Motivation 000 FE based calculations 000

The finite-element method in quantum chemistry

Michael F. Herbst michael.herbst@iwr.uni-heidelberg.de

Interdisziplinäres Zentrum für wissenschaftliches Rechnen Ruprecht-Karls-Universität Heidelberg

14 August 2014

イロト 不同 トイヨト イヨト ヨー ろくつ

FE based calculations 000

イロト 不得下 イヨト イヨト 二日

1/27

Table of Contents

1 Motivation

- Finite elements from a quantum chemist's perspective
- ② General introduction to the finite-element method (FEM)• The weak formulation
 - Finite Element spaces
- FE based electronic structure calculationsThe SCF iteration in detail
 - Mesh refinement in detail

4 Summary

FE based calculations 000

Table of Contents

1 Motivation

- Finite elements from a quantum chemist's perspective
- ② General introduction to the finite-element method (FEM)
 The weak formulation
 Finite Element spaces
- FE based electronic structure calculations
 The SCF iteration in detail
 Mosh refinement in detail
 - Mesh refinement in detail

3 Summary

FE based calculations 000

Ь

Summary

Finite elements from a quantum chemist's perspective

Finite elements (FEs) as basis functions

space
$$\Omega = [a, b]$$

- Discretise space Ω into grid.
- Finite elements (FEs) are piecewise polynomial functions
- FEs are zero at large portions of space
- \Rightarrow Very localised

a

• Can be used as basis for e.g. molecular wave functions

FE based calculations 000

Summary

Finite elements from a quantum chemist's perspective

Finite elements (FEs) as basis functions

• Discretise space Ω into grid.

- Finite elements (FEs) are piecewise polynomial functions
- FEs are zero at large portions of space
- \Rightarrow Very localised
 - Can be used as basis for e.g. molecular wave functions

イロト イボト イヨト イヨト

FE based calculations 000

Summary

Finite elements from a quantum chemist's perspective

Finite elements (FEs) as basis functions

- Discretise space Ω into grid.
- Finite elements (FEs) are piecewise polynomial functions
- FEs are zero at large portions of space
- \Rightarrow Very localised
 - Can be used as basis for e.g. molecular wave functions

イロト イボト イヨト イヨト

FE based calculations 000

Summary

Finite elements from a quantum chemist's perspective

Finite elements (FEs) as basis functions

- Discretise space Ω into grid.
- Finite elements (FEs) are piecewise polynomial functions
- FEs are zero at large portions of space
- \Rightarrow Very localised
 - Can be used as basis for e.g. molecular wave functions

イロト イロト イヨト イヨト

FE based calculations 000

Summary

Finite elements from a quantum chemist's perspective

Finite elements (FEs) as basis functions

- Discretise space Ω into grid.
- Finite elements (FEs) are piecewise polynomial functions
- FEs are zero at large portions of space
- \Rightarrow Very localised
 - Can be used as basis for e.g. molecular wave functions

イロト イボト イヨト イヨト

FE based calculations 000

イロト イポト イヨト イヨト

3

4/27

Summary

Finite elements from a quantum chemist's perspective

Potential advantages of an FE basis

- Strong locality
 - \Rightarrow Sparse matrices
 - \Rightarrow Linear scaling
 - \Rightarrow Easy and effective parallelisation
- Non-uniform grids are possible
 - \Rightarrow Intrinsic multi-scale methods
- Methods for a *posteriori* error estimation
 - \Rightarrow On-the-fly adaptive refinement of the grid
 - \Rightarrow Grid adapts to density

FE based calculations 000

Summary

Finite elements from a quantum chemist's perspective

A true black-box method for quantum chemistry?

Possible outline of a black-box FE calculation

- Specify a coarse grid (could be auto-generated)
- **2** Specify a region of interest
- 8 Run calculation
- Identify regions of largest a posteriori error
- Refine grid adaptively
- **(3)** Re-do steps 3-5 until desired accuracy reached

Problems and disadvantages

- Much more basis functions required (think 10^4 to 10^7)
- Non-local potential contributions problematic (e.g. Hartree-Fock exchange)

Motivation 000 FE based calculations 000

Table of Contents

1 Motivation

• Finite elements from a quantum chemist's perspective

- ② General introduction to the finite-element method (FEM)
 The weak formulation
 Finite Element spaces
- FE based electronic structure calculations
 The SCF iteration in detail
 - Mesh refinement in detail

4 Summary

Motivation 000 The weak formulation Introduction to the FEM

FE based calculations 000

Summary

The Hartree-Fock equations in strong form

• The well-known Hartree-Fock equations may be written as

$$\left(-\frac{1}{2}\Delta + V(\underline{\boldsymbol{r}})\right)\psi_i(\underline{\boldsymbol{r}}) = \varepsilon_i\psi_i(\underline{\boldsymbol{r}}) \qquad \underline{\boldsymbol{r}}\in\Omega$$
$$\psi_i(\underline{\boldsymbol{r}}) = 0 \qquad \underline{\boldsymbol{r}}\in\partial\Omega$$

where

$$V = V_0 + V_H + V_x$$

with

- the electron-nuclear interaction V_0
- the Hartree potential V_H
- the exchange potential V_x
- This is a differential equation and called the *strong form* of the problem

