(\underline{\boldsymbol{r}})\right)$$

A new basis 00	The finite element method	Building the matrices	Summary
Building the mass matrix ${\bf M}$			

$$M_{ij}^{c} = \int_{c} \varphi_{i}(\underline{\boldsymbol{r}})\varphi_{j}(\underline{\boldsymbol{r}}) \,\mathrm{d}\underline{\boldsymbol{r}} \\ = \int_{c} e_{\alpha} \left(\mu_{c}^{-1}(\underline{\boldsymbol{r}}) \right) e_{\beta} \left(\mu_{c}^{-1}(\underline{\boldsymbol{r}}) \right) \,\mathrm{d}\underline{\boldsymbol{r}}$$

$$\left. \varphi_{i} \right|_{c} \left(\underline{\boldsymbol{r}} \right) = e_{\alpha} \left(\mu_{c}^{-1}(\underline{\boldsymbol{r}}) \right)$$

A new basis 00	The finite element method	Building the matrices	Summary
Building the mass matrix ${\bf M}$			

$$\begin{split} M_{ij}^{c} &= \int_{c} \varphi_{i}(\underline{\boldsymbol{r}}) \varphi_{j}(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}} \\ &= \int_{c} e_{\alpha} \left(\mu_{c}^{-1}(\underline{\boldsymbol{r}}) \right) e_{\beta} \left(\mu_{c}^{-1}(\underline{\boldsymbol{r}}) \right) \, \mathrm{d}\underline{\boldsymbol{r}} \end{split}$$

$$\left(J_c(\underline{\boldsymbol{\xi}})\right)_{ij} = \frac{\partial \left(\mu_c(\underline{\boldsymbol{\xi}})\right)_i}{\partial \xi_j}$$

 A new basis
 The finite element method
 Building the matrices
 Summary

 00
 000000000
 00000000
 00000000

 Building the mass matrix M

$$M_{ij}^{c} = \int_{c} \varphi_{i}(\underline{r}) \varphi_{j}(\underline{r}) \, \mathrm{d}\underline{r}$$
$$= \int_{c} e_{\alpha} \left(\mu_{c}^{-1}(\underline{r}) \right) e_{\beta} \left(\mu_{c}^{-1}(\underline{r}) \right) \, \mathrm{d}\underline{r}$$
$$= \int_{c_{0}} e_{\alpha}(\underline{\xi}) e_{\beta}(\underline{\xi}) \, \mathrm{det} \left(J_{c}(\underline{\xi}) \right) \, \mathrm{d}\underline{\xi}$$

$$\left(J_c(\underline{\boldsymbol{\xi}})\right)_{ij} = \frac{\partial \left(\mu_c(\underline{\boldsymbol{\xi}})\right)_i}{\partial \xi_j}$$

 A new basis
 The finite element method
 Building the matrices
 Summary

 00
 000000000
 00000000
 000000000

 Building the mass matrix M

Transformation to unit cell and quadrature

$$M_{ij}^{c} = \int_{c} \varphi_{i}(\underline{r}) \varphi_{j}(\underline{r}) \, \mathrm{d}\underline{r}$$

$$= \int_{c} e_{\alpha} \left(\mu_{c}^{-1}(\underline{r}) \right) e_{\beta} \left(\mu_{c}^{-1}(\underline{r}) \right) \, \mathrm{d}\underline{r}$$

$$= \int_{c_{0}} e_{\alpha}(\underline{\xi}) e_{\beta}(\underline{\xi}) \, \mathrm{det} \left(J_{c}(\underline{\xi}) \right) \, \mathrm{d}\underline{\xi}$$

$$= \sum_{q=1}^{N_{q}} e_{\alpha}(\underline{\xi}_{q}) e_{\beta}(\underline{\xi}_{q}) \, \mathrm{det} \left(J_{c}(\underline{\xi}_{q}) \right) w_{q}$$

