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Sources of Uncertainty in DFT

Introduction

Density Functional Theory (DFT) used as reference for molecular
dynamics simulations

Accuracy depends on chemical system, quantity of interest, and
functional choice

Plan: Design a Bayesian Inference model to infer a distribution on an
ensemble of DFT predictions using different approximations
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Sources of Uncertainty in DFT

Exchange Correlation

Kohn Sham DFT is exact, but the true exchange correlation
functional, Exc [ρ], is unknown

There are many approximations to Exc [ρ] with a range of accuracy
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Sources of Uncertainty in DFT

Long Term Applications

Multiscale modelling of
materials in extreme
environments

Uncertainty will be be
propagated to a larger scale
to inform molecular
dynamics simulations

Functional Approximation design

Multifidelity DFT predictions

determine the best subset of functionals and their relative accuracy
indicate when a high rung functional approximation is necessary
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Existing Approaches to UQ for DFT

Regression

One approach to error estimation in DFT [Lejaeghere, 2020]:

Y = a + b X + ε

Experimental Data

DFT Predictions

Use a linear fit to separate predictable error (a and b) from “random”
error (ε)
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Existing Approaches to UQ for DFT

Bayesian Error Estimation Functionals (BEEF)

Error representation via functional ensemble [Christensen et al.,
Wellendorff et al., 2020]:

Fit an optimal functional using databases

Create an ensemble with σ2 ≈ error of the functional against the data
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Bayesian Inference Approach

Bayesian Modelling

Consider a chemical system, Y , and some quantity of interest (i.e.
atomization energy) with unknown true value ν.

Assumption:

Experimental measurements and theoretical predictions are distributed
around ν in some pattern that can be represented by a statistical model

Approach:

Relate the data to ν with statistical model
Obtain probability distribution for ν
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Bayesian Inference Approach

Our Approach

We will adapt a method used by Tebaldi et al. [2005, 2009] for UQ in
climate models. The idea is to

Use predictions by multiple functionals to infer a distribution on a
Quantity of Interest

Leverage cases where high level theory is available

Based on the spread of DFT predictions around the high level data for
chemical compound X, infer a distribution on predictions for chemical
compound Y
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Bayesian Inference Approach

Preliminary Results

Case 1:

System X System Y

The model has some
promising behavior...

Case 2: ...and limitations
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Bayesian Inference Approach

Bayes’ Law

P(Parameters
∣∣ Data) ∝ P(Data

∣∣Parameters) P(Parameters)

Posterior
Distribution Likelihood

Prior
Distribution

In our case, the data is

X0 ≡ Reference data for chemical system X

Xj ≡ DFT prediction by j for system X

Yj ≡ DFT prediction by j for system Y

where j ≡ Functional j
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Bayesian Inference Approach

Components of a Simple Model

X0 ∼ N (µ, λ−1
0 )

Likelihoods Xj ∼ N (µ, λj
−1)

Yj |Xj ∼ N
(
ν + β(Xj − µ), (ϕλj)

−1
)

λ1, . . . , λM ∼ Ga(aλ, bλ)
Priors µ, ν, β ∼ constant, uninformative

ϕ, aλ, bλ ∼ Ga(a, b)

Fixed a, b, λ−1
0
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Bayesian Inference Approach

Interpretation of Parameters

X0 ∼ N (µ, λ−1
0 )

Likelihoods Xj ∼ N (µ, λj
−1)

Yj |Xj ∼ N
(
ν + β(Xj − µ), (ϕλj)

−1
)

µ → exact value of QOI for system X

ν → exact value of QOI for system Y

λj → confidence in functional approximation j

β, ϕ → controls of correlation between X and Y
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Bayesian Inference Approach

How does the model balance demands?
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Bayesian Inference Approach

Possible Limitations

Zero bias assumption

All predictions and experimental data are assumed to be centered on
the exact value for the QOI

Independence assumption

Functional approximations are assumed to be independently distributed
about exact value

Priors

There is some disagreement as to whether the Gamma prior is
uninformative [Gelman, 2006]

Simplicity of precision/confidence parameters

It is very likely the “best” functional approximation will be different for
X and Y
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Bayesian Inference Approach

Inference

The parameter set is small
enough that posterior samples
can be obtained using MCMC

Gibbs sampling is used for
nearly all parameters
Exception: aλ and bλ are
updated with Metropolis
sampling
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Results

Results
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Results

When the model works well...

X: SiH4 (Saturated) Y: CH4 (Saturated)
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Results

When the model works well...

X: CH3 (Radical) Y: CH2 (Biradical)
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Results

Overconfidence...

X: Si2H6 (Saturated) Y: SiH4 (Saturated)
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Results

When the model is confidently wrong...

X: Si2H6 (Saturated) Y: CH4 (Saturated)
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Results

Misleading Data...

X: SiH4

(Saturated)
Y: CH
(Triradical)

Functional
behavior for

various
chemical
systems:
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Results

Compound Type and Error
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Next Steps

Current and Future Work

The current model is limited by...

The assumption that all DFT predictions are distributed with the
same mean

Plan: We can adapt our parameter choice to capture bias in functional
approximation classes

A lack of procedure for checking the accuracy of the posterior mean
and width

Plan: Develop a cross validation procedure to quantify inference
success in the absence of reference data for Y

Only a single point of reference (System X)

Plan: We can incorporate multiple reference systems and QOI into our
inference model
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Climate to Quantum

X Y

Climate Current Future
Science Temperature Temperature

Quantum Reference Unknown
Chemistry Chemical Chemical

Compound Compound

⇒ Infer probability
Distributions
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Factorization

Let our set of parameters be θ.
With some assumptions about independence, we can factorize the
likelihood and prior:

P(Data
∣∣θ) = P(Y

∣∣X,X0,θ) P(X
∣∣X0,θ) P(X0

∣∣θ)
=

M∏
j=1

P(Yj

∣∣Xj ,θ)
M∏
j=1

P(Xj

∣∣θ) P(X0

∣∣θ)
P(θ) = P(θ1) . . . P(θn)
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Mean of the Conditional for Y

We assume that predictions for Y are drawn from a conditional
distribution:

Yj |Xj ∼ N
(
ν + β(Xj − µ),

1

ϕλj

)
The construction of the mean:

follows from an assumption that [Xj ,Yj ]
T has a multivariate Gaussian

distribution

resembles (but is not the same as) linear regression
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Comparison with Regression

We can compare the inference model to a similar linear regression set up:

(Yj − ν) = β (Xj − µ) + εj

εj ∼ N(0, λ−1)

Error of jth
prediction
for Y

Slope
Error of jth
prediction
for X

Noise
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Comparison with Regression

A related regression formulation:

(Yj − ν) = β(Xj − µ) + ϵj

ϵj ∼ N(0, λ−1)

Our inference model is more
flexible:

Xj is treated as a random
variable
The variance of the random
variables is dependent on j
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Predictors of Inference Error: Subset DFT Mean

UQ for DFT June 22, 2022 9 / 11



Predictors of Inference Error: Subset DFT Mean

UQ for DFT June 22, 2022 10 / 11



Multireference Model

Likelihood

X
(1)
j

X
(2)
j

Yj

 ∼ N
(µη

ν

 ,

v11 c12 c1Y
c12 v22 c2Y
c1Y c2Y vYY

)

We can choose the expressions for elements of the covariance matrix
to model the relationships between the systems

Prior distributions on the parameters can be used to incorporate
chemical information into the inference
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