The finite-element method in quantum chemistry

Michael F. Herbst
michael.herbst@iwr.uni-heidelberg.de

Interdisziplinäres Zentrum für wissenschaftliches Rechnen Ruprecht-Karls-Universität Heidelberg

14 August 2014

Table of Contents

(1) Motivation

- Finite elements from a quantum chemist's perspective
(2) General introduction to the finite-element method (FEM)
- The weak formulation
- Finite Element spaces
(3) FE based electronic structure calculations
- The SCF iteration in detail
- Mesh refinement in detail

4 Summary

Table of Contents

(1) Motivation

- Finite elements from a quantum chemist's perspective
(2) General introduction to the finite-element method (FEM)
- The weak formulation
- Finite Element spaces

3 FE based electronic structure calculations

- The SCF iteration in detail
- Mesh refinement in detail
(4) Summary

Finite elements from a quantum chemist's perspective

Finite elements (FEs) as basis functions

- Discretise space Ω into grid.
- Finite elements (FEs) are piecewise polynomial functions
- FEs are zero at large portions of space
\Rightarrow Very localised
- Can be used as basis for e.g. molecular wave functions

Finite elements (FEs) as basis functions

- Discretise space Ω into grid.
- Finite elements (FEs) are piecewise polynomial functions
- FEs are zero at large portions of space
\Rightarrow Very localised
- Can be used as basis for e.g. molecular wave functions

Finite elements (FEs) as basis functions

- Discretise space Ω into grid.
- Finite elements (FEs) are piecewise polynomial functions
- FEs are zero at large portions of space

Finite elements (FEs) as basis functions

- Discretise space Ω into grid.
- Finite elements (FEs) are piecewise polynomial functions
- FEs are zero at large portions of space

Finite elements (FEs) as basis functions

- Discretise space Ω into grid.
- Finite elements (FEs) are piecewise polynomial functions
- FEs are zero at large portions of space
\Rightarrow Very localised
- Can be used as basis for e.g. molecular wave functions

Potential advantages of an FE basis

- Strong locality
\Rightarrow Sparse matrices
\Rightarrow Linear scaling
\Rightarrow Easy and effective parallelisation
- Non-uniform grids are possible
\Rightarrow Intrinsic multi-scale methods
- Methods for a posteriori error estimation
\Rightarrow On-the-fly adaptive refinement of the grid
\Rightarrow Grid adapts to density

A true black-box method for quantum chemistry?

Possible outline of a black-box FE calculation
(1) Specify a coarse grid (could be auto-generated)
(2) Specify a region of interest
(3) Run calculation
(9) Identify regions of largest a posteriori error
(6) Refine grid adaptively
(6) Re-do steps 3-5 until desired accuracy reached

Problems and disadvantages

- Much more basis functions required (think 10^{4} to 10^{7})
- Non-local potential contributions problematic (e.g. Hartree-Fock exchange)

Table of Contents

(1) Motivation

- Finite elements from a quantum chemist's perspective
(2) General introduction to the finite-element method (FEM)
- The weak formulation
- Finite Element spaces
(3) FE based electronic structure calculations
- The SCF iteration in detail
- Mesh refinement in detail
(4) Summary

The Hartree-Fock equations in strong form

- The well-known Hartree-Fock equations may be written as

$$
\begin{aligned}
\left(-\frac{1}{2} \Delta+V(\underline{\boldsymbol{r}})\right) \psi_{i}(\underline{\boldsymbol{r}}) & =\varepsilon_{i} \psi_{i}(\underline{\boldsymbol{r}}) & & \underline{\boldsymbol{r}} \in \Omega \\
\psi_{i}(\underline{\boldsymbol{r}}) & =0 & & \underline{\boldsymbol{r}} \in \partial \Omega
\end{aligned}
$$

where

$$
V=V_{0}+V_{H}+V_{x}
$$

with

- the electron-nuclear interaction V_{0}
- the Hartree potential V_{H}
- the exchange potential V_{x}
- This is a differential equation and called the strong form of the problem

