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Energy consumption of materials discovery

Current solutions limited by properties of available materials
⇒ Innovation driven by discovering new materials

Experimental research extremely energy intensive
1 fume hood ≃ 2-3 average households1

⇒ Complement experiment by computational materials discovery
1D. Wesolowski et. al. Int. J. Sustain. High. Edu. 11, 217 (2010).
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High-throughput materials screening
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High-throughput materials screening

conductivitySuitable for
solar cells?

min
Ψ

⟨Ψ, HΨ⟩

Suitable for
solar cells?

Energy consumption ?
8h of 36-core processor
≃ 4h of average household
≃ 1 CHF
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High-throughput materials screening
We can fully automate this !
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Computational materials discovery

}
DFT PBE stability

DFT PBE band gap
Hybrid-DFT band gap

Beyond DFT

Simulation-based filtering

Goal: Only promising candidates made in the lab
Systematic simulations on ≃ 104 − 106 compounds

Noteworthy share of world’s supercomputing resources

Energy consumption of LUMI (one of the most efficient):
60 million kWh / year ≃ 1.5 EPFLs ≃ 14000 households
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Challenges of high-throughput regime

Complexity of multiscale materials modelling
Many parameters to choose (algorithms, tolerances, models)

Automated workflows & data management software (see above)

Despite elaborate heuristics: Thousands of failed calculations
⇒ Wasted resources
⇒ Increased human attention (limits througput)

research directions:
Robustness of algorithms
Uncertainties of models
Error propagation & error balancing
Multifidelity: The ideal mix of fast & accurate methods
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Opportunities of cross-disciplinary research
Role of mathematical research:

Unify notation & expose structure (Where do models differ ?)

Formalise & analyse problems (How can things go wrong ?)

Historic importance: Formulation of quantum mechanics
⇒ Collaboration mathematics & physics

Materials modelling: Source for research problems
Large-scale eigenvalue problems
(L. Lin, Y. Saad, C. Yang, . . . )

Acceleration, fixed-point methods
(T. Kelly, A. Miedlar, Y. Saad, R. Schneider, H. vd. Vorst, H. Walker, . . . )

Non-linear PDEs
(Z. Bai, E. Cancès, G. Friesecke, M. Lewin, I. Sigal, . . . )

Many more examples . . .
(Approximation theory, optimisation, uncertainty quantification, . . . )

⇒ Gap remains: Mathematical understanding ⇔ Simulation practice
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Difficulties of cross-disciplinary research
(A computational science point of view . . . )

Community conventions . . .
Language barriers, publication culture, speed of research, . . .

. . . that are cemented in software:
Priorities differ ⇒ What is considered “a good code” differs

Mathematical software
Goal: Numerical experiments
Scope: Reduced models
High-level language:
Matlab, python, . . .
Lifetime: 1 paper
Size: < 1k lines
Does not care about performance

Application software
Goal: Modelling physics
Scope: All relevant systems
Mix of languages:
C, FORTRAN, python, . . .
Lifetime: 100 manyears
Size: 100k – 1M lines
Obliged to write performant code
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Application software
Goal: Modelling physics
Scope: All relevant systems
Mix of languages:
C, FORTRAN, python, . . .
Lifetime: 100 manyears
Size: 100k – 1M lines
Obliged to write performant code

Working with these codes requires different skillsets
⇒ Orthogonal developer & user communities

Obstacle for knowledge transfer:
Mathematical methods never tried in practical setting
(and may well not work well in the real world)

Some issues cannot be studied with mathematical codes
(and mathematicians may never get to know of them)

Hypothesis: People compose if software composes 7 / 29



Software to enable cross-disciplinary research
Quantum spin systems (MA+PY)

ReducedBasis.jl: Reduced basis
methods for eigenproblems
Computation of phase diagrams1,2

Implicit solvation models (MA+CH)

ddx: Linear scaling solvation
models up to protein-sized systems3

Computational spectroscopy (MA+CH)

adcc: Algebraic Diagrammatic
Construction methods4

Error of core-valence separation5

(Technique for simulating X-ray spectra)

First-principle materials modelling
Density-Functional ToolKit6:
Reduced settings and applications

DFTK

numerical
analysis

novel
scientific
models

materials
simulations

high-
performance
computing

HΨ = EΨ

1MFH, S. Wessel, M. Rizzi, B. Stamm. Phys. Rev. E 105, 045303 (2022).
2P. Brehmer, MFH, S. Wessel, et. al. Phys. Rev. E 108, 025306 (2023)
3M. Nottoli, MFH, A. Mikhalev, et. al. ddx Polarizable Continuum Solvation DOI 10.26434/chemrxiv-2024-787rx
4MFH, M. Scheurer, T. Fransson, et. al. WIREs Comput. Molec. Sci 10, e1462 (2020).
5MFH, T. Fransson. J. Chem. Phys. 153, 054114 (2020).
6MFH, A. Levitt, E. Cancès. JuliaCon Proc. 3, 69 (2021). 8 / 29
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Density-functional theory (insulators)
Goal: Understand electronic structures (Many-body quantum system)

DFT approximation: Effective single-particle model
∀i ∈ 1 . . . N :

(
−1

2∆ + V (ρΦ)
)
ψi = εiψi,

V (ρ) =Vext + VHxc(ρ),

ρΦ =
N∑

i=1
|ψi|2 ,

Self-consistent field (SCF) fixed-point problem
ρ
(
V (ρ)

)
= ρ

Density mixing (preconditioner P , damping α)

ρn+1 = ρn + αP−1 [ρ(V (ρn)
)

− ρn

]
Best P & α highly system dependent (metal, insulator, . . . )

Usually chosen by trial and error (Impact on energy consumption . . . )
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Illustration: Guessing a suitable damping α can be hard

damping
α

Inefficient standard damping
(0.6 − 0.8)
Surprisingly small damping for
smooth convergence

Heusler alloy: Materials class with unusual
magnetic properties

⇒ Numerically challenging behaviour
SCF irregular: α versus convergence
Usual heuristics breaks:
Larger damping is better
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Self-adapting black-box algorithms

Preconditioning inhomogeneous
systems (surfaces, clusters, . . . )

LDOS preconditioner1:
Parameter-free and self-adapting
ca. 50% less iterations

Damping α adapted in each step
(using tailored quadratic model)

Avoids trial and error
(but may have a small overhead)

Safeguard with theoretical guarantees2

⇒ Maths / physics collaboration:
Exchange of ideas between simplified & practical settings crucial

1MFH, A. Levitt. J. Phys. Condens. Matter 33, 085503 (2021).
2MFH, A. Levitt. J. Comput. Phys. 459, 111127 (2022).
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What about properties ?
DFT properties: Response of system to external changes:

Connection Theory ⇔ Experiment
Modelling: Potential V (θ, ρ) depends on parameters θ
(e.g. atomic positions, el. field)

SCF procedure yields fixed-point density ρSCF

0 = ρ
(
V (θ, ρSCF)

)
− ρSCF

⇒ Defines implicit function ρSCF(θ)

Properties are derivatives:
Forces (energy wrt. position), dipole moment (energy wrt. el. field),
elasticity (energy cross-response to lattice deformation), phonons,
electronic spectra, . . .

⇒ Density-functional perturbation theory (implicit differn.)

∂ρSCF
∂θ

= [1 − χ0K]−1 χ0
∂V

∂θ

Need many applications of χ0 (Independent particle susceptibility)
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Sternheimer equations
Product χ0δV requires solving Sternheimer equations(

H̃ − εi

)
δψi = −P δV ψi ∀i = 1, . . . , N

H = − 1
2 ∆ + V , H̃ = PHP and P some projector

(εi, ψi) eigenpairs of H

⇒ Badly conditioned for metallic systems (εi near eigenvalue of H̃)
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(Number of iterations for various i)

Fe2MnAl Heusler alloy
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Schur complement approach to response1

Numerics of eigensolver:
We have Nex “extra” bands

Use these to partition H̃:

H̃ =

 Eex C

C† R


Eex = diag(εN+1, . . . , εN+Nex)
& C, R projections of H̃

⇒ Use Schur complement:
Better-conditioned systems

(R − εi)x = b

Fe2MnAl Heusler alloy

standard approach
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40% less iterations

40% less iterations

Schur-based approach tames CG
ca. 40% less iterations

Development guided using a
“real material”

1E. Cancès, MFH, G. Kemlin, et. al. Lett. Math. Phys. 113, 21 (2023).
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WIP: Inexact Krylov methods

DFPT + Sternheimer: Nested linear problems

Inexact Krylov methods:1 Framework to tolerate less tight
solutions of Sternheimer

First results indicate 25%–50% less Hamiltonian applications
(the expensive step)

Bonan Sun
1V. Simonicini, D. Szyld. SIAM J. Sci. Comput., 25, 454 (2003).
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WIP: Close the gap between maths and high-throughput
DFTK plugin for workflow manager

Goal: Simplify automated testing of novel algorithms

Verification study Quantum-Espresso vs. DFTK

Yihan Wu
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Recall our goal

conductivitySuitable for
solar cells?

min
Ψ

⟨Ψ, HΨ⟩

Suitable for
solar cells?

Need to repeat on 106 unseen systems . . .
Which model/numerics ?
How accurate is our answer ?

