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Employing a finite-element basis in electronic structure calculations provides a novel
alternative to the commonly used atom-centered (AC) basis functions |1, 2|. Expected
properties:

e Sparse, nearly diagonal-dominant matrices

e Easy parallelisation of code

e Adaptive refinement: Grid adapts to molecular structure automatically
e Intrinsic multiscale methods possible

e Reduction of implicit bias imposed by AC basis

e More basis functions required compared to a pure AC basis
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FINITE ELEMENTS (FES)

e Piecewise polynomials {¢;} on discretised grid

e Only non-zero in a few grid cells = strongly localised
e At nodal points {x,}: ¢,;(xr) = 0k
e Hence: f(x) =) ,zjp; = f(zk) = 2
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o Affine map u. : cg — ¢, between arbitrary cells on discretisation grid ¢ and

reference cell cg

Allows description of FEs by only considering a small number of shape functions
{e~} (Lagrange polynomials), defined on cy:
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e A posterior: error estimation: Estimate cell-wise error bound after calculation

e Adaptive grid refinement: Construct new grid, where cells with largest a pos-
teriort error are refined

e Intrinsic multiscale: Refine grid in particular regions of space which are of spe-
cial interest

WEAK FORMULATION OF HARTREE-FOCK

e Consider orbital in FE basis: 1; = » . Z§i)90j
e Define:

V = +

Vi +

' . N\
Hartree potential

Va
A\
-

-
exchange potential

Vs N\
electron-nuclear interaction

m(f,g) = /Qf(z) -g(r) dr

e We solve the Hartree-Fock (HF) equation in its weak form

Vgpj : a(goj,wi) = &4 m(%’»%‘)

= Az =g, Mz

where A = a(p;, ¢r) and M, = m(p;, o).

e Solving (4) in an FE basis is usually difficult due to the high dimensionality

e Based on SIESTA method |3, 4]

e F'E basis allows calculation of Hartree potential Vg by Poisson equation

—AVy(r) = p(r) (5)

in inear time.

e To avoid dimensionality issues in the solution of (4) represent core orbitals in an
AC basis

e Still treat valence orbitals in non-biased FE basis = reduction of bias by AC basis

e FFit AC basis functions to FE basis functions such that core orbitals are available
in both representations

e Non-local Hartree-Fock exchange potential problematic
e Back end for FE: deal.ii library |[5]

PROPOSED CALCULATION SCHEME

Specify coarse grid Auto-generate grid
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/f {1; }; converged

refine grid adaptively considering
weighted a posterior:i error

refined grid

e Can also skip grid refinement and re-use grid from previous calculation

SOLUTION FOR HYDROGEN: 1S ORBITAL

e Comparison of analytic solution with solutions on different FE meshes plotted along
the x axis
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e Greatest error at the discontinuity of ; near the nucleus

OUTLOOK

e Use ECPs to get rid of discontinuity at nucleus

e Develop an approximate Fock operator in the FE context to avoid using exact one
cach SCF iteration

e Implement automatic mesh generation and an intrinsic multiscale method
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