
Fostering interdisciplinary research by
composable software

Michael F. Herbst

Mathematics for Materials Modelling (matmat.org), EPFL

27 June 2023
Slides: https://michael-herbst.com/slides/pasc23

DFT poten�als MD KMC fluids

QuantumESPRESSO
Terachem

VASP
ExaSim

beyond DFT

Q-Chem, Molpro

C/C++ or
FORTRAN

DFTK.jl
KMC.jl

Atomis�c.jlInteratomicPoten�als.jl

Poten�alLearning.jl

OpenCilk

increasing length/�me scales→

(based on Tapir/LLVM)

UQ for KMC (future)

hardware

QuantumInterfaces.jl

Molly.jl

LAMMPS.jl

FluxRM.jluses

+ Enzyme
+ Tiramisu

ML-POD

LAMMPS

ACE.jlACG.jl

UQ for DFT (in prototyping)

Real-world multi-physics
software stack for materials modelling

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

Stress =

1

det(L)

∂E
[
P∗, (I +M)L

]

∂M

∣∣∣∣∣
M=0

Run SCF, get P*
scfres = self_consistent_field(basis)

L = basis.model.lattice
stress = 1/det(L) * gradient(

M -> recompute_energy(
scfres, (I + M) * L),

zero(L)
)

vision: Math ≡ code

https://matmat.org
https://michael-herbst.com/slides/pasc23

Tackling 21st century challenges
21st century challenges:

Renewable energy, green chemistry, health care . . .

Current solutions limited by properties of available materials
⇒ Innovation driven by discovering new materials

Crucial tool: Computational materials discovery
Systematic simulations on ≃ 104 − 106 compounds
Complemented by data-driven approaches
Noteworthy share of world’s supercomputing resources

K. Alberi et. al. J. Phys. D, 52, 013001 (2019). 1 / 24

http://dx.doi.org/10.1088/1361-6463/aad926

Tackling 21st century challenges
21st century challenges:

Renewable energy, green chemistry, health care . . .

Current solutions limited by properties of available materials
⇒ Innovation driven by discovering new materials

Crucial tool: Computational materials discovery
Systematic simulations on ≃ 104 − 106 compounds
Complemented by data-driven approaches
Noteworthy share of world’s supercomputing resources

Multi-disciplinary effort: Software takes a key role
E.g. growing list of data / workflow management tools

Challenges of combining efforts & integrating communities

1 / 24

Minisymposium MS3D @ PASC23

Interdisciplinary Challenges in Multiscale Materials Modeling
. . . and the role of software in overcoming them

This talk Composable software to integrate communities

Giovanni Pizzi Community infrastructures for high-throughput
materials discovery

Rachel Kurchin Data-driven methods to bridge between theory and
experiment

Jessica Nash Teaching and educational efforts to strengthen a
software community

2 / 24

aM tM t

Contents

1 Challenges of integrating communities

2 Composability aspects of

3 Showcases of DFTK and related efforts

3 / 24

Sketch of high-throughput workflows

}
DFT PBE stability

DFT PBE band gap

Hybrid-DFT band gap

Beyond DFT

Design funnel for photovoltaic materials Workflow for computing elasticity tensors

Many parameters to choose (algorithms, tolerances, models)
Elaborate heuristics: Failure rate ≃ 1%
Still: Thousands of failed calculations

⇒ Wasted resources & increased human attention (limits througput)

Goal in group: Self-adapting black-box algorithms
Transform empirical wisdom to built-in convergence guarantees
Requires: Uncertainty quantification & error estimation

⇒ Understand where and how to spend efforts best

G. Hautier Comput. Mater. Sci. 164, 108 (2019); L. Himanen et. al. Adv. Science 6, 1900808 (2019). 4 / 24

(Exaggerative) state of codes in this field

Mathematical research
Goal: Numerical experiments
Scope: Reduced models
High-level language:
Matlab, python, . . .
Lifetime: 1 paper
Size: < 1k lines
Does not care about performance

Application research
Goal: Modelling physics
Scope: All relevant systems
Mix of languages:
C, FORTRAN, python, . . .
Lifetime: 100 manyears
Size: 100k – 1M lines
Obliged to write performant code

Working with these codes requires different skillsets
⇒ Orthogonal developer & user communities

Obstacle for knowledge transfer:
Mathematical methods never tried in practical setting
(and may well not work well in the real world)

Some issues cannot be studied with mathematical codes
(and mathematicians may never get to know of them)

What about emerging hardware, accelerators, performance?
Should be the regime of Computer Science (yet another community) 5 / 24

Difficulties of interdisciplinary research

Community conventions (e.g. publication culture)

Language barriers and context-sensitive terms
Speed of research (development of model vs. its analysis)

A social problem . . .
(Communication, convention, compromises, . . .)

