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space Q = [a, b]

e Discretise space €2 into grid.
e Finite elements (FEs) are piecewise polynomial functions
o FEs are zero at large portions of space
= Very localised
e Can be used as basis for e.g. molecular wave functions
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Finite elements from a quantum chemist’s perspective

Finite elements (FEs) as basis functions

space 2 = [a, b

o Discretise space 2 into grid.
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Finite elements from a quantum chemist’s perspective

Finite elements (FEs) as basis functions

Pk, P41 PN,

|
1
a =z Ty = b

o Discretise space 2 into grid.
o Finite elements (FEs) are piecewise polynomial functions
o FEs are zero at large portions of space

= Very localised

@ Can be used as basis for e.g. molecular wave functions




Motivation Introduction to the FEM FE based calculations Summary
oeo 00000000000000 000

Finite elements from a quantum chemist’s perspective

Potential advantages of an FE basis

e Strong locality

= Sparse matrices

= Linear scaling

= FEasy and effective parallelisation
e Non-uniform grids are possible

= Intrinsic multi-scale methods

o Methods for a posteriori error estimation

= On-the-fly adaptive refinement of the grid
= Grid adapts to density
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Finite elements from a quantum chemist’s perspective

A true black-box method for quantum chemistry?

Possible outline of a black-box FE calculation
@ Specify a coarse grid (could be auto-generated)
@ Specify a region of interest
@ Run calculation
@ Identify regions of largest a posteriori error
@ Refine grid adaptively
O Re-do steps 3-5 until desired accuracy reached

Problems and disadvantages
o Much more basis functions required (think 10* to 107)

@ Non-local potential contributions problematic
(e.g. Hartree-Fock exchange)
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The weak formulation

The Hartree-Fock equations in strong form

@ The well-known Hartree-Fock equations may be written as

1
( - §A + V(ﬂ))%’(ﬁ) = gi9)i(r) ref)
Yi(r) =0 r e N
where
V=Vi+Vg+V,
with

e the electron-nuclear interaction Vj
o the Hartree potential Vg
o the exchange potential V,
o This is a differential equation and called the strong form of
the problem



o Multiply strong form by test function zﬁ and integrate

(= 38+ VEO)bilr) = ite)

e Apply partial integration
1. |
0= —Vi(r) - Vioi(r) dr —
Ja 2

o
&

-/(")sz % b(r) Vipi(r) - o, ds
. / O(r) (V(r) = &) i) dr
JQ
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The weak formulation

Getting the weak form (1)

o Multiply strong form by test function 1/3 and integrate

0= [ D)~ 520i() + (V(x) — )ulr)) dr
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The weak formulation

Getting the weak form (1)

o Multiply strong form by test function 1[) and integrate

0= [ D)~ 520i() + (V(x) — )ulr)) dr

o Apply partial integration

0= [ 5Vi) Vistr) dz— [ 500 Vi) -, ds
+ [ 9@ (VD) =) vilr) dr
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The weak formulation

Getting the weak form (2)

@ Physics dictates that ¢;(r) = 0 on the boundary 0.

= Can also require for test function (= variation):
(r) =0 on 0f)
o Boundary term in integral drops:
0= [ SVir) Vilr) dr
+ [ 9 (V) = =) vilr) dr
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The weak formulation

Getting the weak form (3)

@ Define bilinear forms

of.9) = [ 5VHE) - Va(e) + f(2) V(w) glr) dr

and

m(f,g)Z/Qf(z)-g(ﬂ) dr

o Rewrite integral equation to

0= [ 599w T ar+ [ G0 (V) - et dr

10 /27
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The weak formulation

Getting the weak form (3)

o Define bilinear forms
olf,9) = [ 39Iw) V() + /() V() glr) dr
Q

and

m(f,g)Z/Qf(z)-g(ﬁ) dr

o Rewrite integral equation to

0= [ 590w Vi ar+ [ G0 (V) - e it dr

Q
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The weak formulation

Getting the weak form (3)

@ Define bilinear forms

of.9) = [ 5VHE) - Va(e) + f(2) V(w) glr) dr

and

m(f,g)Z/Qf(z)-g(ﬂ) dr

o Rewrite integral equation to

a(, i) = &5 m(P, ;) (2.1)
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The weak formulation

Getting the weak form (3)

@ Define bilinear forms

of.9) = [ 5VHE) - Va(e) + f(2) V(w) glr) dr

and

m(f,g)Z/Qf(z)-g(ﬂ) dr

o Rewrite integral equation to
a(h, ;) = e m(, ;) (2.1)

o The weak formulation of the Hartree-Fock problem is:
For all test functions ¢ (2.1) holds.

