Motivation 0 Ring-polymer instanton theory 0000000000000

Splitting calculations 00000

Summary

Instanton calculations of tunnelling in water clusters

Michael F. Herbst michael.herbst@iwr.uni-heidelberg.de

Interdisziplinäres Zentrum für wissenschaftliches Rechnen Ruprecht-Karls-Universität Heidelberg

 $20 \ {\rm Februar} \ 2014$

Splitting calculations 00000

Table of Contents

1 Motivation

- Why tunnelling matters.
- 2 Tunnelling and ring-polymer instanton theory
 - Tunnelling in the double well
 - Approximate evaluation of the partition function
 - Generalising to higher dimensions
- 3 Splitting calculations
 - The water decamer
 - Larger clusters

4 Summary

Splitting calculations 00000

Table of Contents

1 Motivation

- Why tunnelling matters.
- 2 Tunnelling and ring-polymer instanton theory
 - Tunnelling in the double well
 - Approximate evaluation of the partition function
 - Generalising to higher dimensions
- **3** Splitting calculations
 - The water decamer
 - Larger clusters

4 Summary

Motivation ●	Ring-polymer instanton theory	Splitting calculations 00000	Summary
Why tunnelling matte	ers.		

Motivation

- Understanding of tunnelling as QM phenomenon
- Interpretation of high resolution spectra (terahertz)
- Tunnelling splittings very sensitive to short-range anisotropy of PES
- Bulk properties mostly depend on 2-body and 3-body terms of PES
- \Rightarrow Assessment of water potential energy surfaces

Splitting calculations 00000

Table of Contents

1 Motivation

- Why tunnelling matters.
- 2 Tunnelling and ring-polymer instanton theory
 - Tunnelling in the double well
 - Approximate evaluation of the partition function
 - Generalising to higher dimensions
- **3** Splitting calculations
 - The water decamer
 - Larger clusters

4 Summary

Double well tunnelling model

assume no tunnelling

tunnelling considered

18 A.

T 16

• Variational approach to obtain states in the tunnelling case:

$$\Psi_{\pm} = \frac{1}{\sqrt{2}} (\Psi_L \pm \Psi_R)$$

- Only consider ground state
- Tunnelling splitting Δ is energy separation

5/30

Motivation	Ring-polymer instanton theory	Splitting calculations	Summary
0	000000000000000000000000000000000000000	00000	
Tunnelling in the	double well		

Some notation

• As sum over states:

$$Q(\beta) = \sum_{i} \exp(-\beta E_i) \qquad \qquad \beta = \frac{1}{kT}$$

• As trace over Boltzmann operator:

$$Q(\beta) = \int_{-\infty}^{\infty} dx \left\langle x \middle| \exp\left(-\beta \hat{\mathcal{H}}\right) \middle| x \right\rangle$$

• To show equivalence: Use completeness of bases

$$\int_{-\infty}^{\infty} dx |x\rangle \langle x| = 1 \qquad \sum_{i} |\Psi_i\rangle \langle \Psi_i| = 1$$

and $\Psi_i(x) \equiv \langle x | \Psi_i \rangle$.

Motivation	Ring-polymer instanton theory	Splitting calculations	Summary
0	000000000000000000000000000000000000000	00000	
Tunnelling in the	double well		

Some notation

• As sum over states:

$$Q(\beta) = \sum_{i} \exp(-\beta E_i) \qquad \qquad \beta = \frac{1}{kT}$$

-1

• As trace over Boltzmann operator:

$$Q(\beta) = \int_{-\infty}^{\infty} dx \left\langle x \middle| \exp\left(-\beta \hat{\mathcal{H}}\right) \middle| x \right\rangle$$

• To show equivalence: Use completeness of bases

$$\int_{-\infty}^{\infty} dx |x\rangle \langle x| = 1 \qquad \sum_{i} |\Psi_i\rangle \langle \Psi_i| = 1$$

and $\Psi_i(x) \equiv \langle x | \Psi_i \rangle$.

6/30

э

Motivation	Ring-polymer instanton theory
0	000000000000000000000000000000000000000
m 11 1 1 .	1 11

 $\begin{array}{c} {\rm Splitting\ calculations}\\ {\rm 00000} \end{array}$

Summary

Tunnelling in the double well

The partition function

Using sum over states

イロト イロト イヨト イヨト

э

8/30

 $\frac{Q(\beta)}{Q_0(\beta)} = \frac{\text{tunnelling case}}{\text{non-tunnelling case}}$

Motivation	Ring-polymer instanton theory
0	0000000000000
m 11 1 1 .	