. . . that is cemented in software:
Priorities differ ⇒ What is considered “a good code” differs
Insurmountable obstacles to integrate codes
Collaborations can stop before they begin . . .

Hypothesis: People compose if software composes

6 / 24

Density-functional toolkit (DFTK) — https://dftk.org

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

HΨ = EΨ

-based density-functional theory code
Cross-community: Mathematical research & applications

Allows restriction to relevant model problems,
and scale-up to application regime (1000 electrons)

Integration with multi-scale pipelines:

&
https://nccr-marvel.ch https://cesmix.mit.edu

Lessons learned:
Software integration is hard work
Unexpected catalytic effects from integration discussions
Each party better understands their role

⇒ As software composes, communities compose

Central goal: How can we lower the barrier to integrate?

7 / 24

https://dftk.org
https://nccr-marvel.ch
https://cesmix.mit.edu

What would it take to make software integration easier?

Societal aspect: We need a large open-source community
Fosters maintainability, reproducibility, documentation,
portability, integration

Necessary ingredients: Change of research culture
Publishing papers is not be the primary
Performance numbers are not be the primary
Writing composable software is the primary

Technical aspect: Separating the what from the how
Naturally leads to separation of concern

⇒ Need programming language to support this

8 / 24

aM tM t

Contents

1 Challenges of integrating communities

2 Composability aspects of

3 Showcases of DFTK and related efforts

9 / 24

Separating the what from the how
Why is this separation so important . . .

. . . for composable software?

. . . for multidisciplinary research?

Consider the goal: Modelling a physical system
Traditionally users code in detail how the computation should
proceed (Imperative programming)

How = architecture
How = algorithm
How = memory layout
How = discretisation
. . .

But all this has nothing to do with physics!
Can the how be abstracted away?

such that CS / Math can deal with it independently

Let’s see some developments 10 / 24

HPC abstractions

 OneAPI.jl

Accelerators Shared Mem Distributed

CUDA.jl

function power_method(A, x; niter=100)
for i = 1:niter

x = A * x
x ./= norm(x)

end
x

end

A = rand(10, 10); A = A + A' + 10I; x = rand(10)

using LinearMaps, IterativeSolvers
itinv(A) = LinearMap(x -> cg(A, x), size(A)...)

using CUDA
power_method(itinv(CuArray(A)), CuArray(x))

using AMDGPU
power_method(itinv(ROCArray(A)), ROCArray(x))

11 / 24

Code reinterpretation & self-implementing features
using OrdinaryDiffEq, Plots

Half-life of Carbon-14 is 5730 years.
c = 5.730

Setup
u0 = 1.0
tspan = (0.0, 1.0)

Define the problem
radioactivedecay(u, p, t) = -c*u

Pass to solver
prob = ODEProblem(radioactivedecay, u0, tspan)
sol = solve(prob, Tsit5();

reltol=1e-8, abstol=1e-8)

plot(sol.t, sol.u;
ylabel="u(t)", xlabel="t", lw=2, legend=false)

User says: I want to track measurement error
Numerics adapts, plotting adapts

No prior discussion with/amongst package maintainers to
“make this happen”

Measurement.jl reinterprets floating-point operations
In some sense this feature “implemented itself”

12 / 24

Code reinterpretation & self-implementing features
using OrdinaryDiffEq, Measurements, Plots

Half-life of Carbon-14 is 5730 years.
c = 5.730 ± 2

Setup
u0 = 1.0 ± 0.1
tspan = (0.0, 1.0)

Define the problem
radioactivedecay(u, p, t) = -c*u

Pass to solver
prob = ODEProblem(radioactivedecay, u0, tspan)
sol = solve(prob, Tsit5();

reltol=1e-8, abstol=1e-8)

plot(sol.t, sol.u;
ylabel="u(t)", xlabel="t", lw=2, legend=false)

User says: I want to track measurement error
Numerics adapts, plotting adapts

No prior discussion with/amongst package maintainers to
“make this happen”

Measurement.jl reinterprets floating-point operations
In some sense this feature “implemented itself”

12 / 24

and composable software
Magic of :

Painless generics and abstractions
Enables unusual code reinterpretation
(Algorithmic differentiation, symbolics, cross-platform compilation)