Motivation 000 The weak formulation

FE based calculations 000

Summary

Getting the weak form (1)

• Multiply strong form by test function $\hat{\psi}$ and integrate

$$\left(-\frac{1}{2}\Delta + V(\underline{\boldsymbol{r}})\right)\psi_i(\underline{\boldsymbol{r}}) = \varepsilon_i\psi_i(\underline{\boldsymbol{r}})$$

• Apply partial integration

$$0 = \int_{\Omega} \frac{1}{2} \nabla \hat{\psi}(\underline{r}) \cdot \nabla \psi_i(\underline{r}) \, \mathrm{d}\underline{r} - \int_{\partial \Omega} \frac{1}{2} \, \hat{\psi}(\underline{r}) \, \nabla \psi_i(\underline{r}) \cdot \underline{\hat{n}}_s \, \mathrm{d}s \\ + \int_{\Omega} \hat{\psi}(\underline{r}) \left(V(\underline{r}) - \varepsilon_i \right) \psi_i(\underline{r}) \, \mathrm{d}\underline{r}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ≥ 少へで 8/27 Motivation I 000 C The weak formulation

FE based calculations 000

Summary

Getting the weak form (1)

• Multiply strong form by test function $\hat{\psi}$ and integrate

$$0 = -\frac{1}{2}\Delta\psi_i(\underline{\boldsymbol{r}}) + V(\underline{\boldsymbol{r}})\psi_i(\underline{\boldsymbol{r}}) - \varepsilon_i\psi_i(\underline{\boldsymbol{r}})$$

• Apply partial integration

$$0 = \int_{\Omega} \frac{1}{2} \nabla \hat{\psi}(\underline{r}) \cdot \nabla \psi_i(\underline{r}) \, \mathrm{d}\underline{r} - \int_{\partial \Omega} \frac{1}{2} \, \hat{\psi}(\underline{r}) \, \nabla \psi_i(\underline{r}) \cdot \underline{\hat{n}}_s \, \mathrm{d}s \\ + \int_{\Omega} \hat{\psi}(\underline{r}) \left(V(\underline{r}) - \varepsilon_i \right) \psi_i(\underline{r}) \, \mathrm{d}\underline{r}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ≥ 少へで 8/27 Motivation I 000 C The weak formulation

FE based calculations 000

Summary

Getting the weak form (1)

• Multiply strong form by test function $\hat{\psi}$ and integrate

$$0 = \int_{\Omega} \hat{\psi}(\underline{\boldsymbol{r}}) \Big(-\frac{1}{2} \Delta \psi_i(\underline{\boldsymbol{r}}) + (V(\underline{\boldsymbol{r}}) - \varepsilon_i) \psi_i(\underline{\boldsymbol{r}}) \Big) \, \mathrm{d}\underline{\boldsymbol{r}}$$

• Apply partial integration

$$0 = \int_{\Omega} \frac{1}{2} \nabla \hat{\psi}(\underline{r}) \cdot \nabla \psi_i(\underline{r}) \, \mathrm{d}\underline{r} - \int_{\partial \Omega} \frac{1}{2} \, \hat{\psi}(\underline{r}) \, \nabla \psi_i(\underline{r}) \cdot \underline{\hat{n}}_s \, \mathrm{d}s \\ + \int_{\Omega} \hat{\psi}(\underline{r}) \left(V(\underline{r}) - \varepsilon_i \right) \psi_i(\underline{r}) \, \mathrm{d}\underline{r}$$

<□▶ <圕▶ < 글▶ < 글▶ < 글▶ 글 ∽ Q () 8/27 Motivation I 000 C The weak formulation

FE based calculations 000

Summary

Getting the weak form (1)

• Multiply strong form by test function $\hat{\psi}$ and integrate

$$0 = \int_{\Omega} \hat{\psi}(\underline{\boldsymbol{r}}) \Big(-\frac{1}{2} \Delta \psi_i(\underline{\boldsymbol{r}}) + (V(\underline{\boldsymbol{r}}) - \varepsilon_i) \psi_i(\underline{\boldsymbol{r}}) \Big) \, \mathrm{d}\underline{\boldsymbol{r}}$$