⇒ Question of error control
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Error comes in different flavours

More accurate numerics

Be
tt

er
ph
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s

Ideally want to balance errors
⇒ Need reliable error indicators !
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Numerical error: Analytical techniques

Γ XX WW KK ΓΓ LL UU WW LL K|U X
−0.2

−0.1

0.0

0.1

0.2

Band structure with guaranteed errors1

Momentum towards numerical error estimators for DFT
Focus on basis set error (some also tackle floating-point, SCF convergence)

Results promising, but many challenges & caveats remain
Numerical experiments & problem simplifications crucial

⇒ DFTK is major research tool for this development1-4

Techniques for DFT error less developed (and hard to tackle analytically)

1MFH, A. Levitt, E. Cancès. Faraday Discus. 223, 227 (2020).
2E. Cancès, G. Dusson, G. Kemlin et. al. SIAM J. Sci. Comp., 44, B1312 (2022).
3E. Cancès, G. Kemlin, A. Levitt. J. Matrix Anal. Appl., 42, 243 (2021).
4E. Cancès, G. Kemlin, A. Levitt. J. Sci. Comput., 98, 25 (2024)
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DFT error: Computing model sensitivities

Consider model sensitivity of force F(ρSCF(θ)):

dF
dθ

= ∂F
∂ρSCF

∂ρSCF
∂θ

(1)

Computed by response theory (we’ve seen this before !):

∂ρSCF
∂θ

= [1 − χ0K]−1 χ0
∂V

∂θ

Parameters appear in innermost layer (model definition)
Each DFT model: Different derivatives ∂V

∂θ (can be horrible)

Each quantity of interest: Different sensitivity expression (1)
⇒ Combinatorial explosion
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WIP: Sensitivity analysis in one line of code
DFTK : Algorithmic differentiation (AD)
Generic framework for derivatives: Request gradient, AD delivers

⇒ New properties/derivatives by non-DFT experts!

⇒ Setting for uncertainty quantification:
Pseudopotential sensitivity of electronic density

Niklas Schmitz

23 / 29



WIP: Exploiting AD: Derivatives to guide materials design
Materials design: Best design variables θ . . .
(strain, number of layers, alloy composition, . . . )

min
θ

∥target − prediction(θ,R∗(θ))∥ (1)

. . . subject to minimal energy (material should be stable)

R∗(θ) = arg min
R

E(θ,R) (2)

State of the art: Gradient-free methods for (1)

Blocker for gradient methods: We need unusual gradients

∂R∗
∂θ

= −
(
∂2E
∂R2

)−1
∂2E
∂R∂θ

⇒ Combinatorial explosion to implement them all

⇒ Easily obtained with AD in DFTK ! (at least some) Cédric Travelletti
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Exploiting heterogeneous modelling
density-functional theory (DFT) coupled cluster

model PBE PBE0 PBE0_DH CCSD(T)

scaling O(N3) O(N3) O(N3) O(N7)

advantage cheap cheapish cheapish accurate

small organics seconds to minutes hours/days

> 100 years of quantum chemistry: Zoo of models

Guiding idea: Can we combine data from different functionals
to balance accuracy / cost / deviating predictions?

⇒ Setting of Statistical learning (tricky analytically)

Opportunities:
Reduce data generation cost for learning
Dataset of opportunity

Challenge: Not always a clear which model is more accurate
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Multitask learning: Modelling correlations & discrepancies1

Goal: Surrogate for highest fidelity using mostly
heterogeneous low-fidelity data

Training: Limited CCSD(T) data plus mixture of
different DFT models (tasks)

Error: Model prediction versus true CCSD(T) result

Cost: Computational time for data generation

>10x less cost

Katherine Fisher
(MIT grad student)

1K. Fisher, MFH, Y. Marzouk Multitask meth. to predict molec. prop. from heterogeneous data arXiv 2401.17898 26 / 29
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Summary: Research in the group
High-throughput materials discovery

Need for automation: Robustness and efficiency are key!
Understand errors ⇒ Precise accuracy tuning

Robust and efficient simulation algorithms
Reduce user-chosen parameters, improve numerical schemes
Build on combining mathematical and physical insight

Error control for first-principle modelling
Combination of statistical and analytical approaches
Sensitivity analysis & derivative-guided design
Multi-tasking surrogates: The best of accurate & cheap models

DFTK : A DFT software for cross-disciplinary research
Reduced settings (error analysis) and high-throughput testing
Unlocks opportunities of algorithmic differentiation

⇒ Overcome barriers: People compose if software composes
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Questions?

https://matmat.org

� mfherbst

� michael.herbst@epfl.ch

B https:
//michael-herbst.com/slides/inaugural2024

DFTK https://dftk.org
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