 $\begin{array}{c} {\rm Splitting\ calculations}\\ {\rm 00000} \end{array}$

Summary

Tunnelling in the double well

The partition function

Using sum over states

$$\begin{aligned} \frac{Q(\beta)}{Q_0(\beta)} &= \frac{\sum_i \exp\left(-\beta \tilde{E}_i\right)}{\sum_i \exp\left(-\beta E_i\right)} \\ &\simeq \frac{\exp\left(-\beta (E_0 - \Delta/2)\right) + \exp\left(-\beta (E_0 + \Delta/2)\right)}{2\exp\left(-\beta E_0\right)} \\ &= \cosh\left(\frac{\beta \Delta}{2}\right) \end{aligned}$$

8/30

Motivation 0	Ring-polymer instanton theory	Splitting calculations 00000	Summary
Tunnelling in the dou	ble well		

Using operator trace

• Can use Trotter theorem and show

$$Q(\beta) = \int_{-\infty}^{\infty} dx \left\langle x \middle| \exp\left(-\beta \hat{\mathcal{H}}\right) \middle| x \right\rangle$$

Motivation	Ring-polymer instanton theory	Splitting calculations	Summary
0	000000000000000000000000000000000000000	00000	
Tunnelling in the dou	ble well		

Using operator trace

• Can use Trotter theorem and show

$$Q(\beta) = \lim_{N \to \infty} \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_2 \cdots \int_{-\infty}^{\infty} dx_N \prod_{i=1}^{N} \left\langle x_i \middle| \hat{\Omega} \middle| x_{i+1} \right\rangle$$

where $x = x_1 = x_{N+1}$ and

$$\hat{\Omega} = \exp\left(-\frac{\beta}{2N}\hat{\mathcal{V}}\right)\exp\left(-\frac{\beta}{N}\hat{\mathcal{T}}\right)\exp\left(-\frac{\beta}{2N}\hat{\mathcal{V}}\right).$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ かへで 9/30

Motivation	Ring-polymer instanton theory	Splitting calculations	Summary
0	000000000000000000000000000000000000000	00000	
Tunnelling in the double well			

Using operator trace

• Can use Trotter theorem and show

$$Q(\beta) = \lim_{N \to \infty} \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_2 \cdots \int_{-\infty}^{\infty} dx_N \prod_{i=1}^{N} \left\langle x_i \middle| \hat{\Omega} \middle| x_{i+1} \right\rangle$$
$$\equiv \lim_{N \to \infty} \int_{-\infty}^{\infty} d\underline{x} \prod_{i=1}^{N} \left\langle x_i \middle| \hat{\Omega} \middle| x_{i+1} \right\rangle$$

where $x = x_1 = x_{N+1}$ and

$$\hat{\Omega} = \exp\left(-\frac{\beta}{2N}\hat{\mathcal{V}}\right)\exp\left(-\frac{\beta}{N}\hat{\mathcal{T}}\right)\exp\left(-\frac{\beta}{2N}\hat{\mathcal{V}}\right).$$

Motivation	Ring-polymer instanton theory	Splitting calculations	Summary
0	000000000000000000000000000000000000000	00000	
Tunnelling in the dou	ble well		

Using operator trace

• Can use Trotter theorem and show

$$Q(\beta) = \lim_{N \to \infty} \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_2 \cdots \int_{-\infty}^{\infty} dx_N \prod_{i=1}^{N} \left\langle x_i \middle| \hat{\Omega} \middle| x_{i+1} \right\rangle$$
$$\equiv \lim_{N \to \infty} \int_{-\infty}^{\infty} d\underline{x} \prod_{i=1}^{N} \left\langle x_i \middle| \hat{\Omega} \middle| x_{i+1} \right\rangle$$

• Insert our system $\hat{\mathcal{V}} = V(x), \ \hat{\mathcal{T}} = -\frac{\hbar^2}{2} \frac{\mathrm{d}^2}{\mathrm{d}x^2}$ and $\beta_N = \beta/N$ to get

$$Q(\beta) = \lim_{N \to \infty} \left(\frac{1}{2\pi\beta_N \hbar^2} \right)^{\frac{N}{2}} \int_{-\infty}^{\infty} d\underline{x} \exp\left[-\beta_N U_N(\beta, \underline{x})\right]$$
$$U_N(\beta, \underline{x}) = \left[\sum_{i=1}^N V(x_i) + \frac{(x_{i+1} - x_i)^2}{2\left(\beta_N \hbar\right)^2}\right]_{x_{N+1} = x_1}$$