• Apply partial integration

$$0 = \int_{\Omega} \frac{1}{2} \nabla \hat{\psi}(\underline{\mathbf{r}}) \cdot \nabla \psi_i(\underline{\mathbf{r}}) \, \mathrm{d}\underline{\mathbf{r}} - \int_{\partial \Omega} \frac{1}{2} \, \hat{\psi}(\underline{\mathbf{r}}) \, \nabla \psi_i(\underline{\mathbf{r}}) \cdot \underline{\hat{\mathbf{n}}}_s \, \mathrm{d}s \\ + \int_{\Omega} \hat{\psi}(\underline{\mathbf{r}}) \left(V(\underline{\mathbf{r}}) - \varepsilon_i \right) \psi_i(\underline{\mathbf{r}}) \, \mathrm{d}\underline{\mathbf{r}}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQで 8/27

FE based calculations 000

Summary

The weak formulation

Getting the weak form (2)

- Physics dictates that $\psi_i(\underline{r}) = 0$ on the boundary $\partial \Omega$.
- \Rightarrow Can also require for test function (= variation):

$$\hat{\psi}(\underline{\boldsymbol{r}}) = 0 \qquad \text{on } \partial\Omega$$

• Boundary term in integral drops:

$$0 = \int_{\Omega} \frac{1}{2} \nabla \hat{\psi}(\underline{\boldsymbol{r}}) \cdot \nabla \psi_i(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}} \\ + \int_{\Omega} \hat{\psi}(\underline{\boldsymbol{r}}) \left(V(\underline{\boldsymbol{r}}) - \varepsilon_i \right) \psi_i(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

 Motivation Intr 000 000 The weak formulation

Introduction to the FEM

FE based calculations 000

Summary

Getting the weak form (3)

• Define bilinear forms

$$a(f,g) = \int_{\Omega} \frac{1}{2} \nabla f(\underline{\boldsymbol{r}}) \cdot \nabla g(\underline{\boldsymbol{r}}) + f(\underline{\boldsymbol{r}}) \ V(\underline{\boldsymbol{r}}) \ g(\underline{\boldsymbol{r}}) \ \mathrm{d}\underline{\boldsymbol{r}}$$

and

$$m(f,g) = \int_{\Omega} f(\underline{r}) \cdot g(\underline{r}) \, \mathrm{d}\underline{r}$$

• Rewrite integral equation to

$$0 = \int_{\Omega} \frac{1}{2} \nabla \hat{\psi}(\underline{\boldsymbol{r}}) \cdot \nabla \psi_i(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}} + \int_{\Omega} \hat{\psi}(\underline{\boldsymbol{r}}) \left(V(\underline{\boldsymbol{r}}) - \varepsilon_i \right) \psi_i(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

• The weak formulation of the Hartree-Fock problem is: For all test functions $\hat{\psi}$ (2.1) holds. Motivation Intr 000 000 The weak formulation

Introduction to the FEM

FE based calculations 000

Summary

Getting the weak form (3)

• Define bilinear forms

$$a(f,g) = \int_{\Omega} \frac{1}{2} \nabla f(\underline{\boldsymbol{r}}) \cdot \nabla g(\underline{\boldsymbol{r}}) + f(\underline{\boldsymbol{r}}) \ V(\underline{\boldsymbol{r}}) \ g(\underline{\boldsymbol{r}}) \ \mathrm{d}\underline{\boldsymbol{r}}$$

and

$$m(f,g) = \int_{\Omega} f(\underline{r}) \cdot g(\underline{r}) \,\mathrm{d}\underline{r}$$

• Rewrite integral equation to

$$0 = \int_{\Omega} \frac{1}{2} \nabla \hat{\psi}(\underline{\boldsymbol{r}}) \cdot \nabla \psi_i(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}} + \int_{\Omega} \hat{\psi}(\underline{\boldsymbol{r}}) \left(V(\underline{\boldsymbol{r}}) - \varepsilon_i \right) \psi_i(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

• The weak formulation of the Hartree-Fock problem is: For all test functions $\hat{\psi}$ (2.1) holds.

э

・ロト ・四ト ・ヨト ・ヨト

Motivation Intr 000 000 The weak formulation

Introduction to the FEM

FE based calculations 000

Summary

Getting the weak form (3)

• Define bilinear forms

$$a(f,g) = \int_{\Omega} \frac{1}{2} \nabla f(\underline{\boldsymbol{r}}) \cdot \nabla g(\underline{\boldsymbol{r}}) + f(\underline{\boldsymbol{r}}) \ V(\underline{\boldsymbol{r}}) \ g(\underline{\boldsymbol{r}}) \ \mathrm{d}\underline{\boldsymbol{r}}$$

and

$$m(f,g) = \int_{\Omega} f(\underline{r}) \cdot g(\underline{r}) \, \mathrm{d}\underline{r}$$

• Rewrite integral equation to

$$0 = a(\hat{\psi}, \psi_i) - \int_{\Omega} \hat{\psi}(\underline{\boldsymbol{r}}) \,\varepsilon_i \,\psi_i(\underline{\boldsymbol{r}}) \,\mathrm{d}\underline{\boldsymbol{r}}$$

• The weak formulation of the Hartree-Fock problem is: For all test functions $\hat{\psi}$ (2.1) holds.