Getting the weak form (1)

- Multiply strong form by test function $\hat{\psi}$ and integrate

$$
\left(-\frac{1}{2} \Delta+V(\underline{\boldsymbol{r}})\right) \psi_{i}(\underline{\boldsymbol{r}})=\varepsilon_{i} \psi_{i}(\underline{\boldsymbol{r}})
$$

- Apply partial integration

Getting the weak form (1)

- Multiply strong form by test function $\hat{\psi}$ and integrate

$$
0=-\frac{1}{2} \Delta \psi_{i}(\underline{\boldsymbol{r}})+V(\underline{\boldsymbol{r}}) \psi_{i}(\underline{\boldsymbol{r}})-\varepsilon_{i} \psi_{i}(\underline{\boldsymbol{r}})
$$

- Apply partial integration

Getting the weak form (1)

- Multiply strong form by test function $\hat{\psi}$ and integrate

$$
0=\int_{\Omega} \hat{\psi}(\underline{\boldsymbol{r}})\left(-\frac{1}{2} \Delta \psi_{i}(\underline{\boldsymbol{r}})+\left(V(\underline{\boldsymbol{r}})-\varepsilon_{i}\right) \psi_{i}(\underline{\boldsymbol{r}})\right) \mathrm{d} \underline{\boldsymbol{r}}
$$

- Apply partial integration

Getting the weak form (1)

- Multiply strong form by test function $\hat{\psi}$ and integrate

$$
0=\int_{\Omega} \hat{\psi}(\underline{\boldsymbol{r}})\left(-\frac{1}{2} \Delta \psi_{i}(\underline{\boldsymbol{r}})+\left(V(\underline{\boldsymbol{r}})-\varepsilon_{i}\right) \psi_{i}(\underline{\boldsymbol{r}})\right) \mathrm{d} \underline{\boldsymbol{r}}
$$

- Apply partial integration

$$
\begin{aligned}
& 0=\int_{\Omega} \frac{1}{2} \nabla \hat{\psi}(\underline{\boldsymbol{r}}) \cdot \nabla \psi_{i}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}-\int_{\partial \Omega} \frac{1}{2} \hat{\psi}(\underline{\boldsymbol{r}}) \nabla \psi_{i}(\underline{\boldsymbol{r}}) \cdot \underline{\hat{\boldsymbol{n}}}_{s} \mathrm{~d} s \\
&+\int_{\Omega} \hat{\psi}(\underline{\boldsymbol{r}})\left(V(\underline{\boldsymbol{r}})-\varepsilon_{i}\right) \psi_{i}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
\end{aligned}
$$

Getting the weak form (2)

- Physics dictates that $\psi_{i}(\underline{\boldsymbol{r}})=0$ on the boundary $\partial \Omega$.
\Rightarrow Can also require for test function ($=$ variation):

$$
\hat{\psi}(\underline{\boldsymbol{r}})=0 \quad \text { on } \partial \Omega
$$

- Boundary term in integral drops:

$$
\begin{aligned}
& 0=\int_{\Omega} \frac{1}{2} \nabla \hat{\psi}(\underline{\boldsymbol{r}}) \cdot \nabla \psi_{i}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}} \\
&+\int_{\Omega} \hat{\psi}(\underline{\boldsymbol{r}})\left(V(\underline{\boldsymbol{r}})-\varepsilon_{i}\right) \psi_{i}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
\end{aligned}
$$

Getting the weak form (3)

- Define bilinear forms

$$
a(f, g)=\int_{\Omega} \frac{1}{2} \nabla f(\underline{\boldsymbol{r}}) \cdot \nabla g(\underline{\boldsymbol{r}})+f(\underline{\boldsymbol{r}}) V(\underline{\boldsymbol{r}}) g(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

and

$$
m(f, g)=\int_{\Omega} f(\underline{\boldsymbol{r}}) \cdot g(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

- Rewrite integral equation to

$$
0=\int_{\Omega} \frac{1}{2} \nabla \hat{\psi}(\underline{\boldsymbol{r}}) \cdot \nabla \psi_{i}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}+\int_{\Omega} \hat{\psi}(\underline{\boldsymbol{r}})\left(V(\underline{\boldsymbol{r}})-\varepsilon_{i}\right) \psi_{i}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

- The weak formulation of the Hartree-Fock problem is:

For all test functions $\hat{\psi}$ (2.1) holds.

