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Introduction

Employing a �nite-element basis in electronic structure calculations provides a novel
alternative to the commonly used atom-centered (AC) basis functions [1, 2]. Expected
properties:

• Sparse, nearly diagonal-dominant matrices

• Easy parallelisation of code

• Adaptive re�nement: Grid adapts to molecular structure automatically

• Intrinsic multiscale methods possible

• Reduction of implicit bias imposed by AC basis

• More basis functions required compared to a pure AC basis

Finite Elements (FEs)

• Piecewise polynomials {ϕj} on discretised grid

• Only non-zero in a few grid cells ⇒ strongly localised

• At nodal points {xk}: ϕj(xk) = δjk

• Hence: f(x) =
∑
j zjϕj ⇒ f(xk) = zk
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• A�ne map µc : c0 → c, between arbitrary cells on discretisation grid c and
reference cell c0

• Allows description of FEs by only considering a small number of shape functions
{eα} (Lagrange polynomials), de�ned on c0:

ϕk|c (r) = eα

(
µ−1
c (r)

)
for some α

0

0.2

0.4

0.6

0.8

1

0 1
-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1

1D linear shape functions 1D quadratic shape functions

0 0.5 1 0
0.5

1
0

0.5
1

0 0.5 1 0
0.5

1
0

0.5
1

0 0.5 1 0
0.5

1
0

0.5
1
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• A posteriori error estimation: Estimate cell-wise error bound after calculation

• Adaptive grid re�nement: Construct new grid, where cells with largest a pos-

teriori error are re�ned

• Intrinsic multiscale: Re�ne grid in particular regions of space which are of spe-
cial interest

Weak formulation of Hartree-Fock

• Consider orbital in FE basis: ψi =
∑
j z

(i)
j ϕj

• De�ne:

a(f, g) :=

∫
Ω

1

2
∇f(r) · ∇g(r) + f(r)V (r) g(r) dr (1)

V = V0︷ ︸︸ ︷
electron-nuclear interaction

+ VH︷ ︸︸ ︷
Hartree potential

+ Vx︷ ︸︸ ︷
exchange potential

(2)

m(f, g) :=

∫
Ω

f(r) · g(r) dr (3)

• We solve the Hartree-Fock (HF) equation in its weak form

∀ϕj : a(ϕj , ψi) = εim(ϕj , ψi)

⇒ Az(i) = εiMz(i) (4)

where Ajk = a(ϕj , ϕk) and Mjk = m(ϕj , ϕk).

• Solving (4) in an FE basis is usually di�cult due to the high dimensionality

Method overview

• Based on SIESTA method [3, 4]

• FE basis allows calculation of Hartree potential VH by Poisson equation

−∆VH(r) = ρ(r) (5)

in linear time.

• To avoid dimensionality issues in the solution of (4) represent core orbitals in an
AC basis

• Still treat valence orbitals in non-biased FE basis⇒ reduction of bias by AC basis

• Fit AC basis functions to FE basis functions such that core orbitals are available
in both representations

• Non-local Hartree-Fock exchange potential problematic

• Back end for FE: deal.ii library [5]

Proposed calculation scheme

Specify coarse grid Auto-generate grid

Specify region of interest

guess ρ and {ψi}i

initial grid

solve (5) for VH

calculate (1) and (3)

solve eigensystem (4)

re�ne grid adaptively considering
weighted a posteriori error

if {ψi}i converged

new {ψi}i
and ρ

re�ned grid

SCF iteration

• Can also skip grid re�nement and re-use grid from previous calculation

Solution for hydrogen: 1s orbital

• Comparison of analytic solution with solutions on di�erent FE meshes plotted along
the x axis
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• Greatest error at the discontinuity of ψi near the nucleus
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Outlook

• Use ECPs to get rid of discontinuity at nucleus

• Develop an approximate Fock operator in the FE context to avoid using exact one
each SCF iteration

• Implement automatic mesh generation and an intrinsic multiscale method


