A Bayesian Inference Approach to Uncertainty Quantification for Density Functional Theory

Kate Fisher, Michael Herbst, & Youssef Marzouk

June 22, 2022

Sources of Uncertainty in DFT

Sources of Uncertainty in DFT

Image: A mathematical states and a mathem

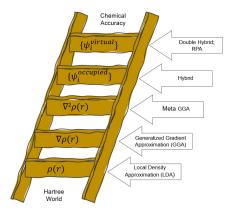
三日 のへの

Introduction

- Density Functional Theory (DFT) used as reference for molecular dynamics simulations
- Accuracy depends on chemical system, quantity of interest, and functional choice

Plan: Design a Bayesian Inference model to infer a distribution on an ensemble of DFT predictions using different approximations

Exchange Correlation



- Kohn Sham DFT is exact, but the true exchange correlation functional, $E_{xc}[\rho]$, is unknown
- There are many approximations to $E_{xc}[\rho]$ with a range of accuracy

Long Term Applications

- Multiscale modelling of materials in extreme environments
 - Uncertainty will be be propagated to a larger scale to inform molecular dynamics simulations
- Functional Approximation design
- Multifidelity DFT predictions
 - determine the best subset of functionals and their relative accuracy
 - indicate when a high rung functional approximation is necessary

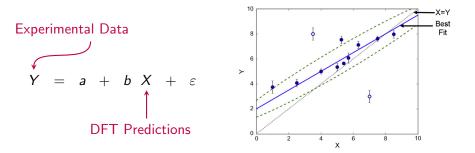
Existing Approaches to UQ for DFT

< 4 P ► 4

三日 のへの

Regression

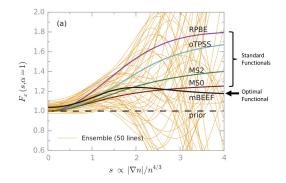
One approach to error estimation in DFT [Lejaeghere, 2020]:



 Use a linear fit to separate predictable error (a and b) from "random" error (ε)

Bayesian Error Estimation Functionals (BEEF)

Error representation via functional ensemble [Christensen et al., Wellendorff et al., 2020]:



Fit an optimal functional using databases

• Create an ensemble with $\sigma^2 \approx$ error of the functional against the data

UQ for DFT

Bayesian Inference Approach

Bayesian Inference Approach

三日 のへで

Bayesian Modelling

Consider a chemical system, Y, and some quantity of interest (i.e. atomization energy) with unknown true value ν .

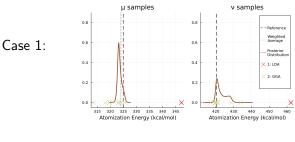
- Assumption:
 - Experimental measurements and theoretical predictions are distributed around ν in some pattern that can be represented by a statistical model
- Approach:
 - Relate the data to u with statistical model
 - Obtain probability distribution for u

We will adapt a method used by Tebaldi et al. $\left[2005,\,2009\right]$ for UQ in climate models. The idea is to

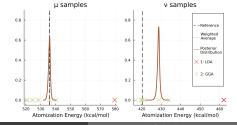
- Use predictions by multiple functionals to infer a distribution on a Quantity of Interest
- Leverage cases where high level theory is available
- Based on the spread of DFT predictions around the high level data for chemical compound X, infer a distribution on predictions for chemical compound Y

Preliminary Results

System X System Y



The model has some promising behavior...



...and limitations

UQ for DFT

2 / 27

-

Bayes' Law

In our case, the data is

 $X_0 \equiv$ Reference data for chemical system X $X_j \equiv$ DFT prediction by j for system X $Y_j \equiv$ DFT prediction by j for system Y

where $j \equiv$ Functional j

Components of a Simple Model

Likelihoods		$\sim \mathcal{N}(\mu, \lambda_0^{-1}) \ \sim \mathcal{N}(\mu, \lambda_j^{-1}) \ \sim \mathcal{N}(\nu + \beta(X_j - \mu), (\phi \lambda_j)^{-1})$
Priors	$\lambda_{1}, \ldots, \lambda_{M}$ μ, ν, β $\phi, a_{\lambda}, b_{\lambda}$	\sim Ga($a_{\lambda}, \ b_{\lambda}$) \sim constant, uninformative \sim Ga($a, \ b$)
Fixed	a, b, λ_0^{-1}	

Image: A mathematical states and a mathem

Interpretation of Parameters

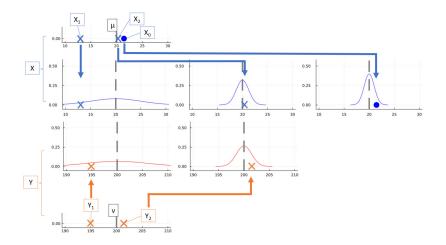
$$X_0 ~~ \mathcal{N}(\mu, \lambda_0^{-1})$$

 $X_j ~~ \mathcal{N}(\mu, \lambda_j^{-1})$
 $Y_j | X_j ~~ \mathcal{N}(\nu + \beta(X_j - \mu), (\phi \lambda_j)^{-1})$

- $\mu \rightarrow$ exact value of QOI for system X
- $\nu
 ightarrow$ exact value of QOI for system Y
- $\lambda_j \rightarrow$ confidence in functional approximation j
- $\beta, \ \phi \rightarrow$ controls of correlation between X and Y

Bayesian Inference Approach

How does the model balance demands?