Getting the weak form (3)

- Define bilinear forms

$$
a(f, g)=\int_{\Omega} \frac{1}{2} \nabla f(\underline{\boldsymbol{r}}) \cdot \nabla g(\underline{\boldsymbol{r}})+f(\underline{\boldsymbol{r}}) V(\underline{\boldsymbol{r}}) g(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

and

$$
m(f, g)=\int_{\Omega} f(\underline{\boldsymbol{r}}) \cdot g(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

- Rewrite integral equation to

$$
0=\int_{\Omega} \frac{1}{2} \nabla \hat{\psi}(\underline{r}) \cdot \nabla \psi_{i}(\underline{r}) \mathrm{d} \underline{r}+\int_{\Omega} \hat{\psi}(\underline{r})\left(V(\underline{r})-\varepsilon_{i}\right) \psi_{i}(\underline{r}) \mathrm{d} \underline{r}
$$

- The weak formulation of the Hartree-Fock problem is: For all test functions $\hat{\psi}$ (2.1) holds.

Getting the weak form (3)

- Define bilinear forms

$$
a(f, g)=\int_{\Omega} \frac{1}{2} \nabla f(\underline{\boldsymbol{r}}) \cdot \nabla g(\underline{\boldsymbol{r}})+f(\underline{\boldsymbol{r}}) V(\underline{\boldsymbol{r}}) g(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

and

$$
m(f, g)=\int_{\Omega} f(\underline{\boldsymbol{r}}) \cdot g(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

- Rewrite integral equation to

$$
0=a\left(\hat{\psi}, \psi_{i}\right)-\int_{\Omega} \hat{\psi}(\underline{\boldsymbol{r}}) \varepsilon_{i} \psi_{i}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

- The weak formulation of the Hartree-Fock problem is: For all test functions $\hat{\psi}$ (2.1) holds.

Getting the weak form (3)

- Define bilinear forms

$$
a(f, g)=\int_{\Omega} \frac{1}{2} \nabla f(\underline{\boldsymbol{r}}) \cdot \nabla g(\underline{\boldsymbol{r}})+f(\underline{\boldsymbol{r}}) V(\underline{\boldsymbol{r}}) g(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

and

$$
m(f, g)=\int_{\Omega} f(\underline{\boldsymbol{r}}) \cdot g(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

- Rewrite integral equation to

$$
\begin{equation*}
a\left(\hat{\psi}, \psi_{i}\right)=\varepsilon_{i} m\left(\hat{\psi}, \psi_{i}\right) \tag{2.1}
\end{equation*}
$$

- The weak formulation of the Hartree-Fock problem is: For all test functions $\hat{\psi}$ (2.1) holds.

Getting the weak form (3)

- Define bilinear forms

$$
a(f, g)=\int_{\Omega} \frac{1}{2} \nabla f(\underline{\boldsymbol{r}}) \cdot \nabla g(\underline{\boldsymbol{r}})+f(\underline{\boldsymbol{r}}) V(\underline{\boldsymbol{r}}) g(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

and

$$
m(f, g)=\int_{\Omega} f(\underline{\boldsymbol{r}}) \cdot g(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

- Rewrite integral equation to

$$
\begin{equation*}
a\left(\hat{\psi}, \psi_{i}\right)=\varepsilon_{i} m\left(\hat{\psi}, \psi_{i}\right) \tag{2.1}
\end{equation*}
$$

- The weak formulation of the Hartree-Fock problem is: For all test functions $\hat{\psi}$ (2.1) holds.

