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Introduction

Employing a �nite-element basis in electronic structure calculations provides an alterna-
tive to the commonly used atom-centered (AC) basis functions [1].
Potential bene�ts:

• Sparse, nearly diagonal-dominant matrices for local operators

• Easy parallelisation of code

• The grid (i.e. the basis) adapts to the molecular structure

• Intrinsic multiscale methods possible

• Reduction of implicit bias imposed by AC basis

• More �exible with respect to boundary conditions and potentials

Hartree-Fock in the weak formulation

• Consider orbital in FE basis: ψi =
∑

j z
(i)
j ϕj and de�ne

a(f, g) :=

∫
Ω

1

2
∇f(r) · ∇g(r) + f(r) V̂(r) g(r) dr (1)

V̂ = V̂0︷ ︸︸ ︷
electron-nuclear interaction

+ V̂H︷ ︸︸ ︷
Hartree potential

+ V̂x︷ ︸︸ ︷
exchange potential

(2)

m(f, g) :=

∫
Ω

f(r) · g(r) dr (3)

• We solve the Hartree-Fock (HF) equations in its weak form

∀ϕj : a(ϕj , ψi) = εim(ϕj , ψi)

⇒ Az(i) = εiMz(i) (4)

where Ajk = a(ϕj , ϕk) and Mjk = m(ϕj , ϕk).

• Hartree potential V̂H obtained in linear time by solving Poisson equation

−∆V̂H(r) = ρ(r) (5)

• All operators except V̂x are local, i.e. they do not correlate two points in space

Finite elements (FEs)

• Piecewise polynomials {ϕj} on discretised grid

• Only non-zero in a few grid cells ⇒ strongly localised

• At nodal points {xk}: ϕj(xk) = δjk
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linear FEs on 1D grid quadratic FEs on 1D grid

• A�ne map between each cell on discretisation grid a reference cell, e.g. [0, 1]dim.

• FEs can be generated by applying those a�ne maps to a small number of shape
functions (Lagrange polynomials) de�ned on the reference cell.
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2D quadratic shape functions

• Noteworthy properties [2]:

• A posteriori error estimation: Estimate cell-wise error bound for the solu-
tion orbitals

• Adaptive grid re�nement: User de�ned metric determines which cells are
re�ned on the next �ner grid level

⇒ Grid can adopt to molecule by minimising a posteriori error

Calculation scheme

Specify initial (coarse) grid

guess ρ and {ψi}i solve Poisson eq.n (5) for VH

SCF iteration

calculate Fock matrix A and
overlap M via (1) and (3)

solve eigensystem (4)

re�ne grid adaptively considering
weighted a posteriori error

if {ψi}i converged

new {ψi}i
and ρ

re�ned grid

• Use approximate Fock matrix A until �nal grid found

• Autogeneration of grids and grid reuse is possible

• Back end for FE: deal.ii library

Practical challenges of finite-element HF

• Good discretisation requires large basis sets (more than 106 functions)

• FE theory: Discretisation matrices of local operators are sparse

• But: Hartree-Fock exchange V̂x is non-local

• Split up A = Alocal + Vx, where the exchange matrix is

(Vx)jk =

∫
Ω

∫
Ω

ϕj(r)

∑
i ψi(r)ψi(r

′)

|r − r′|
ϕk(r′) dr dr′ (6)
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Visualisation of an example for Alocal Visualisation of an example for Vx

colouring depends on the log of the entry values, log |(Alocal)jk| or log |(Vx)jk|, respectively

⇒ Computational cost scales at least quadratically with basis set size

⇒ Memory cost scales quadratically if full Fock matrix A is stored
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Outlook

• The computation of the exchange matrix-vector product can be written as

(Vxz
(l))j =

∫
Ω

ϕj(r)
∑
i

Ṽil(r)ψi(r) dr

−∆Ṽil(r) = ψi(r)ψl(r)

• Each application of A requires only N2
orbitals Poisson equations to be solved

⇒ Linear scaling in memory and computational cost

• Use multigrid methods to reduce the number of diagonalisation iterations [4]

• Test non-linear diagonalisation schemes

• Develop a good approximation for the Fock operator in the FE context


