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Outlook
• More detailed investigation of Post-HF methods
• Excited states, e.g. algebraic-diagrammatic construction (ADC)
• Extension to molecular Sturmians
• Systematic comparison of Coulomb Sturmian and Gaussian basis sets

Convergence with basis set size
• CS basis set: Triple of maximal quantum numbers (nmax, lmax,mmax)
• nmax controls discretisation of radial part of wave function
• lmax, mmax controls discretisation of angular part
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Figure 3. Relative error in Hartree-Fock energy versus the number of basis functions for
selected CS basis sets of the form (nmax, lmax,mmax). The lines connect progressions of
increasing nmax.

• Convergence speed in progression depends on lmax
• Some curves bend off around nmax = 8 ⇒ Error in angular part dominates

• Be only requires s-functions (lHFmax = 0) at HF level
• N and P require s- and p-functions (lHFmax = 1) at HF level
• O requires even higher angular momentum (f , g and above)
⇒ Artefact of unrestricted Hartree-Fock
• Post-HF convergence: Need at least lHFmax + 1 [3]

Coulomb Sturmians: Mathematical properties
• Atom-centred, exponential-type basis function

χnlm(r) = χµ(r) = Pnl(kr)e−krYlm(θ, ϕ)

• Satisfy hydrogen-like Schrödinger equation [1](
−1

2∆− βn
Z

r
− E

)
χµ(r) = 0

with potential-scaling factor βn = kn
Z and energy E = −k2

2 .
• Complete basis for Sobolev space H1(R3) irrespective of k
⇒ Correctly reproduce nuclear cusp and long-range decay (see fig. 1)

• One-electron integrals are sparse and analytic
• Electron-repulsion integral tensor formed by contraction

(µ1µ2|µ3µ4) =
∑
µµ′

(
Cµµ1,µ2

)∗
Iµµ′ Cµ′

µ3,µ4

where C and I are sparse, pre-computable tensors.
⇒ Ideal case for contraction-based formalism and lazy matrices [2, 3]

Introduction
• Molecular density: Sum of atomic densities (in good approximation)
⇒ Linear combination of atomic orbitals (LCAO) ansatz
⇒ Employ atom-centred functions as discretisation basis

• Physical features ⇒ Exponential-type orbitals
• But: Contracted Gaussian-type orbitals (cGTO) less challenging integrals
• Investigated here: Coulomb Sturmians (CS) [1]

• Measure for discretisation error: Local energy

EL(r) =

(
ĤΦ
)

(r)
Φ(r)

Ĥ: Schrödinger operator
Φ: Trial wave function

• Fluctuation about exact energy: Local measure for error (see RHS)
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Convergence with exponent k

• All CS functions in basis share the same exponent k
⇒ Free parameter, but basis is complete for any choice of k
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Figure 4. Unrestricted HF and unrestricted MP2 ground state energies of carbon versus
CS exponent k. The optimal exponent at HF level is marked with a cross.

• Optimal exponent can be found [3]
• Depends on nmax and electronic structure method
• k influences convergence speed of CS discretisation
• Effect of using optimal k reduces as nmax increases

Implementation: molsturm [2, 4]
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Figure 2. Structure of the molsturm modular electronic-structure theory framework [2, 3]

• Contraction-based self-consistent field (SCF) scheme
• Basis-function-independent SCF [2, 3]
• Plug-and-play integral libraries in modular framework

Local energies of cGTO and CS bases

Figure 1. Local energy resulting from solving the hydrogen atom employing the indicated
CS or cGTO basis sets. The deviation of this quantity from the exact ground state energy
of -0.5 Hartree quantifies the discretisation error.