э

・ロト ・四ト ・ヨト ・ヨト

Motivation Intro 000 000 The weak formulation

Introduction to the FEM

FE based calculations 000

Summary

Getting the weak form (3)

• Define bilinear forms

$$a(f,g) = \int_{\Omega} \frac{1}{2} \nabla f(\underline{\boldsymbol{r}}) \cdot \nabla g(\underline{\boldsymbol{r}}) + f(\underline{\boldsymbol{r}}) \ V(\underline{\boldsymbol{r}}) \ g(\underline{\boldsymbol{r}}) \ \mathrm{d}\underline{\boldsymbol{r}}$$

and

$$m(f,g) = \int_{\Omega} f(\underline{r}) \cdot g(\underline{r}) \, \mathrm{d}\underline{r}$$

• Rewrite integral equation to

$$a(\hat{\psi}, \psi_i) = \varepsilon_i \, m(\hat{\psi}, \psi_i) \tag{2.1}$$

• The weak formulation of the Hartree-Fock problem is: For all test functions $\hat{\psi}$ (2.1) holds.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation Intro 000 000 The weak formulation

Introduction to the FEM

FE based calculations 000

Summary

Getting the weak form (3)

• Define bilinear forms

$$a(f,g) = \int_{\Omega} \frac{1}{2} \nabla f(\underline{\boldsymbol{r}}) \cdot \nabla g(\underline{\boldsymbol{r}}) + f(\underline{\boldsymbol{r}}) \ V(\underline{\boldsymbol{r}}) \ g(\underline{\boldsymbol{r}}) \ \mathrm{d}\underline{\boldsymbol{r}}$$

and

$$m(f,g) = \int_{\Omega} f(\underline{r}) \cdot g(\underline{r}) \, \mathrm{d}\underline{r}$$

• Rewrite integral equation to

$$a(\hat{\psi}, \psi_i) = \varepsilon_i \, m(\hat{\psi}, \psi_i) \tag{2.1}$$

• The weak formulation of the Hartree-Fock problem is: For all test functions $\hat{\psi}$ (2.1) holds.

> <ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の へ () 10 / 27

Motivation	Introduction to the FEM	FE based calculations	Summary
000	00000000000	000	
The weak formulation			

Introducing a basis

- It can be shown, that $\hat{\psi}$ and ψ_i are members of the same Hilbert space H_0^1 .
- Let $\Phi = \{\varphi_j\}_{j \in \mathbb{N}}$ be a basis for H_0^1 .

• Then
$$\psi_i(\underline{r}) = \sum_j z_j^{(i)} \varphi_j$$

• It holds for the weak formulation:

$$\begin{aligned} \forall \hat{\psi} \in H_0^1 : & a(\hat{\psi}, \psi_i) = \varepsilon_i \, m(\hat{\psi}, \psi_i) \\ \Leftrightarrow & \forall \varphi_j, \varphi_k \in \Phi : & a\left(\varphi_j, \sum_k z_k^{(i)} \varphi_k\right) = \varepsilon_i \, m\left(\varphi_j, \sum_k z_k^{(i)} \varphi_k\right) \\ \Leftrightarrow & \forall \varphi_j, \varphi_k \in \Phi : & \sum_k z_k^{(i)} a(\varphi_j, \varphi_k) = \varepsilon_i \sum_k z_k^{(i)} \, m(\varphi_j, \varphi_k) \end{aligned}$$

Activation	Introduction to the FEM
000	00000000000000

FE based calculations 000

Finite Element spaces

Discretising the space H_0^1

- Introduce $N_{\rm FE}$ -dimensional subspace $V_h \subset H_0^1$
- Weak formulation becomes a generalised eigenvalue problem $\mathbf{A}\underline{z}^{(i)} = \varepsilon_i \mathbf{M}\underline{z}^{(i)}$.
- With *stiffness matrix*

$$A_{jk} = a(\varphi_j, \varphi_k) = \int_{\Omega} \frac{1}{2} \nabla \varphi_j(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_k(\underline{\boldsymbol{r}}) + \varphi_j(\underline{\boldsymbol{r}}) V(\underline{\boldsymbol{r}}) \varphi_k(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

and mass matrix

$$M_{jk} = m(\varphi_j, \varphi_k) = \int_{\Omega} \varphi_j(\underline{r}) \varphi_k(\underline{r}) \, \mathrm{d}\underline{r}$$

 Need to find a basis of V_h which gives well-conditioned A and M matrices and makes integration simple.