Introducing a basis

- It can be shown, that $\hat{\psi}$ and ψ_{i} are members of the same Hilbert space H_{0}^{1}.
- Let $\Phi=\left\{\varphi_{j}\right\}_{j \in \mathbb{N}}$ be a basis for H_{0}^{1}.
- Then $\psi_{i}(\underline{\boldsymbol{r}})=\sum_{j} z_{j}^{(i)} \varphi_{j}$
- It holds for the weak formulation:

$$
\begin{array}{rlrl}
a\left(\hat{\psi}, \psi_{i}\right) & =\varepsilon_{i} m\left(\hat{\psi}, \psi_{i}\right) \\
\Leftrightarrow & \forall \varphi_{j}, \varphi_{k} \in \Phi: & a\left(\varphi_{j}, \sum_{k} z_{k}^{(i)} \varphi_{k}\right) & =\varepsilon_{i} m\left(\varphi_{j}, \sum_{k} z_{k}^{(i)} \varphi_{k}\right) \\
\Leftrightarrow & \forall \varphi_{j}, \varphi_{k} \in \Phi: & \sum_{k} z_{k}^{(i)} a\left(\varphi_{j}, \varphi_{k}\right) & =\varepsilon_{i} \sum_{k} z_{k}^{(i)} m\left(\varphi_{j}, \varphi_{k}\right)
\end{array}
$$

Discretising the space H_{0}^{1}

- Introduce N_{FE}-dimensional subspace $V_{h} \subset H_{0}^{1}$
- Weak formulation becomes a generalised eigenvalue problem $\mathbf{A} \underline{\boldsymbol{z}}^{(i)}=\varepsilon_{i} \mathbf{M} \underline{\boldsymbol{z}}^{(i)}$.
- With stiffness matrix

$$
A_{j k}=a\left(\varphi_{j}, \varphi_{k}\right)=\int_{\Omega} \frac{1}{2} \nabla \varphi_{j}(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_{k}(\underline{\boldsymbol{r}})+\varphi_{j}(\underline{\boldsymbol{r}}) V(\underline{\boldsymbol{r}}) \varphi_{k}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

and mass matrix

$$
M_{j k}=m\left(\varphi_{j}, \varphi_{k}\right)=\int_{\Omega} \varphi_{j}(\underline{\boldsymbol{r}}) \varphi_{k}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

- Need to find a basis of V_{h} which gives well-conditioned \mathbf{A} and \mathbf{M} matrices and makes integration simple.

Finite elements

Properties

- Each FE is a polynomial when restricted to a cell
- Non-differentiable points at cell boundaries x_{j}
- Each FE has support only on a few neighbouring cells
- The FEs satisfy at the nodal points

$$
\varphi_{i}\left(n_{j}\right)=\delta_{i j}
$$

Finite elements

Properties

- Each FE is a polynomial when restricted to a cell
- Non-differentiable points at cell boundaries x_{j}
- Each FE has support only on a few neighbouring cells
- The FEs satisfy at the nodal points

$$
\varphi_{i}\left(n_{j}\right)=\delta_{i j}
$$

Finite elements

Reference cell and shape functions

- c_{0} is called the reference cell
- Affine map μ_{c} for each cell to construct c from c_{0}
- Shape functions $\left\{e_{\alpha}\right\}_{0 \leq \alpha<n_{\text {sh }}}$ form a basis for c_{0}
- For finite elements φ_{k} with support on c :

$$
\left.\varphi_{k}\right|_{c}(\underline{\boldsymbol{r}})=e_{\alpha}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right) \quad \text { for some } \alpha
$$

\Rightarrow Can transform integrals cell-by-cell onto reference cell.
\Rightarrow Only need to really calculate integrals on reference cell.

