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INTRODUCTION

Employing a finite-element basis in electronic structure calculations provides an alterna-
tive to the commonly used atom-centered (AC) basis functions [1].
Potential benefits:

e Sparse, nearly diagonal-dominant matrices for local operators
e Easy parallelisation of code

e The grid (i.e. the basis) adapts to the molecular structure

e Intrinsic multiscale methods possible

e Reduction of implicit bias imposed by AC basis

e More flexible with respect to boundary conditions and potentials

HARTREE-FOCK IN THE WEAK FORMULATION

e Consider orbital in FE basis: ¢; = » . z](-i)gpj and define

f(r)V(r) g(r) dr

olf.9) = [ V@) Volr)

Y = Vo + Vi + V, (2)
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electron-nuclear interaction Hartree potential exchange potential

m(f,g) = /Q f(r) - g(r) dr

e We solve the Hartree-Fock (HF') equations in its weak form

Vioj talps, i) = g m(p;, ;)
= Az =g Mz
where A, = a(p;, vr) and M, = m(e;, pi)-

e Hartree potential Vi obtained in linear time by solving Poisson equation

~AVy (1) = p(r) (5)

e All operators except V, are local, i.e. they do not correlate two points in space
\. .

FINITE ELEMENTS (FES)

e Piecewise polynomials {¢;} on discretised grid

e Only non-zero in a few grid cells = strongly localised
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¢ At nodal points {x, }: oy () = ik
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linear FEs on 1D grid quadratic FEs on 1D grid

o Affine map between each cell on discretisation grid a reference cell, e.g. [0, 1]4™.

e F'Es can be generated by applying those affine maps to a small number of shape
functions (Lagrange polynomials) defined on the reference cell.
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e Noteworthy properties |2]:

o A posteriori error estimation: Estimate cell-wise error bound for the solu-
tion orbitals

o Adaptive grid refinement: User defined metric determines which cells are
refined on the next finer grid level

= Grid can adopt to molecule by minimising a posteriori error

CALCULATION SCHEME

Specify initial (coarse) grid

SCF iteration

Y

guess p and {v; };
| l

calculate Fock matrix A and
new {1;}4 overlap M via (1) and (3)

and p l

solve eigensystem (4)
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wﬁned grid /’f {; }i converged

refine grid adaptively considering
weighted a posterior: error

solve Poisson eq™ (5) for Vg

e Use approximate Fock matrix A until final grid found
e Autogeneration of grids and grid reuse is possible
e Back end for FE: deal.ii library

PRACTICAL CHALLENGES OF FINITE-ELEMENT HF

e Good discretisation requires large basis sets (more than 10° functions)
e F'E theory: Discretisation matrices of local operators are sparse
e But: Hartree-Fock exchange V, is non-local

e Split up A = Ajpcal + Vi, Where the exchange matrix is
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= Computational cost scales at least quadratically with basis set size

= Memory cost scales quadratically if full Fock matrix A is stored

OUTLOOK

e The computation of the exchange matrix-vector product can be written as

Va2, = [ o) 3 Vale)i(r) dr

— AV (r) = i (1) (1)

e Each application of A requires only N?

S hitals LO1Sson equations to be solved

= Linear scaling in memory and computational cost
e Use multigrid methods to reduce the number of diagonalisation iterations [4]

e Test non-linear diagonalisation schemes

e Develop a good approximation for the Fock operator in the FE context
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