June 22, 2022

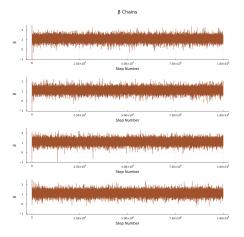
Possible Limitations

Zero bias assumption

- All predictions and experimental data are assumed to be centered on the exact value for the QOI
- Independence assumption
 - Functional approximations are assumed to be independently distributed about exact value
- Priors
 - There is some disagreement as to whether the Gamma prior is uninformative [Gelman, 2006]
- Simplicity of precision/confidence parameters
 - $\bullet\,$ It is very likely the "best" functional approximation will be different for X and Y

Inference

- The parameter set is small enough that posterior samples can be obtained using MCMC
 - Gibbs sampling is used for nearly all parameters
 - Exception: a_λ and b_λ are updated with Metropolis sampling

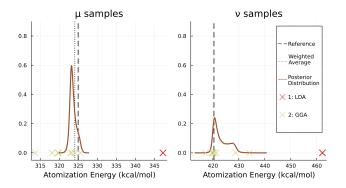


18 / 27

Results

When the model works well...

X: SiH₄ (Saturated) Y: CH₄ (Saturated)

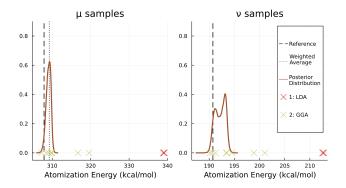


< E.

三日 のへの

When the model works well...

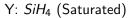
X: CH_3 (Radical) Y: CH_2 (Biradical)

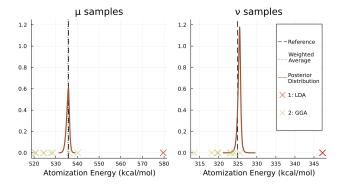


'≕ ∽९० 21/27 Results

Overconfidence...

X: Si₂H₆ (Saturated)





3 × 4 3 ×

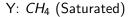
< (17) × <

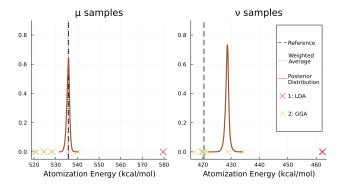
三日 のへの

Results

When the model is confidently wrong...

X: *Si*₂*H*₆ (Saturated)

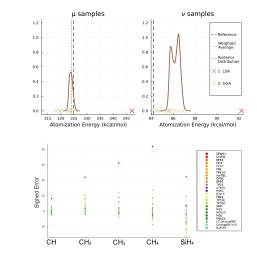




э.

Misleading Data...

X: *SiH*₄ (Saturated)



Y: *CH* (Triradical)

Functional behavior for various chemical systems:

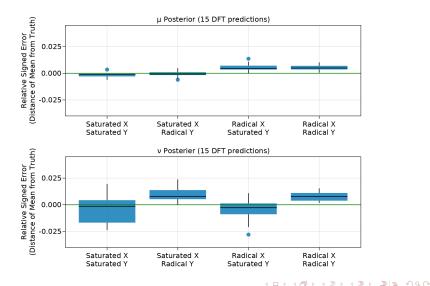
June 22, 2022

э.

315

Results

Compound Type and Error



UQ for DFT

June 22, 2022

25 / 27

Next Steps

三日 りょぐ

<ロト <回ト < 回ト < 回ト

Current and Future Work

The current model is limited by ...

- The assumption that all DFT predictions are distributed with the same mean
 - **Plan:** We can adapt our parameter choice to capture bias in functional approximation classes
- A lack of procedure for checking the accuracy of the posterior mean and width
 - **Plan:** Develop a cross validation procedure to quantify inference success in the absence of reference data for Y
- Only a single point of reference (System X)
 - **Plan:** We can incorporate multiple reference systems and QOI into our inference model

A ∃ ► 3 | = 4 € ►

References I

 R. Christensen, T. Bligaard, and K. Jacobsen. Bayesian error estimation in density functional theory. Uncertainty Quantification in Multiscale Materials Modeling, pages 77–91, 2020.

[2] A. Gelman.

Prior distributions for variance parameters in hierarchical models (comment on article by browne and draper). Bayesian Analysis, 3(1):515–534, 2006.

[3] K. Lejaeghere.

The uncertainty pyramid for electronic-structure methods.

In Y. Wang and D. L. McDowell, editors, *Uncertainty Quantification in Multiscale Materials Modeling*, chapter 2, pages 41–76. Elsevier Ltd., Atlanta, 2020.