9/30

Motivation Ring-polymer instanton theory

 $\begin{array}{c} \text{Splitting calculations}\\ \text{00000} \end{array}$

Summary

Tunnelling in the double well

Imaginary time formalism

• Compare

$$\exp\left(-\mathbf{i}\frac{\hat{\mathcal{H}}t}{\hbar}\right)\\\exp\left(-\beta\hat{\mathcal{H}}\right)$$

propagator

Boltzmann operator

- If $t = -\mathbf{i} \beta \hbar$ both identical
- $\tau = \beta \hbar$ has units of time: "imaginary time"
- Propagation of system in τ (somewhat) resembles partition function

Motivation Ring-polymer instanton theory

 $\begin{array}{c} \text{Splitting calculations}\\ \text{00000} \end{array}$

Summary

Tunnelling in the double well

Imaginary time formalism

• Compare

$$\exp\left(-\mathbf{i}\frac{\hat{\mathcal{H}}t}{\hbar}\right)$$
$$\exp\left(-\beta\hat{\mathcal{H}}\right)$$

propagator

Boltzmann operator

- If $t = -\mathbf{i} \beta \hbar$ both identical
- $\tau = \beta \hbar$ has units of time: "imaginary time"
- Propagation of system in τ (somewhat) resembles partition function

 $\begin{array}{c} \text{Splitting calculations} \\ \text{00000} \end{array}$

Summary

Tunnelling in the double well

Interpreting U_N in imaginary time formalism

• Recall
$$U_N(\beta, \underline{x}) = \left[\sum_{j=1}^N V(x_j) + \frac{(x_{j+1}-x_j)^2}{2(\beta_N \hbar)^2}\right]_{x_{N+1}=x_1}$$

• So using $\tau = \beta \hbar$ and $\tau_N = \tau/N$:

$$\beta_N \hbar U_N = \sum_{j=1}^N \tau_N \left(V(x_j) + \frac{(x_{j+1} - x_j)^2}{2\tau_N^2} \right)$$

• This is a discretised version of

$$\int_0^{\tau} \mathrm{d}\tau' \left(V\left(x(\tau')\right) + \frac{1}{2} \left(\frac{\mathrm{d}x(\tau')}{\mathrm{d}\tau'}\right)^2 \right)$$

• which is the action integral

$$S = \int_0^\tau \,\mathrm{d}\tau' \ T - \tilde{V}$$

for a (periodic) motion with $x(0) = x(\tau)$ in $\tilde{V}(x) = -V(x)$.

11/30

 $\begin{array}{c} \text{Splitting calculations} \\ \text{00000} \end{array}$

Summary

Tunnelling in the double well

Interpreting U_N in imaginary time formalism

- Recall $U_N(\beta, \underline{x}) = \left[\sum_{j=1}^N V(x_j) + \frac{(x_{j+1}-x_j)^2}{2(\beta_N \hbar)^2}\right]_{x_{N+1}=x_1}$
- So using $\tau = \beta \hbar$ and $\tau_N = \tau/N$:

$$\beta_N \hbar U_N = \sum_{j=1}^N \tau_N \left(V(x_j) + \frac{(x_{j+1} - x_j)^2}{2\tau_N^2} \right)$$

• This is a discretised version of

$$\int_0^\tau \, \mathrm{d}\tau' \, \left(V \Big(x(\tau') \Big) + \frac{1}{2} \left(\frac{\, \mathrm{d}x(\tau')}{\, \mathrm{d}\tau'} \right)^2 \right)$$

• which is the action integral

$$S = \int_0^\tau \,\mathrm{d}\tau' \ T - \tilde{V}$$

for a (periodic) motion with $x(0) = x(\tau)$ in $\tilde{V}(x) = -V(x)$.