Finite Element spaces

Finite elements

Examples of shape functions

Integration in FE spaces (1)

Integrals as matrix-vector-products

- For each function $\hat{f} \in V_{h}$:

$$
\hat{f}=\sum_{i=0}^{N_{\mathrm{FE}}-1} f_{i} \varphi_{i} \quad \Longrightarrow \quad f_{i}=\hat{f}\left(n_{i}\right)
$$

- For all possible overlap integrals

$$
\begin{aligned}
\int_{\Omega} \hat{f}(\underline{\boldsymbol{r}}) \hat{g}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}} & =\sum_{i, j=0}^{N_{\mathrm{FE}}-1} f_{i} g_{j} \underbrace{\int_{\Omega} \varphi_{i}(\underline{\boldsymbol{r}}) \varphi_{j}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}}_{M_{i j}} \\
& =\underline{\boldsymbol{f}}^{T} \mathbf{M} \underline{\boldsymbol{g}}
\end{aligned}
$$

- Similar relations for other integrals.

Integration in FE spaces (2)

Splitting into cell contributions

- Calculate as sum of cell-wise contributions: $M_{i j}=\sum_{c} M_{i j}^{c}$

$$
M_{i j}^{c}=\int_{c} \varphi_{i}(\underline{\boldsymbol{r}}) \varphi_{j}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

- $M_{i j}^{c}$ only non-zero if φ_{i} and φ_{j} have common support on c
- Let α, β such that

$$
\left.\varphi_{i}\right|_{c}(\underline{\boldsymbol{r}})=e_{\alpha}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right) \quad \text { and }\left.\quad \varphi_{j}\right|_{c}(\underline{\boldsymbol{r}})=e_{\beta}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right)
$$

- Let $J_{c}(\underline{\boldsymbol{\xi}})$ be the Jacobian of the mapping $\underline{\boldsymbol{r}}=\mu_{c}(\underline{\boldsymbol{\xi}})$, i.e.

$$
\left(J_{c}(\underline{\boldsymbol{\xi}})\right)_{i j}=\left(\nabla_{\underline{\boldsymbol{\xi}}} \mu_{c}(\underline{\boldsymbol{\xi}})\right)_{i j}=\frac{\partial\left(\mu_{c}(\underline{\boldsymbol{\xi}})\right)_{i}}{\partial \xi_{j}}
$$

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$
M_{i j}^{c}=\int_{c} \varphi_{i}(\underline{\boldsymbol{r}}) \varphi_{j}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$
M_{i j}^{c}=\int_{c} \varphi_{i}(\underline{\boldsymbol{r}}) \varphi_{j}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

$$
\left.\varphi_{i}\right|_{c}(\underline{\boldsymbol{r}})=e_{\alpha}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right)
$$

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$
\begin{aligned}
M_{i j}^{c} & =\int_{c} \varphi_{i}(\underline{\boldsymbol{r}}) \varphi_{j}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}} \\
& =\int_{c} e_{\alpha}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right) e_{\beta}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right) \mathrm{d} \underline{\boldsymbol{r}}
\end{aligned}
$$

$$
\left.\varphi_{i}\right|_{c}(\underline{\boldsymbol{r}})=e_{\alpha}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right)
$$

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$
\begin{aligned}
M_{i j}^{c} & =\int_{c} \varphi_{i}(\underline{\boldsymbol{r}}) \varphi_{j}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}} \\
& =\int_{c} e_{\alpha}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right) e_{\beta}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right) \mathrm{d} \underline{\boldsymbol{r}}
\end{aligned}
$$

$$
\left(J_{c}(\underline{\boldsymbol{\xi}})\right)_{i j}=\frac{\partial\left(\mu_{c}(\underline{\boldsymbol{\xi}})\right)_{i}}{\partial \xi_{j}}
$$

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$
\begin{aligned}
M_{i j}^{c} & =\int_{c} \varphi_{i}(\underline{\boldsymbol{r}}) \varphi_{j}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}} \\
& =\int_{c} e_{\alpha}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right) e_{\beta}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right) \mathrm{d} \underline{\boldsymbol{r}} \\
& =\int_{c_{0}} e_{\alpha}(\underline{\boldsymbol{\xi}}) e_{\beta}(\underline{\boldsymbol{\xi}}) \operatorname{det}\left(J_{c}(\underline{\boldsymbol{\xi}})\right) \mathrm{d} \underline{\boldsymbol{\xi}}
\end{aligned}
$$

$$
\left(J_{c}(\underline{\boldsymbol{\xi}})\right)_{i j}=\frac{\partial\left(\mu_{c}(\underline{\boldsymbol{\xi}})\right)_{i}}{\partial \xi_{j}}
$$

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$
\begin{aligned}
M_{i j}^{c} & =\int_{c} \varphi_{i}(\underline{\boldsymbol{r}}) \varphi_{j}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}} \\
& =\int_{c} e_{\alpha}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right) e_{\beta}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right) \mathrm{d} \underline{\boldsymbol{r}} \\
& =\int_{c_{0}} e_{\alpha}(\underline{\boldsymbol{\xi}}) e_{\beta}(\underline{\boldsymbol{\xi}}) \operatorname{det}\left(J_{c}(\underline{\boldsymbol{\xi}})\right) \mathrm{d} \underline{\boldsymbol{\xi}} \\
& =\sum_{q=1}^{N_{q}} e_{\alpha}\left(\underline{\boldsymbol{\xi}}_{q}\right) e_{\beta}\left(\underline{\boldsymbol{\xi}}_{q}\right) \operatorname{det}\left(J_{c}\left(\underline{\boldsymbol{\xi}}_{q}\right)\right) w_{q}
\end{aligned}
$$

- Gaussian quadrature of order N_{q} with quad. weights w_{q}
\square - Only $\operatorname{det} J_{c}$ changes from cell to cell

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$
\begin{aligned}
M_{i j}^{c} & =\int_{c} \varphi_{i}(\underline{\boldsymbol{r}}) \varphi_{j}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}} \\
& =\int_{c} e_{\alpha}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right) e_{\beta}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right) \mathrm{d} \underline{\boldsymbol{r}} \\
& =\int_{c_{0}} e_{\alpha}(\underline{\boldsymbol{\xi}}) e_{\beta}(\underline{\boldsymbol{\xi}}) \operatorname{det}\left(J_{c}(\underline{\boldsymbol{\xi}})\right) \mathrm{d} \underline{\boldsymbol{\xi}} \\
& =\sum_{q=1}^{N_{q}} e_{\alpha}\left(\underline{\boldsymbol{\xi}}_{q}\right) e_{\beta}\left(\underline{\boldsymbol{\xi}}_{q}\right) \operatorname{det}\left(J_{c}\left(\underline{\boldsymbol{\xi}}_{q}\right)\right) w_{q}
\end{aligned}
$$

- Gaussian quadrature of order N_{q} with quad. weights w_{q}
- Only need to know $\operatorname{det} J_{c}, e_{\alpha}$ at quadrature points of c_{0}
- Only $\operatorname{det} J_{c}$ changes from cell to cell

A posteriori error estimation

a posteriori error
Estimate for error of numerical solution without knowledge of analytical solution

- Aim: Understand which cells make up largest contribution
- In general: Computation difficult and expensive
- Crude guesses usually good enough
- Estimates consider:
- Residual inside domain Ω

$$
r(\underline{r})=\left(-\frac{1}{2} \Delta+V(\underline{r})-\varepsilon_{i}\right) \psi_{i}(\underline{r})
$$

- Discontinuities of first derivatives at cell faces.
- The size of the cells

Table of Contents

(1) Motivation

- Finite elements from a quantum chemist's perspective
(2) General introduction to the finite-element method (FEM)
- The weak formulation
- Finite Element spaces
(3) FE based electronic structure calculations
- The SCF iteration in detail
- Mesh refinement in detail
(4) Summary

Recall from earlier:

Possible outline of a black-box FE calculation
(1) Specify a coarse grid (could be auto-generated)
(2) Specify a region of interest
(3) Run calculation
(9) Identify regions of largest a posteriori error
(3) Refine grid adaptively
(6) Re-do steps 3-5 until desired accuracy reached

Recall from earlier:

Possible outline of a black-box FE calculation
(1) Specify a coarse grid (could be auto-generated)
(2) Specify a region of interest
(3) Run calculation
(9) Identify regions of largest a posteriori error
(3) Refine grid adaptively
(6) Re-do steps 3-5 until desired accuracy reached

SCF iteration: Overview

- Once grid is set up μ_{c} can be constructed
\Rightarrow Can map FEs $\left\{\varphi_{j}\right\}_{0 \leq j<N_{\mathrm{FE}}}$ to shape functions $\left\{e_{\alpha}\right\}_{0 \leq \alpha<n_{\text {sh }}}$
- Calculate mass matrix \mathbf{M} and stiffness matrix \mathbf{A} (using current $\left\{\psi_{i}\right\}_{0 \leq i<N_{\text {orb }}}$ and current density ρ)

$$
\begin{gathered}
A_{j k}=\int_{\Omega} \frac{1}{2} \nabla \varphi_{j}(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_{k}(\underline{\boldsymbol{r}})+\varphi_{j}(\underline{\boldsymbol{r}})\left(V_{0}(\underline{\boldsymbol{r}})+V_{H}(\underline{\boldsymbol{r}})+V_{x}(\underline{\boldsymbol{r}})\right) \varphi_{k}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}} \\
M_{j k}=\int_{\Omega} \varphi_{j}(\underline{\boldsymbol{r}}) \varphi_{k}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
\end{gathered}
$$

- Solve generalised eigenvalue problem:

$$
\mathbf{A} \underline{\boldsymbol{z}}^{(i)}=\varepsilon_{i} \mathbf{M} \underline{\boldsymbol{z}}^{(i)}
$$

- New set of $\left\{\psi_{i}\right\}_{0 \leq i<N_{\text {orb }}}$ and new ρ.

Building the stiffness matrix

$$
A_{j k}=\int_{\Omega} \frac{1}{2} \nabla \varphi_{j}(\underline{r}) \cdot \nabla \varphi_{k}(\underline{r})+\varphi_{j}(\underline{r})\left(V_{0}(\underline{\boldsymbol{r}})+V_{H}(\underline{\boldsymbol{r}})+V_{x}(\underline{\boldsymbol{r}})\right) \varphi_{k}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

- Kinetic part and nuclear potential part can be done naively
- To get $V_{H}(\underline{r})$ solve Poisson equation of electron density:

$$
-\Delta V_{H}(\underline{r})=\rho(\underline{r})
$$

- Exchange $V_{x}(\underline{r})$ is problematic, since non-local operator

Building the stiffness matrix

$$
A_{j k}=\int_{\Omega} \frac{1}{2} \nabla \varphi_{j}(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_{k}(\underline{\boldsymbol{r}})+\varphi_{j}(\underline{\boldsymbol{r}})\left(V_{0}(\underline{\boldsymbol{r}})+V_{H}(\underline{\boldsymbol{r}})+V_{x}(\underline{\boldsymbol{r}})\right) \varphi_{k}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

- Kinetic part and nuclear potential part can be done naively
- To get $V_{H}(\underline{r})$ solve Poisson equation of electron density:

$$
-\Delta V_{H}(\underline{r})=\rho(\underline{r})
$$

- Exchange $V_{x}(\underline{r})$ is problematic, since non-local operator

$$
V_{0}\left(\underline{r}_{1}\right)=-\sum_{A} \frac{Z_{A}}{r_{1 A}}
$$

Building the stiffness matrix

$$
A_{j k}=\int_{\Omega} \frac{1}{2} \nabla \varphi_{j}(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_{k}(\underline{\boldsymbol{r}})+\varphi_{j}(\underline{\boldsymbol{r}})\left(V_{0}(\underline{\boldsymbol{r}})+V_{H}(\underline{\boldsymbol{r}})+V_{x}(\underline{\boldsymbol{r}})\right) \varphi_{k}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