• Gaussian quadrature of order N_q with quad. weights w_q

• Only need to know det J_c , e_{α} at quadrature points of c_0

• Only det J_c changes from cell to cell

 A new basis
 The finite element method
 Building the matrices
 Summary

 00
 000000000
 00000000
 000000000

 Building the mass matrix M

$$M_{ij}^{c} = \int_{c} \varphi_{i}(\underline{r}) \varphi_{j}(\underline{r}) \, \mathrm{d}\underline{r}$$

= $\int_{c} e_{\alpha} \left(\mu_{c}^{-1}(\underline{r}) \right) e_{\beta} \left(\mu_{c}^{-1}(\underline{r}) \right) \, \mathrm{d}\underline{r}$
= $\int_{c_{0}} e_{\alpha}(\underline{\xi}) e_{\beta}(\underline{\xi}) \, \mathrm{det} \left(J_{c}(\underline{\xi}) \right) \, \mathrm{d}\underline{\xi}$
= $\sum_{q=1}^{N_{q}} e_{\alpha}(\underline{\xi}_{q}) e_{\beta}(\underline{\xi}_{q}) \, \mathrm{det} \left(J_{c}(\underline{\xi}_{q}) \right) w_{q}$

- Gaussian quadrature of order N_q with quad. weights w_q
- Only need to know det J_c , e_{α} at quadrature points of c_0
- Only det J_c changes from cell to cell

A new basis 00	The finite element method	Building the matrices	Summary
Building the stiffness matrix A			

Contributions to $\ensuremath{\mathbf{A}}$

$$A_{jk} = \int_{\Omega} \frac{1}{2} \nabla \varphi_j(\underline{r}) \cdot \nabla \varphi_k(\underline{r}) + \varphi_j(\underline{r}) \Big(\hat{\mathcal{V}}_0(\underline{r}) + \hat{\mathcal{V}}_H(\underline{r}) + \hat{\mathcal{V}}_x(\underline{r}) \Big) \varphi_k(\underline{r}) \, \mathrm{d}\underline{r}$$

where

$$T_{jk}^{c} = \int_{c} \frac{1}{2} \nabla \varphi_{j}(\underline{r}) \cdot \nabla \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$
$$(V_{0})_{jk}^{c} = \int_{c} \varphi_{j}(\underline{r}) \, \hat{\mathcal{V}}_{0}(\underline{r}) \, \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$
$$(V_{H})_{jk}^{c} = \int_{c} \varphi_{j}(\underline{r}) \, \hat{\mathcal{V}}_{H}(\underline{r}) \, \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$
$$(V_{x})_{jk}^{c} = \int_{c} \varphi_{j}(\underline{r}) \, \hat{\mathcal{V}}_{x}(\underline{r}) \, \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$

A new basis	The finite element method	Building the matrices	Summary
00	000000000	00000	
Building the stiffness matrix .	A		

Contributions to $\ensuremath{\mathbf{A}}$

$$A_{jk} = \sum_{c} \int_{c} \frac{1}{2} \nabla \varphi_{j}(\underline{r}) \cdot \nabla \varphi_{k}(\underline{r}) + \varphi_{j}(\underline{r}) \Big(\hat{\mathcal{V}}_{0}(\underline{r}) + \hat{\mathcal{V}}_{H}(\underline{r}) + \hat{\mathcal{V}}_{x}(\underline{r}) \Big) \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$

where

$$T_{jk}^{c} = \int_{c} \frac{1}{2} \nabla \varphi_{j}(\underline{r}) \cdot \nabla \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$
$$\left(V_{0}\right)_{jk}^{c} = \int_{c} \varphi_{j}(\underline{r}) \, \hat{\mathcal{V}}_{0}(\underline{r}) \, \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$
$$\left(V_{H}\right)_{jk}^{c} = \int_{c} \varphi_{j}(\underline{r}) \, \hat{\mathcal{V}}_{H}(\underline{r}) \, \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$
$$\left(V_{x}\right)_{jk}^{c} = \int_{c} \varphi_{j}(\underline{r}) \, \hat{\mathcal{V}}_{x}(\underline{r}) \, \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$