10 /27
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The weak formulation

Introducing a basis

o It can be shown, that QZ) and 1; are members of the same
Hilbert space Hg.

o Let ® = {p;}jen be a basis for Hj.
o Then ¢i(r) = ¥, 2"
o It holds for the weak formulation:
Vi € Hy : a(th, i) = e m(ih, i)

< Ve, ek € @ a(go], zk (pk> =g m(¢j7 Zzigi)wo

& Vo, er €D Zzl)a Pj> Pk) Z m(#j, Pk)
k
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Finite Element spaces

Discretising the space H,

o Introduce Npg-dimensional subspace Vj C Hol

o Weak formulation becomes a generalised eigenvalue
problem Ag(i) = z-:ng(i).
With stiffness matrix

A = a(ipj, 0x) = / %ij(z) “Voi(r) + @i(r) V(r)ew(r) dr
Q

and mass matriz
My, = m(pj, pr) = / pi(r)pr(r) dr
Q

@ Need to find a basis of V}, which gives well-conditioned A
and M matrices and makes integration simple.
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Finite Element spaces

Finite elements

Properties

linear finite elements (Nrg = Nj, + 1)

© Ph+1 PNy,

a = 9 Ny, = b
nQ cee Mg ny Nkl M2 oo N, —1 TN,

Each FE is a polynomial when restricted to a cell
Non-differentiable points at cell boundaries z;

Each FE has support only on a few neighbouring cells
The FEs satisfy at the nodal points

wi(nj) = dy
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Finite Element spaces

Finite elements

Properties
A quadratic finite elements (Nrg = 2N, + 1)
14+
Pk+3
ok PN,
I
a = 9 Ny, = b
no m1 Ng—2 Mg—1 N M4 1Mk4+2  Nk44 2N, —1 N2Ny,
e Each FE is a polynomial when restricted to a cell
o Non-differentiable points at cell boundaries z;
e Each FE has support only on a few neighbouring cells
o The FEs satisfy at the nodal points

wi(nj) = dy
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Finite Element spaces

Finite elements

Reference cell and shape functions

He

Co C

co is called the reference cell

Affine map p. for each cell to construct ¢ from c¢q
Shape functions {eqto<a<n, form a basis for ¢y
For finite elements ¢y with support on c:

okl (r) = ea (,uc_l(ﬂ)) for some «

= Can transform integrals cell-by-cell onto reference cell.
= Only need to really calculate integrals on reference cell.
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Finite Element spaces

Finite elements

Examples of shape functions

FE based calculations

000

Summary
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Finite Element spaces

Integration in FE spaces (1)

Integrals as matrix-vector-products

e For each function f € Vi
Npg—1
F=2 fipi = fi=1F(m)
i=0
e For all possible overlap integrals

Npg—1

[ I dr= 3 £ [ eieiir) dr

1,j=0

M
=f"Mg

o Similar relations for other integrals.

16 /

Summary
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Finite Element spaces

Integration in FE spaces (2)

Splitting into cell contributions

e Calculate as sum of cell-wise contributions: My = 3. M

My = / pi(r)p;(r) dr

(]

M only non-zero if ; and ¢; have common support on ¢
Let «, 8 such that

wilc(£)=ea<u21(£)) and soy'\c(z):@ﬁ(uél(ﬂ))

o Let J.(§) be the Jacobian of the mapping r = p.(§), i.e.

0 (uc(ﬁ))i

(7:©), = (Vene(®),, = 0%;

)
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Finite Element spaces

Integration in FE spaces (3)

Transformation to unit cell and quadrature

Mg = / pi(r)p;(r) dr
—/ea 7)) es(p:(r)) dr

il (1) = eq (uZl(z))
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Finite Element spaces

Integration in FE spaces (3)

Transformation to unit cell and quadrature

Mg = / pi(r)p;(r) dr
—/ea 7)) es(p:(r)) dr
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Finite Element spaces

Integration in FE spaces (3)

Transformation to unit cell and quadrature
Mj = / pi(r)p;(r) dr
C

- / o (1)) es (1 () dr
_ /CO eal)es(€) det (1.(€)) dé
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Finite Element spaces

Integration in FE spaces (3)

Transformation to unit cell and quadrature

- / o (1)) es (1 () dr

= [ cal@)es(©) et (1e(©)) ot

= eal€,)es(€,) det (Jc(gq)) w,

g=1

e Gaussian quadrature of order N, with quad. weights w,

Summary
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Finite Element spaces

Integration in FE spaces (3)

Transformation to unit cell and quadrature

M :/C%'(ﬁ)soj(z) dr
- / o (1)) es (1 () dr

= [ cal@)es(©) et (1e(©)) ot

= eal€,)es(€,) det (Jc(gq)) w,

g=1

e Gaussian quadrature of order N, with quad. weights w,
@ Only need to know det J,, e, at quadrature points of ¢

o Only det J. changes from cell to cell

Summary
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Finite Element spaces

A posteriori error estimation

a posteriort error
Estimate for error of numerical solution without knowledge of
analytical solution

(]

Aim: Understand which cells make up largest contribution

In general: Computation difficult and expensive

Crude guesses usually good enough
Estimates consider:

(]

o Residual inside domain 2
1
r(r) = (= A+ V(r) - &) wilr)

o Discontinuities of first derivatives at cell faces.
o The size of the cells

19 /27
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Recall from earlier:

Possible outline of a black-box FE calculation
@ Specify a coarse grid (could be auto-generated)
@ Specify a region of interest
@ Run calculation
@ Identify regions of largest a posteriori error
@ Refine grid adaptively
O Re-do steps 3-5 until desired accuracy reached

Summary



Motivation Introduction to the FEM FE based calculations
000 00000000000000 000

Recall from earlier:

Possible outline of a black-box FE calculation
@ Specify a coarse grid (could be auto-generated)
@ Specify a region of interest
@ Run calculation
@ Identify regions of largest a posteriori error
@ Refine grid adaptively
O Re-do steps 3-5 until desired accuracy reached

Summary



Motivation Introduction to the FEM FE based calculations Summary
000 00000000000000 000

The SCF iteration in detail

SCF iteration: Overview

@ Once grid is set up p. can be constructed
= Can map FEs {¢;}o<j<ngg to shape functions {e, fo<a<ny,

o Calculate mass matrix M and stiffness matrix A
(using current {;}o<i<n,,, and current density p)

A= [ §9i) T + i) (Vo(o) + V(o) + Vele) )ou(e)
Q
ik = i(1)pr(r) dr
M /Qw( Jer(r)

@ Solve generalised eigenvalue problem:

e New set of {¢;}o<i<n,,, and new p.

N
%]
1
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The SCF iteration in detail

Building the stiffness matrix

A= [ 5760 Tou(o) + (o) (Yol + Vi) + Vil )

o Kinetic part and nuclear potential part can be done naively



Motivation Introduction to the FEM FE based calculations Summary

000 00000000000000 0e0
The SCF iteration in detail
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A= [ 59600 Tiute) + 4o (Volo) + Vi) + Vil )

o Kinetic part and nuclear potential part can be done naively
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The SCF iteration in detail

Building the stiffness matrix

A= [ 5960 Tiute) + 040 (Vo) + Vi) + Vil )

o Kinetic part and nuclear potential part can be done naively
e To get Vy(r) solve Poisson equation of electron density:

—AVy(r) = p(r)

VH('I'l - / ‘w 7‘2 E‘
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The SCF iteration in detail

Building the stiffness matrix

A= [ 59600 Tiute) + 010 (Volo) + Vi) + V(o) )

o Kinetic part and nuclear potential part can be done naively
e To get Vy(r) solve Poisson equation of electron density:

—AVg(r) = p(r)
e Exchange V,(r) is problematic, since non-local operator

Va(r Jwi(ry) = Y Vi(r, wy(ry)
jFi

b (o),
Vi) = / 7 (ro)vi(rs) dr,
Q

712
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Mesh refinement in detail

Mesh refinement in detail

Input: a posteriori error for each cell

Can scale error by importance (multi-scale methods)

Refinement stategies:

o Fixed number
o Fixed fraction (preferred)

Neighbours: Refinement level can only differ by one
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Summary

o FEM very flexible wrt. chosen grid

Adaptive refinement of grid possible

(]

Integration (almost always) reduces to matrix-vector
multiplication

(]

Integration matrices can be precomputed for given grid

Large, but sparse matrices for eigenproblem

Linear scaling

Summary
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