⇒ Separation of what and how:
Hardware & architecture (Computer Science)
Algorithms (Mathematics)
Model building (Physics)
Interactive scripting (Application scientists)

⇒ Cross-disciplinary expertise can compose in one code

Modelling and algorithm code stays high-level
Appropriate specialisations unlock performance
We can add them gradually as needed (Iterative optimisation)

Minisymposium tomorrow (MS5B / MS6B):
for HPC Tooling and Applications

13 / 24

aM tM t

Contents

1 Challenges of integrating communities

2 Composability aspects of

3 Showcases of DFTK and related efforts

14 / 24

Density-functional theory in one slide
Goal: Understand electronic structures (Many-body quantum system)

DFT approximation: Effective single-particle model

∀i ∈ 1 . . . N :
(

−1
2∆ + V (ρΦ)

)
ψi = εiψi,

V (ρ) =Vnuc + vCρ+ VXC(ρ),

ρΦ =
N∑

i=1
|ψi|2 ,

Φ = (ψ1, . . . , ψN) ∈
(
L2(R3,C)

)N

orthogonal

nuclear attraction Vnuc, exchange-correlation VXC, Hartree potential −∆ (vCρ) = 4πρ

Periodic boundary conditions & plane-wave discretisations

Self-consistent field (SCF): Fixed-point problem F (ρ) = ρ, solved:

ρn+1 = ρn + αP−1 [F (ρn) − ρn]

Hits plenty of “non-“s: Non-convex, non-linear, non-local, non-smooth
15 / 24

Density-functional toolkit1 — https://dftk.org

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

HΨ = EΨ

code for plane-wave DFT, started in 2019

Fully composable due to abstractions:
Arbitrary precision (32bit, >64bit, . . .)
Algorithmic differentiation (AD)
HPC tools: GPU acceleration, MPI parallelisation

Low barriers for cross-disciplinary research:
Allows restriction to relevant model problems,
and scale-up to application regime (1000 electrons)

Sizeable feature set in 7500 lines of code
Including some unique features (Self-adapting algorithms)

Accessible high-productivity research framework:
Key code contributions by undegrads / PhD students
AD support in 10 weeks (CS Bachelor)
GPU support in 10 weeks (Physics Bachelor)

Relevant contributions from outside collab. circle

16 / 24

https://dftk.org

DFTK design: Keeping code concise & accessible

Stress =

1

det(L)

∂E
[
P∗, (I +M)L

]

∂M

∣∣∣∣∣
M=0

Run SCF, get P*
scfres = self_consistent_field(basis)

L = basis.model.lattice
stress = 1/det(L) * gradient(

M -> recompute_energy(
scfres, (I + M) * L),

zero(L)
)

Stress computation (Definition vs. code)1

Post-processing step ⇒ Not performance critical

Comparison of implementation complexity:
DFTK : 20 lines1 (forward-mode algorithmic differentiation)

Quantum-Espresso: 1700 lines2

≃ 10-week GSoC project

⇒ No performance impact & accessible code

1https://github.com/JuliaMolSim/DFTK.jl/blob/master/src/postprocess/stresses.jl
2https://github.com/QEF/q-e/blob/develop/PW/src

17 / 24

https://github.com/JuliaMolSim/DFTK.jl/blob/3c9f1f8d7cf6bf9ac6fee298e0cd65e18d8f2285/src/postprocess/stresses.jl
https://github.com/QEF/q-e/blob/develop/PW/src

GPU support in DFTK

Use ’s HPC abstractions to
target all of CUDA, ROCm, oneAPI

< 500 lines changed

Collaboration with lab:
CS, physics & maths

10-week GSoC project

basis = PlaneWaveBasis(model; Ecut=30, kgrid=(1, 1, 1),
architecture=DFTK.GPU(CuArray))

Note: allows seamless composition of
Floating-point agnostic code for computing arbitrary derivatives
(algorithmic differentiation), guaranteed error control (intervals), etc.
Fast code integrating with MPI, CUDA, . . .

18 / 24

Robust & efficient algorithms

Fe2MnAl Heusler alloy

standard approach

0 50 100 150 200 250 300

20

40

60

80

100

120

k-points

nu
m

be
r

of
ite

ra
tio

ns

Schur

↑
↓

0 50 100 150 200 250 300

20

40

60

80

100

120

k-points

nu
m

be
r

of
ite

ra
tio

ns

direct

↑
↓

Schur complement

0 50 100 150 200 250 300

20

40

60

80

100

120

k-points

nu
m

be
r

of
ite

ra
tio

ns

Schur

↑
↓

0 50 100 150 200 250 300

20

40

60

80

100

120

k-points

nu
m

be
r

of
ite

ra
tio

ns

direct

↑
↓

40% less iterations

40% less iterations

Preconditioning inhomogeneous
systems (surfaces, clusters, . . .)