A new basis 00	The finite element method	Building the matrices	Summary
Building the stiffness matrix A	ł		

Contributions to $\ensuremath{\mathbf{A}}$

$$A_{jk} = \sum_{c} T_{jk}^{c} + (V_0)_{jk}^{c} + (V_H)_{jk}^{c} + (V_x)_{jk}^{c}$$

where

$$T_{jk}^{c} = \int_{c} \frac{1}{2} \nabla \varphi_{j}(\underline{r}) \cdot \nabla \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$
$$\left(V_{0}\right)_{jk}^{c} = \int_{c} \varphi_{j}(\underline{r}) \, \hat{\mathcal{V}}_{0}(\underline{r}) \, \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$
$$\left(V_{H}\right)_{jk}^{c} = \int_{c} \varphi_{j}(\underline{r}) \, \hat{\mathcal{V}}_{H}(\underline{r}) \, \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$
$$\left(V_{x}\right)_{jk}^{c} = \int_{c} \varphi_{j}(\underline{r}) \, \hat{\mathcal{V}}_{x}(\underline{r}) \, \varphi_{k}(\underline{r}) \, \mathrm{d}\underline{r}$$

A new basis 00	The finite element method	Building the matrices	Summary
Building the stiffness m	atrix A		
Coulomb	$(\mathbf{I}_{\mathcal{I}})^{c}$		

Coulomb term $(V_H)_{jk}$

$$(V_H)_{jk}^c = \int_c \varphi_j(\underline{r}) \, \hat{\mathcal{V}}_H(\underline{r}) \, \varphi_k(\underline{r}) \, \mathrm{d}\underline{r}$$

 $\hat{\mathcal{V}}_H(\underline{r}_1) = \sum_i \int_\Omega \frac{|\psi_i(\underline{r}_2)|^2}{r_{12}} \, \mathrm{d}\underline{r}_2$

2

•
$$\hat{\mathcal{V}}_H(\underline{r})$$
 is local potential

A new basis	The finite element method	Building the matrices	Summary
00	000000000	000000	
Building the stiffness matrix A	4		
Coulomb tern	n $\left(V_{H} ight) _{jk}^{c}$		

$$(V_H)_{jk}^c = \int_c \varphi_j(\underline{\boldsymbol{r}}) \, \hat{\mathcal{V}}_H(\underline{\boldsymbol{r}}) \, \varphi_k(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

• $\hat{\mathcal{V}}_H(\underline{\boldsymbol{r}})$ is local potential

0

• Obtained by solving Poisson eq.ⁿ.

$$-\Delta \hat{\mathcal{V}}_{H}(\underline{r}) = 4\pi\rho(\underline{r}) \qquad \underline{r} \in \Omega$$
$$\alpha(\underline{r}) \ \hat{\mathcal{V}}_{H}(\underline{r}) = \partial_{n} \hat{\mathcal{V}}_{H}(\underline{r}) \qquad \underline{r} \in \partial\Omega$$

• The function $\alpha(\underline{r})$ is determined by

1

$$\alpha(\underline{r})\frac{N_{\text{elec}}-1}{r} = \partial_n \frac{N_{\text{elec}}-1}{r}$$

 $\bullet\,$ Need a large enough grid (ca. 200 Å)

A new basis	The finite element method	Building the matrices	Summary
00	000000000	000000	
Building the stiffness matri	×A		
– 1 – 1	$(\mathbf{T}_{\mathbf{T}})^{\mathcal{C}}$		
Exchange te	$\operatorname{rm}\left(V_{x}\right)_{jk}$		

$$(V_x)_{jk}^c = \int_c \varphi_j(\underline{r}_1) \, \hat{\mathcal{V}}_x(\underline{r}_1) \, \varphi_k(\underline{r}_1) \, \mathrm{d}\underline{r}_1$$

- $\hat{\mathcal{V}}_x(\mathbf{r})$ is non-local
- Quadratic scaling in N_{FE}

- Integration again by quadrature in unit cell
- Problem: r_{12}^{-1} singularity

A new basis The finite element method Building the matrices Summary 000000
Building the stiffness matrix A Exchange term
$$\left(V_x\right)_{jk}^c$$

$$(V_x)_{jk}^c = \int_c \varphi_j(\underline{r}_1) \, \hat{\mathcal{V}}_x(\underline{r}_1) \, \varphi_k(\underline{r}_1) \, \mathrm{d}\underline{r}_1 = \int_c \varphi_j(\underline{r}_1) \int_{\Omega} \frac{\sum_i \psi_i(\underline{r}_1) \psi_i(\underline{r}_2)}{r_{12}} \varphi_k(\underline{r}_2) \, \mathrm{d}\underline{r}_2 \, \mathrm{d}\underline{r}_1$$

- $\hat{\mathcal{V}}_x(\underline{r})$ is non-local
- Quadratic scaling in N_{FE}
- Integration again by quadrature in unit cell
- Problem: r_{12}^{-1} singularity

A new basis 00	The finite element method	Building the matrices	Summary
Building the stiffness m	atrix A		
E. shanna i	$(\mathbf{I}_{\mathcal{I}})^{c}$		

Exchange term
$$(V_x)_{jk}$$

$$(V_x)_{jk}^c = \int_c \varphi_j(\underline{r}_1) \, \hat{\mathcal{V}}_x(\underline{r}_1) \, \varphi_k(\underline{r}_1) \, \mathrm{d}\underline{r}_1 = \int_c \varphi_j(\underline{r}_1) \int_\Omega \frac{\sum_i \psi_i(\underline{r}_1) \psi_i(\underline{r}_2)}{r_{12}} \varphi_k(\underline{r}_2) \, \mathrm{d}\underline{r}_2 \, \mathrm{d}\underline{r}_1 = \int_c \varphi_j(\underline{r}_1) \int_\Omega \frac{\rho(\underline{r}_1, \underline{r}_2)}{r_{12}} \varphi_k(\underline{r}_2) \, \mathrm{d}\underline{r}_2 \, \mathrm{d}\underline{r}_1$$

• $\hat{\mathcal{V}}_x(\underline{r})$ is non-local

- Quadratic scaling in N_{FE}
- Integration again by quadrature in unit cell
- Problem: r_{12}^{-1} singularity

A new basis 00	The finite element method	Building the matrices	Summary
Building the stiffness matrix	A		
Exchange ter	$m\left(V_{x}\right)_{jk}^{c}$		

$$\begin{split} \left(V_x\right)_{jk}^c &= \int_c \varphi_j(\underline{r}_1) \, \hat{\mathcal{V}}_x(\underline{r}_1) \, \varphi_k(\underline{r}_1) \, \mathrm{d}\underline{r}_1 \\ &= \int_c \varphi_j(\underline{r}_1) \int_\Omega \frac{\sum_i \psi_i(\underline{r}_1) \psi_i(\underline{r}_2)}{r_{12}} \varphi_k(\underline{r}_2) \, \mathrm{d}\underline{r}_2 \, \mathrm{d}\underline{r} \\ &= \int_c \varphi_j(\underline{r}_1) \int_\Omega \frac{\rho(\underline{r}_1, \underline{r}_2)}{r_{12}} \varphi_k(\underline{r}_2) \, \mathrm{d}\underline{r}_2 \, \mathrm{d}\underline{r}_1 \\ &= \sum_{c'} \int_c \int_{c'} \varphi_j(\underline{r}_1) \frac{\rho(\underline{r}_1, \underline{r}_2)}{r_{12}} \varphi_k(\underline{r}_2) \, \mathrm{d}\underline{r}_2 \, \mathrm{d}\underline{r}_1 \end{split}$$