 $\begin{array}{c} \text{Splitting calculations}\\ \text{00000} \end{array}$

Summary

Tunnelling in the double well

Interpreting U_N in imaginary time formalism

- Recall $U_N(\beta, \underline{x}) = \left[\sum_{j=1}^N V(x_j) + \frac{(x_{j+1}-x_j)^2}{2(\beta_N \hbar)^2}\right]_{x_{N+1}=x_1}$
- So using $\tau = \beta \hbar$ and $\tau_N = \tau/N$:

$$S_N = \beta_N \hbar U_N = \sum_{j=1}^N \tau_N \left(V(x_j) + \frac{(x_{j+1} - x_j)^2}{2\tau_N^2} \right)$$

• This is a discretised version of

$$S = \int_0^\tau d\tau' \left(V\left(x(\tau')\right) + \frac{1}{2} \left(\frac{dx(\tau')}{d\tau'}\right)^2 \right)$$

• which is the action integral

$$S = \int_0^\tau \,\mathrm{d}\tau' \ T - \tilde{V}$$

for a (periodic) motion with $x(0) = x(\tau)$ in $\tilde{V}(x) = -V(x)$.

Motivation	Ring-polymer instanton theory	Splitting calculations	Summary
0	0000000000000	00000	
Tunnelling in the dou	ible well		

The ring-polymer potential U_N

• Recall
$$U_N(\beta, \underline{x}) = \left[\sum_{i=1}^N V(x_i) + \frac{(x_{i+1}-x_i)^2}{2(\beta_N \hbar)^2}\right]_{x_{N+1}=x_1}$$

- Beads connected by harmonic springs of frequency $\frac{1}{\hbar\beta_N}$
- Beads are replica of system propagated in imaginary time

Splitting calculations 00000

Summary

Approximate evaluation of the partition function

Steepest descent approximation to evaluate Q:

• Recall
$$Q(\beta) = \lim_{N \to \infty} \left(\frac{1}{2\pi\beta_N\hbar^2}\right)^{\frac{1}{2}} \int_{-\infty}^{\infty} d\underline{x} \exp\left[-\beta_N U_N(\beta, \underline{x})\right]$$

and $U_N(\beta, \underline{x}) = \left[\sum_{j=1}^N V(x_j) + \frac{(x_{j+1} - x_j)^2}{2(\beta_N\hbar)^2}\right]_{x_{N+1} = x_1}$

ΔŢ

• Taylor series about minimum $\underline{\tilde{x}}^M$:

$$U_N(\beta, \underline{\boldsymbol{x}}) \simeq U_N(\beta, \underline{\tilde{\boldsymbol{x}}}^M) + \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N (x_i - \tilde{x}_i^M) G_{ij}^M(x_j - \tilde{x}_j^M)$$

• Write Q as sum over minima:

$$Q(\beta) \simeq \tilde{Q}(\beta) = \left(\frac{1}{\beta_N \hbar}\right)^N \sum_{\text{minima } M} \frac{1}{\sqrt{\det \mathbf{G}^M}} \exp\left(-\beta_N U_N(\beta, \underline{\tilde{x}}^M)\right)$$

Motivation 0	Ring-polymer instanton theory	Splitting calculations 00000	Summary
Approximate evaluati	on of the partition function		

Kinks and kink action

- Minima of $U_N(\beta, \underline{x})$ are periodic orbits
- Most beads stationary at $x = \pm x_0$ (Minima of V)
- "Kinks": Rapid motion in between
- Kink motions virtually independent since well-separated
- \Rightarrow All kinks and all *n*-kink orbits equivalent
 - S_{kink} : Action of a single kink

Motivation Ring-polymer instanton theory

 $\begin{array}{c} \text{Splitting calculations} \\ \text{00000} \end{array}$

Summary

Approximate evaluation of the partition function

1

Linear polymers and instantons

$$U_L(\beta, \underline{x}) = \sum_{i=1}^{L} V(x_i) + \frac{1}{2(\hbar\beta_N)^2} \left((x_1 + x_0)^2 + \sum_{i=1}^{L-1} (x_{i+1} - x_i)^2 + (x_0 - x_L)^2 \right)$$

- Linear string of system replicas between minima at $x = \pm x_0$
- Beads connected by harmonic springs
- Representation of a single kink
- "Instantons": Minima $\underline{\tilde{x}}^{n=1}$ of $U_L(\beta, \underline{x})$
- In the limit of large N and L:

$$U_L(\beta, \underline{\tilde{x}}^{n=1}) = \frac{S_{\text{kink}}}{\hbar\beta_N}$$

Motivation Ring-polymer instanton theory

 $\begin{array}{c} \text{Splitting calculations}\\ \text{00000} \end{array}$

Summary

Approximate evaluation of the partition function

Ring polymers with n kinks

• Recall
$$\tilde{Q}(\beta) = \left(\frac{1}{\beta_N \hbar}\right)^N \sum_M \frac{1}{\sqrt{\det \mathbf{G}^M}} \exp\left(-\beta_N U_N(\beta, \underline{\tilde{x}}^M)\right)$$