LDOS preconditioner1:
Parameter-free and self-adapting
ca. 50% less iterations

First-principle properties of metals
Schur-complement approach to
perturbation theory2

(exploits partially converged states)

ca. 40% less iterations

⇒ Maths / physics collaboration:
Exchange of ideas between simplified & practical settings crucial

1MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
2E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).

19 / 24

https://doi.org/10.1088/1361-648X/abcbdb
https://doi.org/10.1007/s11005-023-01645-3

materials codes: Bringing communities together
DFTK : Mathematical efforts on DFT modelling:

Self-adapting black-box DFT methods1,2

Numerical analysis of DFT3,4

Practical error bounds5,6

github.com/ACEsuit: Atomic Cluster Expansion7

Collaboration mathematics & applications

github.com/JuliaMolSim/Molly.jl: Molecular dynamics
Collaboration CS & application

Cross-disciplinary community efforts: JuliaMolSim & AtomsBase.jl
interfaces and data structures for materials modelling

Overview talk: Julia for Materials Modelling (youtube recording)
https://github.com/mfherbst/julia-for-materials

1MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
2MFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).
3E. Cancès, G. Kemlin, A. Levitt. J. Matrix Anal. Appl., 42, 243 (2021).
4E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
5MFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).
6E. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).
7R. Drautz. Phys. Rev. B 99, 014104 (2019). 20 / 24

https://github.com/ACEsuit/
https://github.com/JuliaMolSim/Molly.jl
https://github.com/JuliaMolSim
https://github.com/JuliaMolSim/AtomsBase.jl
https://github.com/mfherbst/julia-for-materials
https://www.youtube.com/watch?v=dujepKxxxkg
https://github.com/mfherbst/julia-for-materials
https://doi.org/10.1088/1361-648X/abcbdb
https://doi.org/10.1016/j.jcp.2022.111127
https://doi.org/10.1137/20M1332864
https://doi.org/10.1007/s11005-023-01645-3
https://doi.org/10.1039/D0FD00048E
https://doi.org/10.1137/21M1456224
https://doi.org/10.1103/PhysRevB.99.014104

Summary
Challenges in materials modelling

Inherently interdisciplinary research regime (e.g. high-throughput)

Codes frequently focus on single community
Integration & collaboration barrier

People compose if software composes
Cross-disciplinary ideas should not fail due to software
Key ingredient: Separating what and how

⇒ Better collaboration by separation of concern

What makes codes so composable?
Specialisation: Performance & hardware specifics
Abstraction: Code becomes the math
Multiple dispatch: Repurpose existing code (e.g. AD)

Experience with -based materials codes:
Concise, accessible & HPC ready

DFTK : One code for reduced problems & applications
21 / 24

Acknowledgements

Antoine Levitt (Université Paris-Saclay)
Alan Edelman (MIT)
Valentin Churavy (MIT)

All DFTK contributors

Summer of code

22 / 24

aM tM t

Open PhD & PostDoc positions in the MatMat group

Possible topics include:
Uncertainty quantification for DFT:
Error in data-driven DFT models,
pseudopotentials, propagation to properties
and MD potentials
Self-adapting numerical methods for
high-throughput DFT simulations
See https://matmat.org/jobs/

Interdisciplinary research linking maths and simulation:
Become part of maths and materials institutes @ EPFL

Collaboration inside :
Reproducible workflows & sustainable software
Computational materials discovery
Statistical learning methods

23 / 24

https://matmat.org/jobs/

aM tM t

Questions?

https://matmat.org

� mfherbst

� michael.herbst@epfl.ch

B https://michael-herbst.com/slides/pasc23

DFTK https://dftk.org

https://github.com/mfherbst/julia-for-materials
https://michael-herbst.com/learn-julia

24 / 24

https://matmat.org
https://github.com/mfherbst
michael.herbst@epfl.ch
https://michael-herbst.com/slides/pasc23
https://dftk.org
https://github.com/mfherbst/julia-for-materials
https://michael-herbst.com/learn-julia

	Motivation
	Challenges of integrating communities
	Composability aspects of [height=1.2em]img/julia.pdf
	Showcases of [height=1.4em]img/DFTK3to1.pdf and related [height=1.2em]img/julia.pdf efforts
	Outro
	A & Q
	