- Kinetic part and nuclear potential part can be done naively
- To get $V_{H}(\underline{\boldsymbol{r}})$ solve Poisson equation of electron density:

$$
-\Delta V_{H}(\underline{\boldsymbol{r}})=\rho(\underline{\boldsymbol{r}})
$$

- Exchange $V_{x}(\underline{r})$ is problematic, since non-local operator

$$
V_{H}\left(\underline{r}_{1}\right)=\sum_{j} \int_{\Omega} \frac{\left|\psi_{j}\left(\underline{r}_{2}\right)\right|^{2}}{r_{12}} \mathrm{~d} \underline{\underline{r}}_{2}
$$

Building the stiffness matrix

$$
A_{j k}=\int_{\Omega} \frac{1}{2} \nabla \varphi_{j}(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_{k}(\underline{\boldsymbol{r}})+\varphi_{j}(\underline{\boldsymbol{r}})\left(V_{0}(\underline{\boldsymbol{r}})+V_{H}(\underline{\boldsymbol{r}})+V_{x}(\underline{\boldsymbol{r}})\right) \varphi_{k}(\underline{\boldsymbol{r}}) \mathrm{d} \underline{\boldsymbol{r}}
$$

- Kinetic part and nuclear potential part can be done naively
- To get $V_{H}(\underline{\boldsymbol{r}})$ solve Poisson equation of electron density:

$$
-\Delta V_{H}(\underline{\boldsymbol{r}})=\rho(\underline{\boldsymbol{r}})
$$

- Exchange $V_{x}(\underline{\boldsymbol{r}})$ is problematic, since non-local operator

$$
\begin{gathered}
V_{x}\left(\underline{\boldsymbol{r}}_{1}\right) \psi_{i}\left(\underline{\boldsymbol{r}}_{1}\right)=\sum_{j \neq i} \mathbf{V}_{j i}^{x}\left(\underline{\boldsymbol{r}}_{1}\right) \psi_{j}\left(\underline{\boldsymbol{r}}_{1}\right) \\
\mathbf{V}_{j i}^{x}\left(\underline{\boldsymbol{r}}_{1}\right)=\int_{\Omega} \frac{\psi_{j}^{*}\left(\underline{\boldsymbol{r}}_{2}\right) \psi_{i}\left(\underline{\boldsymbol{r}}_{2}\right)}{r_{12}} \mathrm{~d} \underline{\boldsymbol{r}}_{2}
\end{gathered}
$$

Mesh refinement in detail

- Input: a posteriori error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
- Fixed number
- Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

Mesh refinement in detail

- Input: a posteriori error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
- Fixed number
- Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

Mesh refinement in detail

- Input: a posteriori error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
- Fixed number
- Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

Mesh refinement in detail

- Input: a posteriori error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
- Fixed number
- Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

Mesh refinement in detail

- Input: a posteriori error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
- Fixed number
- Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

Mesh refinement in detail

- Input: a posteriori error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
- Fixed number
- Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

Mesh refinement in detail

- Input: a posteriori error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
- Fixed number
- Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

Table of Contents

(1) Motivation

- Finite elements from a quantum chemist's perspective
(2) General introduction to the finite-element method (FEM)
- The weak formulation
- Finite Element spaces

3 3 FE based electronic structure calculations

- The SCF iteration in detail
- Mesh refinement in detail

4 Summary

Summary

- FEM very flexible wrt. chosen grid
- Adaptive refinement of grid possible
- Integration (almost always) reduces to matrix-vector multiplication
- Integration matrices can be precomputed for given grid
- Large, but sparse matrices for eigenproblem
- Linear scaling

References

- J. Avery, New Computational Methods in the Quantum Theory of Nano-Structures. PhD thesis, University of Copenhagen, 2011.
- P. Bastian, Scientific Computing with Partial Differential Equations. Lecture notes, Ruprecht-Karls-Universität Heidelberg, 2014.
- R. Alizadegan, K. J. Hsia, and T. J. Martinez, J. Chem. Phys., 132 (2010), 034101.
- W. Bangerth et. al., The deal.ii library, version 8.1. http://arxiv.org/abs/1312.2266v4, 2013.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.