Motivation	Introduction to the FEM	FE based calculations	Summary
000	000000000000	000	
Finite Element spaces			

Properties

- Each FE is a polynomial when restricted to a cell
- Non-differentiable points at cell boundaries x_j
- Each FE has support only on a few neighbouring cells
- The FEs satisfy at the *nodal points*

$$arphi_i(n_j)=\delta_{ij}$$

Motivation 000	Introduction to the FEM $000000000000000000000000000000000000$	FE based calculations 000	Summary
Finite Element spaces			

Properties

- Each FE is a polynomial when restricted to a cell
- Non-differentiable points at cell boundaries x_j
- Each FE has support only on a few neighbouring cells
- The FEs satisfy at the *nodal points*

$$arphi(n_j)=\delta_{ij}$$

Motivation 000	Introduction to the FEM $000000000000000000000000000000000000$	FE based calculations 000	Summary
Finite Element spaces			

Reference cell and shape functions

- c_0 is called the *reference cell*
- Affine map μ_c for each cell to construct c from c_0
- Shape functions $\{e_{\alpha}\}_{0 \leq \alpha < n_{\rm sh}}$ form a basis for c_0
- For finite elements φ_k with support on c:

$$\varphi_k|_c(\underline{r}) = e_\alpha \left(\mu_c^{-1}(\underline{r})\right) \quad \text{for some } \alpha$$

 $\Rightarrow \text{ Can transform integrals cell-by-cell onto reference cell.}$ $\Rightarrow \text{ Only need to really calculate integrals on reference cell.}$

Motivation	Introduction to the FEM	FE based calculations	Summary
000	000000000000	000	
Finite Element sp	aces		

Examples of shape functions

≣ ৩৭ে 15/27 Motivation 000 Finite Element spaces FE based calculations 000

Summary

Integration in FE spaces (1)

Integrals as matrix-vector-products

• For each function $\hat{f} \in V_h$:

$$\hat{f} = \sum_{i=0}^{N_{\rm FE}-1} f_i \varphi_i \implies f_i = \hat{f}(n_i)$$

• For all possible overlap integrals

$$\int_{\Omega} \hat{f}(\underline{r}) \hat{g}(\underline{r}) \, \mathrm{d}\underline{r} = \sum_{i,j=0}^{N_{\mathrm{FE}}-1} f_i g_j \underbrace{\int_{\Omega} \varphi_i(\underline{r}) \varphi_j(\underline{r}) \, \mathrm{d}\underline{r}}_{M_{ij}}$$
$$= \boldsymbol{f}^T \mathbf{M} \boldsymbol{g}$$

• Similar relations for other integrals.

э

Motivation 000 Finite Element spaces FE based calculations 000

Summary

Integration in FE spaces (2)

Splitting into cell contributions

• Calculate as sum of cell-wise contributions: $M_{ij} = \sum_{c} M_{ij}^{c}$

$$M_{ij}^c = \int_c \varphi_i(\underline{r}) \varphi_j(\underline{r}) \,\mathrm{d}\underline{r}$$

• $M^{\,c}_{ij}$ only non-zero if φ_i and φ_j have common support on c • Let α,β such that

$$\varphi_i|_c(\underline{r}) = e_{\alpha}\left(\mu_c^{-1}(\underline{r})\right) \text{ and } \varphi_j|_c(\underline{r}) = e_{\beta}\left(\mu_c^{-1}(\underline{r})\right)$$

• Let $J_c(\underline{\xi})$ be the Jacobian of the mapping $\underline{r} = \mu_c(\underline{\xi})$, i.e.

$$\left(J_c(\underline{\boldsymbol{\xi}})\right)_{ij} = \left(\nabla_{\underline{\boldsymbol{\xi}}}\mu_c(\underline{\boldsymbol{\xi}})\right)_{ij} = \frac{\partial\left(\mu_c(\underline{\boldsymbol{\xi}})\right)_i}{\partial\xi_j}$$

FE based calculations

Finite Element spaces

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$M_{ij}^c = \int_c \varphi_i(\underline{\boldsymbol{r}}) \varphi_j(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

FE based calculations

Finite Element spaces

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$M_{ij}^c = \int_c \varphi_i(\underline{r}) \varphi_j(\underline{r}) \,\mathrm{d}\underline{r}$$

$$\left. \varphi_{i} \right|_{c} \left(\underline{\boldsymbol{r}} \right) = e_{\alpha} \left(\mu_{c}^{-1} (\underline{\boldsymbol{r}}) \right)$$

▲□▶ ▲□▶ ★ 国▶ ★ 国▶ 「国」 のなぐ 18/27

FE based calculations

Finite Element spaces

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$M_{ij}^{c} = \int_{c} \varphi_{i}(\underline{r}) \varphi_{j}(\underline{r}) \, \mathrm{d}\underline{r}$$
$$= \int_{c} e_{\alpha} \left(\mu_{c}^{-1}(\underline{r}) \right) e_{\beta} \left(\mu_{c}^{-1}(\underline{r}) \right) \, \mathrm{d}\underline{r}$$

$$\left|\varphi_{i}\right|_{c}(\underline{\boldsymbol{r}}) = e_{\alpha}\left(\mu_{c}^{-1}(\underline{\boldsymbol{r}})\right)$$