• If $\tilde{Q}_n(\beta)$ is partition function of ring-polymer restricted to have exactly *n* kinks:

$$\frac{\tilde{Q}_n(\beta)}{\tilde{Q}_0(\beta)} \simeq \frac{1}{2} \left(\theta(\beta)\right)^n$$

where

$$\theta(\beta) = \frac{\hbar\beta_N}{\Phi} \sqrt{\frac{S_{\rm kink}}{2\pi\hbar}} \exp\left(-\frac{S_{\rm kink}}{\hbar}\right)$$

- Φ contains the eigenfrequencies of $U_L(\beta, \underline{\tilde{x}}^{n=1})$
- \Rightarrow Minimising $U_L(\beta, \underline{x})$ gives both S_{kink} and Φ
 - There are $\frac{2N^n}{n!}$ such *n*-kink polymers

イロト 不同 トイヨト イヨト ヨー ろくつ

Motivation	Ring-polymer instanton theory	Splitting calculations	Summary
0	000000000000000000000000000000000000000	00000	
Approximate eva	luation of the partition function		

Putting it all together

• Separate $\tilde{Q}(\beta)$ into contributions of *n*-kink polymers

$$\begin{split} \tilde{Q}(\beta) \\ \tilde{Q}_0(\beta) &= \frac{\tilde{Q}_0(\beta) + \frac{2N^2}{2!}\tilde{Q}_2(\beta) + \dots + \frac{2N^n}{n!}\tilde{Q}_n(\beta)}{\tilde{Q}_0(\beta)} \\ &= \sum_{\substack{n=0,\\n \text{ even}}}^{\infty} \frac{2N^n}{n!} \cdot \frac{1}{2} \left(\theta(\beta)\right)^n \\ &= \cosh\left(N\theta(\beta)\right) \end{split}$$

• Compare with previously $\frac{Q(\beta)}{Q_0(\beta)} = \cosh\left(\frac{\beta\Delta}{2}\right)$:

$$\Delta \simeq \frac{2}{\beta_N} \theta(\beta) \qquad (\text{large } \beta, L)$$

Motivation	Ring-polymer instanton theory
0	000000000000000000000000000000000000000
Generalising to higher	dimensions

General 3D case

Defining the quantities

- System of degenerate wells (labelled $\lambda, \mu, \nu, \ldots$)
- $\theta(\beta)$ generalises to

$$\Theta_{\lambda\mu}(\beta) = \frac{\hbar\beta_N}{\Phi^{(\lambda\mu)}} \sqrt{\frac{S_{\rm kink}^{(\lambda\mu)}}{2\pi\hbar}} \exp\left(-\frac{S_{\rm kink}^{(\lambda\mu)}}{\hbar}\right)$$

Splitting calculations

 \bullet Define kink path weight matrix ${\bf h}$

$$h_{\lambda\mu} = -\lim_{\beta \to \infty} \frac{1}{\beta_N} \Theta_{\lambda\mu}(\beta)$$

 \bullet and tunnelling matrix ${\bf W}$

$$W_{\lambda\mu} = A_{\lambda\mu}h_{\lambda\mu}$$

• Eigenvalues of W give energy splittings $E_{\nu} - E_0$ • Skip ex.

	Ring-polymer instanton theory $000000000000000000000000000000000000$	Splitting calculations 00000	Summary
Generalising to higher	r dimensions		

General 3D case Example for \mathbf{W}

Motivation	Ring-polymer instanton theory
0	••••••••
Conoralising to higher	dimensions

 $\begin{array}{c} {\rm Splitting\ calculations}\\ {\rm 00000} \end{array}$

Summary

Generalising to higher dimensions

General 3D case Example for \mathbf{W}

Motivation	Ring-polymer instanton theory	Splitting calculations
0	0000000000000	00000
Generalising to higher	dimensions	

General 3D case Example for \mathbf{W}

Summary

Ring-polymer instanton theory

Splitting calculations 00000

Summary

Table of Contents

1 Motivation

- Why tunnelling matters.
- 2 Tunnelling and ring-polymer instanton theory
 - Tunnelling in the double well
 - Approximate evaluation of the partition function
 - Generalising to higher dimensions
- 3 Splitting calculations
 - The water decamer
 - Larger clusters