白 ト イヨト イヨト ヨヨ のくら

References II

 [4] R. Smith, C. Tebaldi, D. Nychka, and L. Mearns.
 Bayesian modeling of uncertainty in ensembles of climate models. Journal of American Statistical Association, 104(485):97–116, 2009.

[5] C. Tebaldi and R. Knutti.

The use of the multi-model ensemble in probabilistic climate projections.

The Philosophical Transactions of Royal Society A, 365(1857):2053–2075, 2007.

[6] C. Tebaldi, R. Smith, D. Nychka, and L. Mearns.

Quantifying uncertainty in projections of regional climate change: A bayesian approach to the analysis of multimodel ensembles. *Journal of Climate*, 18(10):1524–1540, 2005.

回 トイヨト イヨト ヨヨ つくつ

[7] J. Wellendorff, K. T. Lundgaard, K. W. Jacobsen, and T. Bligaard. mbeef: An accurate semi-local bayesian error estimation density functional.

Uncertainty Quantification in Multiscale Materials Modeling, pages 77–91, 2020.

[8] L. Ying, J. Yu, and L. Ying. Numerical methods for kohn-sham density functional theory. *Acta Numerica*, 28:405–539, 2019.

	Х	Y			
Climate Science	Current Temperature	Future Temperature			Infer probability Distributions
Quantum Chemistry	Reference Chemical Compound	Unknown Chemical Compound	\Rightarrow		

Let our set of parameters be θ .

With some assumptions about independence, we can factorize the likelihood and prior:

$$\mathbb{P}(\mathsf{Data} \mid \boldsymbol{\theta}) = \mathbb{P}(\mathbf{Y} \mid \mathbf{X}, X_0, \boldsymbol{\theta}) \quad \mathbb{P}(\mathbf{X} \mid X_0, \boldsymbol{\theta}) \quad \mathbb{P}(X_0 \mid \boldsymbol{\theta})$$
$$= \prod_{j=1}^{M} \mathbb{P}(Y_j \mid X_j, \boldsymbol{\theta}) \quad \prod_{j=1}^{M} \mathbb{P}(X_j \mid \boldsymbol{\theta}) \quad \mathbb{P}(X_0 \mid \boldsymbol{\theta})$$

 $\mathbb{P}(\boldsymbol{\theta}) = \mathbb{P}(\theta_1) \ldots \mathbb{P}(\theta_n)$

ELE SQA

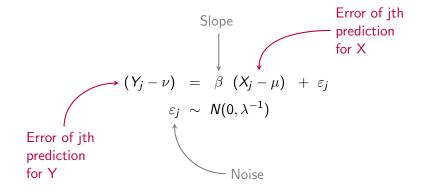
We assume that predictions for Y are drawn from a conditional distribution:

$$Y_j | X_j \sim \mathcal{N} \Big(
u + eta (X_j - \mu), \; rac{1}{\phi \lambda_j} \Big)$$

The construction of the mean:

- follows from an assumption that $[X_j, Y_j]^T$ has a multivariate Gaussian distribution
- resembles (but is not the same as) linear regression

We can compare the inference model to a similar linear regression set up:



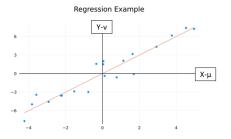
June 22, 2022

A related regression formulation:

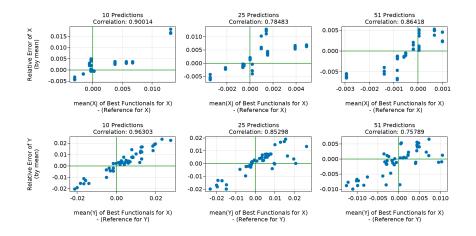
$$(Y_j - \nu) = \beta(X_j - \mu) + \epsilon_j$$

 $\epsilon_j \sim N(0, \lambda^{-1})$

- Our inference model is more flexible:
 - X_j is treated as a random variable
 - The variance of the random variables is dependent on *j*



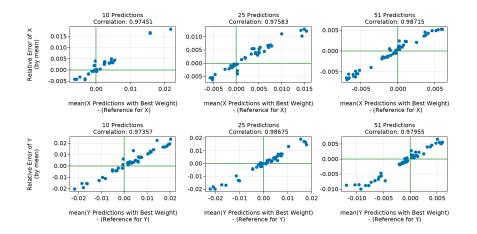
Predictors of Inference Error: Subset DFT Mean



ELE DOG

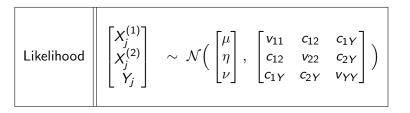
< ロト < 同ト < ヨト < ヨト

Predictors of Inference Error: Subset DFT Mean



ELE DOG

< ロト < 同ト < ヨト < ヨト



- We can choose the expressions for elements of the covariance matrix to model the relationships between the systems
- Prior distributions on the parameters can be used to incorporate chemical information into the inference

11/11