FE based calculations

Finite Element spaces

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$M_{ij}^{c} = \int_{c} \varphi_{i}(\underline{r}) \varphi_{j}(\underline{r}) \, \mathrm{d}\underline{r}$$
$$= \int_{c} e_{\alpha} \left(\mu_{c}^{-1}(\underline{r}) \right) e_{\beta} \left(\mu_{c}^{-1}(\underline{r}) \right) \, \mathrm{d}\underline{r}$$

$$\left(J_c(\underline{\xi})\right)_{ij} = \frac{\partial \left(\mu_c(\underline{\xi})\right)_i}{\partial \xi_j}$$

FE based calculations

Finite Element spaces

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$M_{ij}^{c} = \int_{c} \varphi_{i}(\underline{r}) \varphi_{j}(\underline{r}) \, \mathrm{d}\underline{r}$$
$$= \int_{c} e_{\alpha} \left(\mu_{c}^{-1}(\underline{r}) \right) e_{\beta} \left(\mu_{c}^{-1}(\underline{r}) \right) \, \mathrm{d}\underline{r}$$
$$= \int_{c_{0}} e_{\alpha}(\underline{\xi}) e_{\beta}(\underline{\xi}) \, \mathrm{det} \left(J_{c}(\underline{\xi}) \right) \, \mathrm{d}\underline{\xi}$$

$$\left(J_c(\underline{\boldsymbol{\xi}})\right)_{ij} = \frac{\partial \left(\mu_c(\underline{\boldsymbol{\xi}})\right)_i}{\partial \xi_j}$$

FE based calculations

Finite Element spaces

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$M_{ij}^{c} = \int_{c} \varphi_{i}(\underline{r})\varphi_{j}(\underline{r}) \,\mathrm{d}\underline{r}$$
$$= \int_{c} e_{\alpha} \left(\mu_{c}^{-1}(\underline{r})\right) e_{\beta} \left(\mu_{c}^{-1}(\underline{r})\right) \,\mathrm{d}\underline{r}$$
$$= \int_{c_{0}} e_{\alpha}(\underline{\xi}) e_{\beta}(\underline{\xi}) \,\mathrm{det} \left(J_{c}(\underline{\xi})\right) \,\mathrm{d}\underline{\xi}$$
$$= \sum_{q=1}^{N_{q}} e_{\alpha}(\underline{\xi}_{q}) e_{\beta}(\underline{\xi}_{q}) \,\mathrm{det} \left(J_{c}(\underline{\xi}_{q})\right) w_{q}$$

• Gaussian quadrature of order N_q with quad. weights w_q • Only need to know det J_c , e_{α} at quadrature points of c_0 • Only det J_c changes from cell to cell э

FE based calculations

Finite Element spaces

Integration in FE spaces (3)

Transformation to unit cell and quadrature

$$M_{ij}^{c} = \int_{c} \varphi_{i}(\underline{r})\varphi_{j}(\underline{r}) \,\mathrm{d}\underline{r}$$
$$= \int_{c} e_{\alpha} \left(\mu_{c}^{-1}(\underline{r})\right) e_{\beta} \left(\mu_{c}^{-1}(\underline{r})\right) \,\mathrm{d}\underline{r}$$
$$= \int_{c_{0}} e_{\alpha}(\underline{\xi}) e_{\beta}(\underline{\xi}) \,\mathrm{det} \left(J_{c}(\underline{\xi})\right) \,\mathrm{d}\underline{\xi}$$
$$= \sum_{q=1}^{N_{q}} e_{\alpha}(\underline{\xi}_{q}) e_{\beta}(\underline{\xi}_{q}) \,\mathrm{det} \left(J_{c}(\underline{\xi}_{q})\right) w_{q}$$

- Gaussian quadrature of order N_q with quad. weights w_q
- Only need to know det J_c , e_{α} at quadrature points of c_0
- Only det J_c changes from cell to cell

э

Motivation Introdu 000 000000 Finite Element spaces

FE based calculations 000

Summary

$A \ posteriori$ error estimation

a posteriori error

Estimate for error of numerical solution $without \ knowledge$ of analytical solution

- Aim: Understand which cells make up largest contribution
- In general: Computation difficult and expensive
- Crude guesses usually good enough
- Estimates consider:
 - Residual inside domain Ω

$$r(\underline{\boldsymbol{r}}) = \left(-\frac{1}{2}\Delta + V(\underline{\boldsymbol{r}}) - \varepsilon_i\right)\psi_i(\underline{\boldsymbol{r}})$$

- Discontinuities of first derivatives at cell faces.
- The size of the cells

FE based calculations $\circ \circ \circ$

Table of Contents

1 Motivation

- Finite elements from a quantum chemist's perspective
- ② General introduction to the finite-element method (FEM)
 The weak formulation
 Finite Element spaces
- FE based electronic structure calculations
 The SCF iteration in detail
 Much refinement in detail
 - Mesh refinement in detail

4 Summary

 $\underset{000}{\operatorname{Motivation}}$

FE based calculations $\circ \circ \circ$

Recall from earlier:

Possible outline of a black-box FE calculation

- Specify a coarse grid (could be auto-generated)
- **2** Specify a region of interest
- 8 Run calculation
- Identify regions of largest a posteriori error
- Refine grid adaptively
- Re-do steps 3-5 until desired accuracy reached

 $\underset{000}{\operatorname{Motivation}}$

FE based calculations $\circ \circ \circ$

Recall from earlier:

Possible outline of a black-box FE calculation

- Specify a coarse grid (could be auto-generated)
- **2** Specify a region of interest
- 8 Run calculation
- Identify regions of largest a posteriori error
- Refine grid adaptively
- **6** Re-do steps 3-5 until desired accuracy reached

Motivation Introduction to the FEM 200 0000000000000 The SCE iteration in detail FE based calculations $\bullet \circ \circ$

Summary

The SCF iteration in detail

SCF iteration: Overview

- Once grid is set up μ_c can be constructed
- $\Rightarrow~{\rm Can}~{\rm map}~{\rm FEs}~\{\varphi_j\}_{0\leq j< N_{\rm FE}}$ to shape functions $\{e_\alpha\}_{0\leq \alpha< n_{\rm sh}}$
 - Calculate mass matrix **M** and stiffness matrix **A** (using current $\{\psi_i\}_{0 \le i < N_{\text{orb}}}$ and current density ρ)

$$A_{jk} = \int_{\Omega} \frac{1}{2} \nabla \varphi_j(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_k(\underline{\boldsymbol{r}}) + \varphi_j(\underline{\boldsymbol{r}}) \Big(V_0(\underline{\boldsymbol{r}}) + V_H(\underline{\boldsymbol{r}}) + V_x(\underline{\boldsymbol{r}}) \Big) \varphi_k(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$
$$M_{jk} = \int_{\Omega} \varphi_j(\underline{\boldsymbol{r}}) \varphi_k(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

• Solve generalised eigenvalue problem:

$$\mathbf{A}\underline{\boldsymbol{z}}^{(i)} = \varepsilon_i \mathbf{M}\underline{\boldsymbol{z}}^{(i)}$$

• New set of $\{\psi_i\}_{0 \le i < N_{\text{orb}}}$ and new ρ .

FE based calculations $0 \bullet 0$

Summary

The SCF iteration in detail

Building the stiffness matrix

$$A_{jk} = \int_{\Omega} \frac{1}{2} \nabla \varphi_j(\underline{r}) \cdot \nabla \varphi_k(\underline{r}) + \varphi_j(\underline{r}) \Big(V_0(\underline{r}) + V_H(\underline{r}) + V_x(\underline{r}) \Big) \varphi_k(\underline{r}) \, \mathrm{d}\underline{r}$$

Kinetic part and nuclear potential part can be done naively
To get V_H(<u>r</u>) solve Poisson equation of electron density:

$$-\Delta V_H(\underline{\mathbf{r}}) = \rho(\underline{\mathbf{r}})$$

• Exchange $V_x(\underline{r})$ is problematic, since non-local operator

FE based calculations $0 \bullet 0$

Summary

The SCF iteration in detail

Building the stiffness matrix

$$A_{jk} = \int_{\Omega} \frac{1}{2} \nabla \varphi_j(\underline{r}) \cdot \nabla \varphi_k(\underline{r}) + \varphi_j(\underline{r}) \left(\frac{V_0(\underline{r})}{V_0(\underline{r})} + V_H(\underline{r}) + V_x(\underline{r}) \right) \varphi_k(\underline{r}) \, \mathrm{d}\underline{r}$$

Kinetic part and nuclear potential part can be done naively
To get V_H(<u>r</u>) solve Poisson equation of electron density:

$$-\Delta V_H(\underline{\mathbf{r}}) = \rho(\underline{\mathbf{r}})$$

• Exchange $V_x(\underline{r})$ is problematic, since non-local operator

$$V_0(\underline{r}_1) = -\sum_A \frac{Z_A}{r_{1A}}$$

FE based calculations $0 \bullet 0$

Summary

The SCF iteration in detail

Building the stiffness matrix

$$A_{jk} = \int_{\Omega} \frac{1}{2} \nabla \varphi_j(\underline{\boldsymbol{r}}) \cdot \nabla \varphi_k(\underline{\boldsymbol{r}}) + \varphi_j(\underline{\boldsymbol{r}}) \Big(V_0(\underline{\boldsymbol{r}}) + V_H(\underline{\boldsymbol{r}}) + V_x(\underline{\boldsymbol{r}}) \Big) \varphi_k(\underline{\boldsymbol{r}}) \, \mathrm{d}\underline{\boldsymbol{r}}$$