4 Summary

Motivation o	Ring-polymer instanton theory
The water decamer	

Splitting calculations $\bullet 0000$

Structure

- Cluster of 10 water molecules
- 10 symmetry-related degenerate minima
- Can ignore all tunnelling paths but O–H flips
- \Rightarrow Get 10 symmetry-related tunnelling paths

Motivation o	Ring-polymer instanton theory	Splitting calculations 0000	Summary
The water decamer			
Tunnelling	matrix		

- All wells only connected to two neighbours
- $\bullet\,$ All contributing paths equal weight h
- Get tunnelling matrix:

$$\mathbf{W} = \begin{pmatrix} 0 & h & 0 & \cdots & 0 & h \\ h & 0 & h & & 0 & 0 \\ 0 & h & 0 & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & h & 0 \\ 0 & 0 & 0 & h & 0 & h \\ h & 0 & 0 & 0 & h & 0 \end{pmatrix}$$

 $\Rightarrow\,$ Only need to converge a single instant on Motivation 0 Ring-polymer instanton theory 0000000000000

Splitting calculations 00000

Summary

The water decamer

Converging the instanton

- V(x): Use empirical water potential
- Setup table for $S_{\rm kink}$ and Φ in $\hbar\beta$ and L
- Diagonal convergence pattern
- Best estimate is largest ratio $\hbar\beta/L$
- Table shows $S_{\rm kink}/\hbar$

$\hbar\beta$ (a.u.) / L	16	32	64	128	256	512	1024	2048
10000	19.43	20.45	20.60	20.64	20.65	20.65	20.65	20.65
20000	12.96	19.48	20.50	20.66	20.69	20.70	20.70	20.70
40000	7.24	12.97	19.49	20.51	20.66	20.70	20.70	20.71
80000	3.89	7.24	12.97	19.49	20.51	20.66	20.70	20.70

Motivation 0 Ring-polymer instanton theory 0000000000000

Splitting calculations 00000

Summary

The water decamer

Converging the instanton

- V(x): Use empirical water potential
- Setup table for $S_{\rm kink}$ and Φ in $\hbar\beta$ and L
- Diagonal convergence pattern
- Best estimate is largest ratio $\hbar\beta/L$
- Table shows $S_{\rm kink}/\hbar$

$\hbar\beta$ (a.u.) /	L	16	32	64	128	256	512	1024	2048
10000		19.43	20.45	20.60	20.64	20.65	20.65	20.65	20.65
20000		12.96	19.48	20.50	20.66	20.69	20.70	20.70	20.70
40000		7.24	12.97	19.49	20.51	20.66	20.70	20.70	20.71
80000		3.89	7.24	12.97	19.49	20.51	20.66	20.70	20.70

Motivation 0	Ring-polymer instanton theory	Splitting calculations $000 \bullet 0$	Summary
The water decamer			
Results			

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 24 / 30 Motivation o Larger clusters Ring-polymer instanton theory 0000000000000

Splitting calculations $\circ \circ \circ \circ \bullet$

Summary

19mer and 20mer

Splitting calculations 00000

Table of Contents

1 Motivation

- Why tunnelling matters.
- 2 Tunnelling and ring-polymer instanton theory
 - Tunnelling in the double well
 - Approximate evaluation of the partition function
 - Generalising to higher dimensions
- **3** Splitting calculations
 - The water decamer
 - Larger clusters

4 Summary

Motivation	Ring-polymer instanton theory	Splitting calculations
0	0000000000000	00000

Summary

Summary

- Built up tunnelling picture from non-tunnelling reference
- Imaginary-time formalism: More intuitive interpretation of expressions
- $\bullet\,$ Apart from steepest descent: Method is exact for infinite L
- $\bullet\,$ Even for finite L good qualitative predictions possible

Motivation 0 Ring-polymer instanton theory

 $\begin{array}{c} {\rm Splitting\ calculations}\\ {\rm 00000} \end{array}$

Summary

28/30

Acknowledgements

Many thanks to

Prof. Stuart Althorpe

Adam Reid

• and the whole Althorpe group

Motivati	on
0	

Splitting calculations 00000 Summary

Links and further reading

- Ring-polymer instanton theory papers:
 - Richardson, J. O. and Althorpe, S. C., J. Chem. Phys., 2011, 134
 - Richardson, J. O. et al., J. Chem. Phys., 2011, 135
- My dissertation (extended version is recommended)
 - http://blog.mfhs.eu/2013/08/10/ master-thesis-tunnelling-in-water-clusters/
 - This document will be available shortly.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence.