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Finite elements from a quantum chemist’s perspective

Finite elements (FEs) as basis functions

space Ω = [a, b]

a b

Discretise space Ω into grid.
Finite elements (FEs) are piecewise polynomial functions
FEs are zero at large portions of space

⇒ Very localised
Can be used as basis for e.g. molecular wave functions
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Finite elements from a quantum chemist’s perspective

Potential advantages of an FE basis

Strong locality
⇒ Sparse matrices
⇒ Linear scaling
⇒ Easy and effective parallelisation

Non-uniform grids are possible
⇒ Intrinsic multi-scale methods

Methods for a posteriori error estimation
⇒ On-the-fly adaptive refinement of the grid
⇒ Grid adapts to density
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Finite elements from a quantum chemist’s perspective

A true black-box method for quantum chemistry?

Possible outline of a black-box FE calculation
1 Specify a coarse grid (could be auto-generated)
2 Specify a region of interest
3 Run calculation
4 Identify regions of largest a posteriori error
5 Refine grid adaptively
6 Re-do steps 3-5 until desired accuracy reached

Problems and disadvantages
Much more basis functions required (think 104 to 107)
Non-local potential contributions problematic
(e.g. Hartree-Fock exchange)
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The weak formulation

The Hartree-Fock equations in strong form

The well-known Hartree-Fock equations may be written as(
− 1

2∆ + V (r)
)
ψi(r) = εiψi(r) r ∈ Ω

ψi(r) = 0 r ∈ ∂Ω

where
V = V0 + VH + Vx

with
the electron-nuclear interaction V0
the Hartree potential VH
the exchange potential Vx

This is a differential equation and called the strong form of
the problem
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The weak formulation

Getting the weak form (1)

Multiply strong form by test function ψ̂ and integrate(
− 1

2∆ + V (r)
)
ψi(r) = εiψi(r)

Apply partial integration

0 =
∫

Ω

1
2∇ψ̂(r) · ∇ψi(r) dr −

∫
∂Ω

1
2 ψ̂(r)∇ψi(r) · n̂s ds

+
∫

Ω
ψ̂(r) (V (r)− εi)ψi(r) dr
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The weak formulation

Getting the weak form (2)

Physics dictates that ψi(r) = 0 on the boundary ∂Ω.
⇒ Can also require for test function (= variation):

ψ̂(r) = 0 on ∂Ω

Boundary term in integral drops:

0 =
∫

Ω

1
2∇ψ̂(r) · ∇ψi(r) dr

+
∫

Ω
ψ̂(r) (V (r)− εi)ψi(r) dr
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The weak formulation

Getting the weak form (3)

Define bilinear forms

a(f , g) =
∫

Ω

1
2∇f (r) · ∇g(r) + f (r) V (r) g(r) dr

and
m(f , g) =

∫
Ω

f (r) · g(r) dr

Rewrite integral equation to

0 =
∫

Ω

1
2∇ψ̂(r) · ∇ψi(r) dr +

∫
Ω
ψ̂(r) (V (r)− εi)ψi(r) dr

The weak formulation of the Hartree-Fock problem is:
For all test functions ψ̂ (2.1) holds.
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The weak formulation

Introducing a basis

It can be shown, that ψ̂ and ψi are members of the same
Hilbert space H 1

0 .
Let Φ = {ϕj}j∈N be a basis for H 1

0 .

Then ψi(r) =
∑

j z(i)
j ϕj

It holds for the weak formulation:

∀ψ̂ ∈ H 1
0 : a(ψ̂, ψi) = εi m(ψ̂, ψi)

⇔ ∀ϕj , ϕk ∈ Φ : a
(
ϕj ,
∑

k

z(i)
k ϕk

)
= εi m

(
ϕj ,
∑

k

z(i)
k ϕk

)
⇔ ∀ϕj , ϕk ∈ Φ :

∑
k

z(i)
k a(ϕj , ϕk) = εi

∑
k

z(i)
k m(ϕj , ϕk)
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Finite Element spaces

Discretising the space H 1
0

Introduce NFE-dimensional subspace Vh ⊂ H 1
0

Weak formulation becomes a generalised eigenvalue
problem Az(i) = εiMz(i).
With stiffness matrix

Ajk = a(ϕj , ϕk) =
∫

Ω

1
2∇ϕj(r) · ∇ϕk(r) + ϕj(r)V (r)ϕk(r) dr

and mass matrix

Mjk = m(ϕj , ϕk) =
∫

Ω
ϕj(r)ϕk(r) dr

Need to find a basis of Vh which gives well-conditioned A
and M matrices and makes integration simple.
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Finite Element spaces

Finite elements
Properties

linear finite elements (NFE = Nh + 1)

1

a = x0 · · · xj−1 xj xj+1 xj+2 · · · xNh −1 xNh = b
n0 · · · nk−1 nk nk+1 nk+2 · · · nNh −1 xNh

ϕk ϕk+1 ϕNh

Each FE is a polynomial when restricted to a cell
Non-differentiable points at cell boundaries xj
Each FE has support only on a few neighbouring cells
The FEs satisfy at the nodal points

ϕi(nj) = δij
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Finite Element spaces

Finite elements
Properties

quadratic finite elements (NFE = 2Nh + 1)
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Finite Element spaces

Finite elements
Reference cell and shape functions

c0

µc

c

c0 is called the reference cell
Affine map µc for each cell to construct c from c0
Shape functions {eα}0≤α<nsh form a basis for c0
For finite elements ϕk with support on c:

ϕk |c (r) = eα
(
µ−1

c (r)
)

for some α

⇒ Can transform integrals cell-by-cell onto reference cell.
⇒ Only need to really calculate integrals on reference cell.
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Finite Element spaces

Finite elements
Examples of shape functions
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Finite Element spaces

Integration in FE spaces (1)
Integrals as matrix-vector-products

For each function f̂ ∈ Vh :

f̂ =
NFE−1∑

i=0
fiϕi =⇒ fi = f̂ (ni)

For all possible overlap integrals

∫
Ω

f̂ (r)ĝ(r) dr =
NFE−1∑
i,j=0

figj

∫
Ω
ϕi(r)ϕj(r) dr︸ ︷︷ ︸

Mij

= f T Mg

Similar relations for other integrals.
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Finite Element spaces

Integration in FE spaces (2)
Splitting into cell contributions

Calculate as sum of cell-wise contributions: Mij =
∑

c M c
ij

M c
ij =

∫
c
ϕi(r)ϕj(r) dr

M c
ij only non-zero if ϕi and ϕj have common support on c

Let α, β such that

ϕi |c (r) = eα
(
µ−1

c (r)
)

and ϕj |c (r) = eβ
(
µ−1

c (r)
)

Let Jc(ξ) be the Jacobian of the mapping r = µc(ξ), i.e.

(
Jc(ξ)

)
ij

=
(
∇ξµc(ξ)

)
ij

=
∂
(
µc(ξ)

)
i

∂ξj
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Finite Element spaces

Integration in FE spaces (3)
Transformation to unit cell and quadrature

M c
ij =

∫
c
ϕi(r)ϕj(r) dr

=
∫

c
eα
(
µ−1

c (r)
)

eβ
(
µ−1

c (r)
)

dr

=
∫

c0
eα(ξ)eβ(ξ) det

(
Jc(ξ)

)
dξ

=
Nq∑

q=1
eα(ξq)eβ(ξq) det

(
Jc(ξq)

)
wq
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Finite Element spaces

Integration in FE spaces (3)
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)
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Gaussian quadrature of order Nq with quad. weights wq

Only need to know det Jc, eα at quadrature points of c0

Only det Jc changes from cell to cell
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Finite Element spaces

A posteriori error estimation

a posteriori error
Estimate for error of numerical solution without knowledge of
analytical solution

Aim: Understand which cells make up largest contribution
In general: Computation difficult and expensive
Crude guesses usually good enough
Estimates consider:

Residual inside domain Ω

r(r) =
(
− 1

2∆ + V (r)− εi

)
ψi(r)

Discontinuities of first derivatives at cell faces.
The size of the cells
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Recall from earlier:

Possible outline of a black-box FE calculation
1 Specify a coarse grid (could be auto-generated)
2 Specify a region of interest
3 Run calculation
4 Identify regions of largest a posteriori error
5 Refine grid adaptively
6 Re-do steps 3-5 until desired accuracy reached
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The SCF iteration in detail

SCF iteration: Overview

Once grid is set up µc can be constructed
⇒ Can map FEs {ϕj}0≤j<NFE to shape functions {eα}0≤α<nsh

Calculate mass matrix M and stiffness matrix A
(using current {ψi}0≤i<Norb and current density ρ)

Ajk =
∫

Ω

1
2∇ϕj(r) · ∇ϕk(r) +ϕj(r)

(
V0(r) + VH (r) + Vx(r)

)
ϕk(r) dr

Mjk =
∫

Ω
ϕj(r)ϕk(r) dr

Solve generalised eigenvalue problem:

Az(i) = εiMz(i)

New set of {ψi}0≤i<Norb and new ρ.
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The SCF iteration in detail

Building the stiffness matrix

Ajk =
∫

Ω

1
2∇ϕj(r) · ∇ϕk(r) + ϕj(r)

(
V0(r) + VH (r) + Vx(r)

)
ϕk(r) dr

Kinetic part and nuclear potential part can be done naively
To get VH (r) solve Poisson equation of electron density:

−∆VH (r) = ρ(r)

Exchange Vx(r) is problematic, since non-local operator
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∣∣2
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The SCF iteration in detail

Building the stiffness matrix

Ajk =
∫

Ω

1
2∇ϕj(r) · ∇ϕk(r) + ϕj(r)

(
V0(r) + VH (r) + Vx(r)

)
ϕk(r) dr

Kinetic part and nuclear potential part can be done naively
To get VH (r) solve Poisson equation of electron density:

−∆VH (r) = ρ(r)

Exchange Vx(r) is problematic, since non-local operator

Vx(r1)ψi(r1) =
∑
j 6=i

Vx
ji(r1)ψj(r1)

Vx
ji(r1) =

∫
Ω

ψ∗j (r2)ψi(r2)
r12

dr2
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Mesh refinement in detail

Mesh refinement in detail

Input: a posteriori error for each cell
Can scale error by importance (multi-scale methods)
Refinement stategies:

Fixed number
Fixed fraction (preferred)

Neighbours: Refinement level can only differ by one
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Summary

FEM very flexible wrt. chosen grid

Adaptive refinement of grid possible

Integration (almost always) reduces to matrix-vector
multiplication

Integration matrices can be precomputed for given grid

Large, but sparse matrices for eigenproblem

Linear scaling
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