- Kinetic part and nuclear potential part can be done naively
- To get $V_H(\underline{r})$ solve Poisson equation of electron density:

$$-\Delta V_H(\underline{\boldsymbol{r}}) = \rho(\underline{\boldsymbol{r}})$$

• Exchange $V_x(\underline{r})$ is problematic, since non-local operator

$$V_H(\underline{r}_1) = \sum_j \int_{\Omega} \frac{\left|\psi_j(\underline{r}_2)\right|^2}{r_{12}} \,\mathrm{d}\underline{r}_2$$

Motivation	Introduction to the FEM
000	0000000000000
	1 / 11

FE based calculations $0 \bullet 0$

Summary

The SCF iteration in detail

Building the stiffness matrix

$$A_{jk} = \int_{\Omega} \frac{1}{2} \nabla \varphi_j(\underline{r}) \cdot \nabla \varphi_k(\underline{r}) + \varphi_j(\underline{r}) \Big(V_0(\underline{r}) + V_H(\underline{r}) + \frac{V_x(\underline{r})}{V_x(\underline{r})} \Big) \varphi_k(\underline{r}) \, \mathrm{d}\underline{r}$$

- Kinetic part and nuclear potential part can be done naively
- To get $V_H(\underline{r})$ solve Poisson equation of electron density:

$$-\Delta V_H(\underline{\boldsymbol{r}}) = \rho(\underline{\boldsymbol{r}})$$

• Exchange $V_x(\underline{r})$ is problematic, since non-local operator

$$V_x(\underline{r}_1)\psi_i(\underline{r}_1) = \sum_{j \neq i} \mathbf{V}_{ji}^x(\underline{r}_1)\psi_j(\underline{r}_1)$$
$$\mathbf{V}_{ji}^x(\underline{r}_1) = \int_{\Omega} \frac{\psi_j^*(\underline{r}_2)\psi_i(\underline{r}_2)}{r_{12}} \,\mathrm{d}\underline{r}_2$$

FE based calculations $\circ \circ \bullet$

Summary

Mesh refinement in detail

- Input: a *posteriori* error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
 - Fixed number
 - Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

FE based calculations $\circ \circ \bullet$

Summary

Mesh refinement in detail

- Input: a *posteriori* error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
 - Fixed number
 - Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

Motivation	Introduction to the FEM
000	0000000000000
A 1 C 1 A 1 A	•1

Mesh refinement in detail

- Input: a *posteriori* error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
 - Fixed number
 - Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

Motivation	Introduction to the FEM
000	0000000000000
A 1 C 1 A 1 A	•1

Mesh refinement in detail

- Input: a *posteriori* error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
 - Fixed number
 - Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

Motivation	Introduction to the FEM
000	0000000000000
A 1 C 1 A 1 A	•1

Mesh refinement in detail

- Input: a *posteriori* error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
 - Fixed number
 - Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

Motivation	Introduction to the FEM
000	0000000000000
A 1 C 1 A 1 A	•1

Mesh refinement in detail

- Input: a *posteriori* error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
 - Fixed number
 - Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

FE based calculations $\circ \circ \bullet$

Summary

Mesh refinement in detail

- Input: a *posteriori* error for each cell
- Can scale error by importance (multi-scale methods)
- Refinement stategies:
 - Fixed number
 - Fixed fraction (preferred)
- Neighbours: Refinement level can only differ by one

FE based calculations 000

Table of Contents

1 Motivation

- Finite elements from a quantum chemist's perspective
- ② General introduction to the finite-element method (FEM)
 The weak formulation
 Finite Element spaces
- FE based electronic structure calculations
 The SCF iteration in detail
 - Mesh refinement in detail

4 Summary

Motivation	Introduction to the FEM	FE based calculations	Summary
000	000000000000	000	

Summary

- FEM very flexible wrt. chosen grid
- Adaptive refinement of grid possible
- Integration (almost always) reduces to matrix-vector multiplication
- Integration matrices can be precomputed for given grid
- Large, but sparse matrices for eigenproblem
- Linear scaling

Motivation 000	Introduction to the FEM 0000000000000	FE based calculations 000	Summary
References			

- J. Avery, New Computational Methods in the Quantum Theory of Nano-Structures. PhD thesis, University of Copenhagen, 2011.
- P. Bastian, Scientific Computing with Partial Differential Equations. Lecture notes, Ruprecht-Karls-Universität Heidelberg, 2014.
- R. Alizadegan, K. J. Hsia, and T. J. Martinez, J. Chem. Phys., 132 (2010), 034101.
- W. Bangerth *et. al.*, The deal.ii library, version 8.1. http://arxiv.org/abs/1312.2266v4, 2013.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.