- $\hat{\mathcal{V}}_x(\underline{r})$ is non-local
- Quadratic scaling in N_{FE}
- Integration again by quadrature in unit cell
- Problem: r_{12}^{-1} singularity

A new basis 00	The finite element method	Building the matrices	Summary
Building the stiffness matrix	A		
Exchange ter	$m\left(V_{x}\right)_{jk}^{c}$		

$$(V_x)_{jk}^c = \int_c \varphi_j(\underline{r}_1) \, \hat{\mathcal{V}}_x(\underline{r}_1) \, \varphi_k(\underline{r}_1) \, \mathrm{d}\underline{r}_1$$

$$= \int_c \varphi_j(\underline{r}_1) \int_\Omega \frac{\sum_i \psi_i(\underline{r}_1) \psi_i(\underline{r}_2)}{r_{12}} \varphi_k(\underline{r}_2) \, \mathrm{d}\underline{r}_2 \, \mathrm{d}\underline{r}_1$$

$$= \int_c \varphi_j(\underline{r}_1) \int_\Omega \frac{\rho(\underline{r}_1, \underline{r}_2)}{r_{12}} \varphi_k(\underline{r}_2) \, \mathrm{d}\underline{r}_2 \, \mathrm{d}\underline{r}_1$$

$$= \sum_{c'} \int_c \int_{c'} \varphi_j(\underline{r}_1) \frac{\rho(\underline{r}_1, \underline{r}_2)}{r_{12}} \varphi_k(\underline{r}_2) \, \mathrm{d}\underline{r}_2 \, \mathrm{d}\underline{r}_1$$

- $\hat{\mathcal{V}}_x(\underline{\boldsymbol{r}})$ is non-local
- Quadratic scaling in N_{FE}
- Integration again by quadrature in unit cell
- Problem: r_{12}^{-1} singularity

 A new basis
 The finite element method
 Building the matrices
 Summary

 00
 000000000
 00000

 Building the stiffness matrix A

Ideas for approximate exchange

$$(V_x)_{jk}^c = \sum_{c'} \int_c \int_{c'} \varphi_j(\underline{r}_1) \frac{\rho(\underline{r}_1, \underline{r}_2)}{r_{12}} \varphi_k(\underline{r}_2) \, \mathrm{d}\underline{r}_2 \, \mathrm{d}\underline{r}_1$$

• Use local approx.^{*n*} like X-
$$\alpha$$
¹

- Cell pair distance cutoff
- Only consider interior grid region

¹R. Alizadegan, K. J. Hsia, and T. J. Martinez, *J. Chem. Phys.*, **132** (2010), 034101.

Contents

A new basis to solve an old problem
Why consider finite elements at all?

2 The finite element method (FEM)
• Finite elements and shape functions
• The weak formulation
• Outline of a FE calculation

3 Building the matrices

- \bullet Building the mass matrix ${\bf M}$
- \bullet Building the stiffness matrix ${\bf A}$

Summary

- FEs are non-orthogonal polynomials
- Adaptive gird refinement possible
- Local potentials give automatic linear scaling
- Non-local potentials problematic
- Matrices are large, but sparse
- Flexible choice of HF boundary conditions

A new basis 00	The finite element method	Building the matrices	Summary

Acknowledgements

• Prof. Andreas Dreuw, Dr. Michael Wormit and the Dreuw group

- Prof. Guido Kanschat
- The HGS Mathcomp

Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences

References

- J. Avery, New Computational Methods in the Quantum Theory of Nano-Structures. PhD thesis, University of Copenhagen, 2011.
- P. Bastian, Scientific Computing with Partial Differential Equations. Lecture notes, Ruprecht-Karls-Universität Heidelberg, 2014.
- R. Alizadegan, K. J. Hsia, and T. J. Martinez, J. Chem. Phys., 132 (2010), 034101.
- W. Bangerth *et. al.*, The deal.ii library, version 8.1. http://arxiv.org/abs/1312.2266v4, 2013.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.

